Knowledge

Magnetic structure

Source đź“ť

102:(also called itinerant magnetism), the electronic states are delocalized, and their mean-field interaction leads to the symmetry breaking. In this view, with increasing temperature the local magnetization would thus decrease homogeneously, as single delocalized electrons are moved from the up- to the down-channel. On the other hand, in the local-moment case the electronic states are localized to specific atoms, giving atomic spins, which interact only over a short range and typically are analyzed with the 28: 20: 87:, there is still a common quantization axis, but the electronic spins are pointing alternatingly up and down, leading again to cancellation of the macroscopic magnetization. However, specifically in the case of frustration of the interactions, the resulting structures can become much more complicated, with inherently three-dimensional orientations of the local spins. Finally, 130:. Neutrons are primarily scattered by the nuclei of the atoms in the structure. At a temperature above the ordering point of the magnetic moments, where the material behaves as a paramagnetic one, neutron diffraction will therefore give a picture of the crystallographic structure only. Below the ordering point, e.g. the 82:
in the ground state, there is a common spin quantization axis and a global excess of electrons of a given spin quantum number, there are more electrons pointing in one direction than in the other, giving a macroscopic magnetization (typically, the majority electrons are chosen to point up). In the
166:
of one of elements contained in the materials the scattering becomes anomalous and this component to the scattering is (somewhat) sensitive to the non-spherical shape of the outer electrons of an atom with an unpaired spin. This means that this type of
125:
Such ordering can be studied by observing the magnetic susceptibility as a function of temperature and/or the size of the applied magnetic field, but a truly three-dimensional picture of the arrangement of the spins is best obtained by means of
113:, which give a precise accounting for all possible symmetry groups of up/down configurations in a three-dimensional crystal. However, this formalism is unable to account for some more complex magnetic structures, such as those found in 67:, each state is occupied by electrons of opposing spins, so that the charge density is compensated everywhere and the spin degree of freedom is trivial. Still, such materials typically do show a weak magnetic behaviour, e.g. due to 161:
Although ordinary X-ray diffraction is 'blind' to the arrangement of the spins, it has become possible to use a special form of X-ray diffraction to study magnetic structure. If a wavelength is selected that is close to an
98:
The above discussion pertains to the ground state structure. Of course, finite temperatures lead to excitations of the spin configuration. Here two extreme points of view can be contrasted: in the
146:
will therefore change. In fact in some cases entirely new Bragg-reflections will occur if the unit cell of the ordering is larger than that of the crystallographic structure. This is a form of
1496:
Lawson, A. C.; Larson, Allen C.; Aronson, M. C.; Johnson, S.; Fisk, Z.; Canfield, P. C.; Thompson, J. D.; Von Dreele, R. B. (1994-11-15). "Magnetic and crystallographic order in α-manganese".
106:. Here, finite temperatures lead to a deviation of the atomic spins' orientations from the ideal configuration, thus for a ferromagnet also decreasing the macroscopic magnetization. 1190:
Neutron diffraction of magnetic materials / Yu. A. Izyumov, V.E. Naish, and R.P. Ozerov ; translated from Russian by Joachim BĂĽchner. New York : Consultants Bureau, c1991.
220:
has a spontaneous magnetization just below room temperature (293 K) and is sometimes counted as the fourth ferromagnetic element. There has been some suggestion that Gadolinium has
36: 1206: 95:
is in some sense an intermediate case: here the magnetization is globally uncompensated as in ferromagnetism, but the local magnetization points in different directions.
150:
formation. Thus the symmetry of the total structure may well differ from the crystallographic substructure. It needs to be described by one of the 1651 magnetic (
1251:
Mei, Antonio B.; Gray, Isaiah; Tang, Yongjian; Schubert, JĂĽrgen; Werder, Don; Bartell, Jason; Ralph, Daniel C.; Fuchs, Gregory D.; Schlom, Darrell G. (2020).
174:
More recently, table-top techniques are being developed which allow magnetic structures to be studied without recourse to neutron or synchrotron sources.
142:
of a ferromagnet the neutrons will also experience scattering from the magnetic moments because they themselves possess spin. The intensities of the
1790: 1908: 1539:
Yamada, Takemi; Kunitomi, Nobuhiko; Nakai, Yutaka; E. Cox, D.; Shirane, G. (1970-03-15). "Magnetic Structure of α-Mn".
1235: 239:
below their respective NĂ©el temperatures, and then become ferromagnetic below their Curie temperatures. The elements
147: 1582:
Huiku, M.T. (1984). "Nuclear magnetism in copper at nanokelvin temperatures and in low external magnetic fields".
2056: 1737:
G.W. Webb, F. Marsiglio, J.E. Hirsch (2015). "Superconductivity in the elements, alloys and simple compounds".
1253:"Local Photothermal Control of Phase Transitions for On-Demand Room-Temperature Rewritable Magnetic Patterning" 1195: 1901: 1625:
Hakonen, P J (1993-01-01). "Nuclear magnetic ordering in silver at positive and negative spin temperatures".
78:
The more interesting case is when the material's electron spontaneously break above-mentioned symmetry. For
1996: 151: 2051: 1226:(digitally print. 1. paperback version ed.). Cambridge, U.K.: Cambridge University Press. p.  168: 103: 99: 1445:
Marcus, P M; Qiu, S-L; Moruzzi, V L (1998-07-27). "The mechanism of antiferromagnetism in chromium".
262:
modulation on top of the simple up-down spin alternation. Manganese (in the α-Mn form) has 29 atoms
64: 63:
Most solid materials are non-magnetic, that is, they do not display a magnetic structure. Due to the
1869: 1894: 1831: 1227: 48: 1953: 1252: 283: 224:
ordering, but others defend the longstanding view that Gadolinium is a conventional ferromagnet.
47:
of a material pertains to the ordered arrangement of magnetic spins, typically within an ordered
1784: 1219: 266:, leading to a complex, but commensurate antiferromagnetic arrangement at low temperatures ( 1756: 1634: 1591: 1548: 1505: 1454: 1376: 1367:
Kaul, S. N. (2003). "Is gadolinium a helical antiferromagnet or a collinear ferromagnet?".
1274: 274:
2'm'). Unlike most elements, which are magnetic due to electrons, the magnetic ordering of
267: 110: 1646: 235:
each have two magnetic transitions. They are paramagnetic at room temperature, but become
8: 1991: 1324:
Coey, J.M.D.; Skumryev, V.; Gallagher, K. (1999). "Is gadolinium really ferromagnetic?".
1220: 127: 52: 1760: 1638: 1595: 1552: 1509: 1458: 1380: 1278: 255: 131: 1976: 1948: 1772: 1746: 1658: 1478: 1400: 1349: 1306: 1264: 135: 84: 1466: 1936: 1776: 1662: 1650: 1607: 1603: 1564: 1521: 1482: 1470: 1392: 1341: 1310: 1298: 1290: 1231: 1191: 1060: 306: 259: 258:. Chromium is somewhat like a simple antiferromagnet, but also has an incommensurate 199: 139: 1404: 2023: 1764: 1642: 1599: 1556: 1513: 1462: 1384: 1353: 1333: 1282: 291: 143: 302: 163: 1768: 1419: 2013: 1986: 1981: 1971: 88: 79: 2045: 2008: 2003: 1943: 1654: 1611: 1568: 1525: 1474: 1396: 1345: 1294: 295: 287: 254:
There is also antiferromagnetic ordering, which becomes disordered above the
183: 114: 72: 27: 1931: 1302: 1286: 1128: 766: 236: 221: 155: 68: 19: 1560: 2018: 1388: 869: 834: 596: 579: 228: 217: 109:
For localized magnetism, many magnetic structures can be described by
1917: 1517: 1162: 783: 732: 647: 613: 545: 426: 263: 92: 1736: 1222:
Group theoretical methods and applications to molecules and crystals
2028: 1751: 1269: 1077: 992: 975: 941: 817: 800: 409: 392: 375: 358: 1337: 1145: 1111: 1043: 1009: 958: 923: 887: 851: 681: 630: 562: 528: 341: 248: 244: 240: 1026: 905: 749: 698: 664: 494: 477: 460: 279: 275: 232: 195: 191: 177: 35: 1886: 1094: 511: 443: 187: 1495: 1538: 715: 1332:(6748). Springer Science and Business Media LLC: 35–36. 1375:(3). Springer Science and Business Media LLC: 505–511. 39:
A different simple antiferromagnetic arrangement in 2D
1323: 1250: 251:display even more complicated magnetic structures. 16:
Ordered arrangement of magnetic spins in a material
1739:Physica C: Superconductivity and Its Applications 2043: 1444: 1421:Rare Earth Magnetism: Structures and Excitations 1417: 171:does contain information of the desired type. 1902: 154:) groups rather than one of the non-magnetic 1789:: CS1 maint: multiple names: authors list ( 178:Magnetic structure of the chemical elements 120: 1909: 1895: 294:) leading to transition temperatures near 1826: 1824: 1822: 1820: 1750: 1732: 1730: 1728: 1726: 1724: 1722: 1720: 1718: 1716: 1714: 1712: 1710: 1708: 1706: 1704: 1702: 1700: 1698: 1696: 1694: 1692: 1547:(3). Physical Society of Japan: 615–627. 1268: 31:A very simple antiferromagnetic structure 1818: 1816: 1814: 1812: 1810: 1808: 1806: 1804: 1802: 1800: 1690: 1688: 1686: 1684: 1682: 1680: 1678: 1676: 1674: 1672: 1541:Journal of the Physical Society of Japan 1418:Jensen, Jens; Mackintosh, Allan (1991). 34: 26: 18: 1864: 1862: 1860: 1858: 1856: 1854: 1852: 1850: 1848: 1624: 2044: 58: 1890: 1797: 1669: 1581: 23:A very simple ferromagnetic structure 1845: 1447:Journal of Physics: Condensed Matter 1366: 1217: 209:, is higher than room temperature ( 13: 186:at room temperature and pressure: 14: 2068: 1504:(10). AIP Publishing: 7049–7051. 1453:(29). IOP Publishing: 6541–6552. 83:most simple (collinear) cases of 1870:"Elements handbook: Curie point" 282:is dominated by the much weaker 1832:"Elements handbook: Neel point" 1647:10.1088/0031-8949/1993/t49a/057 1618: 1575: 1532: 91:as prototypically displayed by 1489: 1438: 1411: 1360: 1317: 1244: 1211: 1200: 1184: 309:below a critical temperature. 1: 1916: 1207:A demonstration by Brian Toby 1177: 1997:ferromagnetic superconductor 1604:10.1016/0378-4363(84)90145-1 301:Those elements which become 7: 1769:10.1016/j.physc.2015.02.037 1633:. IOP Publishing: 327–332. 1590:(1–3). Elsevier BV: 51–61. 1467:10.1088/0953-8984/10/29/014 169:anomalous X-ray diffraction 100:Stoner picture of magnetism 51:. Its study is a branch of 10: 2073: 1498:Journal of Applied Physics 1964: 1924: 1427:. Oxford: Clarendon Press 65:Pauli exclusion principle 198:. This is because their 182:Only three elements are 121:Techniques to study them 49:crystallographic lattice 1954:Van Vleck paramagnetism 284:nuclear magnetic moment 1287:10.1002/adma.202001080 1218:Kim, Shoon K. (1999). 40: 32: 24: 2057:Solid-state chemistry 111:magnetic space groups 38: 30: 22: 268:magnetic space group 2024:amorphous magnetism 1992:superferromagnetism 1761:2015PhyC..514...17W 1639:1993PhST...49..327H 1596:1984PhyBC.126...51H 1561:10.1143/jpsj.28.615 1553:1970JPSJ...28..615Y 1510:1994JAP....76.7049L 1459:1998JPCM...10.6541M 1381:2003Prama..60..505K 1279:2020AdM....3201080M 128:neutron diffraction 59:Magnetic structures 53:solid-state physics 1977:antiferromagnetism 1949:superparamagnetism 1389:10.1007/bf02706157 1257:Advanced Materials 330:Curie temperature 85:antiferromagnetism 45:magnetic structure 41: 33: 25: 2052:Magnetic ordering 2039: 2038: 1937:superdiamagnetism 1925:Magnetic response 1175: 1174: 333:NĂ©el temperature 307:superdiamagnetism 260:spin density wave 200:Curie temperature 144:Bragg reflections 2064: 1911: 1904: 1897: 1888: 1887: 1881: 1880: 1878: 1876: 1866: 1843: 1842: 1840: 1838: 1828: 1795: 1794: 1788: 1780: 1754: 1734: 1667: 1666: 1622: 1616: 1615: 1579: 1573: 1572: 1536: 1530: 1529: 1518:10.1063/1.358024 1493: 1487: 1486: 1442: 1436: 1435: 1433: 1432: 1426: 1415: 1409: 1408: 1364: 1358: 1357: 1321: 1315: 1314: 1272: 1248: 1242: 1241: 1225: 1215: 1209: 1204: 1198: 1188: 321:Superconducting 312: 311: 292:nuclear magneton 273: 256:NĂ©el temperature 132:NĂ©el temperature 104:Heisenberg model 2072: 2071: 2067: 2066: 2065: 2063: 2062: 2061: 2042: 2041: 2040: 2035: 1965:Magnetic states 1960: 1920: 1915: 1885: 1884: 1874: 1872: 1868: 1867: 1846: 1836: 1834: 1830: 1829: 1798: 1782: 1781: 1735: 1670: 1627:Physica Scripta 1623: 1619: 1580: 1576: 1537: 1533: 1494: 1490: 1443: 1439: 1430: 1428: 1424: 1416: 1412: 1365: 1361: 1322: 1318: 1263:(22): 2001080. 1249: 1245: 1238: 1216: 1212: 1205: 1201: 1189: 1185: 1180: 327: 303:superconductors 271: 215: 208: 180: 164:absorption edge 136:antiferromagnet 123: 61: 17: 12: 11: 5: 2070: 2060: 2059: 2054: 2037: 2036: 2034: 2033: 2032: 2031: 2026: 2016: 2014:mictomagnetism 2011: 2006: 2001: 2000: 1999: 1994: 1987:ferromagnetism 1984: 1982:ferrimagnetism 1979: 1974: 1972:altermagnetism 1968: 1966: 1962: 1961: 1959: 1958: 1957: 1956: 1951: 1941: 1940: 1939: 1928: 1926: 1922: 1921: 1914: 1913: 1906: 1899: 1891: 1883: 1882: 1844: 1796: 1668: 1617: 1574: 1531: 1488: 1437: 1410: 1359: 1316: 1243: 1236: 1210: 1199: 1182: 1181: 1179: 1176: 1173: 1172: 1170: 1168: 1165: 1160: 1156: 1155: 1153: 1151: 1148: 1143: 1139: 1138: 1136: 1134: 1131: 1126: 1122: 1121: 1119: 1117: 1114: 1109: 1105: 1104: 1102: 1100: 1097: 1092: 1088: 1087: 1085: 1083: 1080: 1075: 1071: 1070: 1068: 1066: 1063: 1058: 1054: 1053: 1051: 1049: 1046: 1041: 1037: 1036: 1034: 1032: 1029: 1024: 1020: 1019: 1017: 1015: 1012: 1007: 1003: 1002: 1000: 998: 995: 990: 986: 985: 983: 981: 978: 973: 969: 968: 966: 964: 961: 956: 952: 951: 949: 947: 944: 939: 935: 934: 931: 928: 926: 921: 917: 916: 913: 910: 908: 903: 899: 898: 895: 892: 890: 885: 881: 880: 877: 874: 872: 867: 863: 862: 859: 856: 854: 849: 845: 844: 842: 839: 837: 832: 828: 827: 824: 822: 820: 815: 811: 810: 807: 805: 803: 798: 794: 793: 790: 788: 786: 781: 777: 776: 773: 771: 769: 764: 760: 759: 756: 754: 752: 747: 743: 742: 740: 738: 735: 730: 726: 725: 723: 721: 718: 713: 709: 708: 706: 704: 701: 696: 692: 691: 689: 687: 684: 679: 675: 674: 671: 669: 667: 662: 658: 657: 655: 653: 650: 645: 641: 640: 638: 636: 633: 628: 624: 623: 621: 619: 616: 611: 607: 606: 604: 602: 599: 594: 590: 589: 587: 585: 582: 577: 573: 572: 570: 568: 565: 560: 556: 555: 553: 551: 548: 543: 539: 538: 536: 534: 531: 526: 522: 521: 519: 517: 514: 509: 505: 504: 501: 499: 497: 492: 488: 487: 485: 482: 480: 475: 471: 470: 468: 465: 463: 458: 454: 453: 451: 448: 446: 441: 437: 436: 433: 431: 429: 424: 420: 419: 416: 414: 412: 407: 403: 402: 400: 398: 395: 390: 386: 385: 383: 381: 378: 373: 369: 368: 366: 364: 361: 356: 352: 351: 349: 347: 344: 339: 335: 334: 331: 328: 325: 319: 316: 213: 206: 179: 176: 148:superstructure 122: 119: 89:ferrimagnetism 80:ferromagnetism 60: 57: 15: 9: 6: 4: 3: 2: 2069: 2058: 2055: 2053: 2050: 2049: 2047: 2030: 2027: 2025: 2022: 2021: 2020: 2017: 2015: 2012: 2010: 2009:metamagnetism 2007: 2005: 2004:helimagnetism 2002: 1998: 1995: 1993: 1990: 1989: 1988: 1985: 1983: 1980: 1978: 1975: 1973: 1970: 1969: 1967: 1963: 1955: 1952: 1950: 1947: 1946: 1945: 1944:paramagnetism 1942: 1938: 1935: 1934: 1933: 1930: 1929: 1927: 1923: 1919: 1912: 1907: 1905: 1900: 1898: 1893: 1892: 1889: 1871: 1865: 1863: 1861: 1859: 1857: 1855: 1853: 1851: 1849: 1833: 1827: 1825: 1823: 1821: 1819: 1817: 1815: 1813: 1811: 1809: 1807: 1805: 1803: 1801: 1792: 1786: 1778: 1774: 1770: 1766: 1762: 1758: 1753: 1748: 1744: 1740: 1733: 1731: 1729: 1727: 1725: 1723: 1721: 1719: 1717: 1715: 1713: 1711: 1709: 1707: 1705: 1703: 1701: 1699: 1697: 1695: 1693: 1691: 1689: 1687: 1685: 1683: 1681: 1679: 1677: 1675: 1673: 1664: 1660: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1621: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1578: 1570: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1535: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1492: 1484: 1480: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1441: 1423: 1422: 1414: 1406: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1374: 1370: 1363: 1355: 1351: 1347: 1343: 1339: 1338:10.1038/43363 1335: 1331: 1327: 1320: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1271: 1266: 1262: 1258: 1254: 1247: 1239: 1237:9780521640626 1233: 1229: 1224: 1223: 1214: 1208: 1203: 1197: 1193: 1187: 1183: 1171: 1169: 1166: 1164: 1161: 1158: 1157: 1154: 1152: 1149: 1147: 1144: 1141: 1140: 1137: 1135: 1132: 1130: 1127: 1124: 1123: 1120: 1118: 1115: 1113: 1110: 1107: 1106: 1103: 1101: 1098: 1096: 1093: 1090: 1089: 1086: 1084: 1081: 1079: 1076: 1073: 1072: 1069: 1067: 1064: 1062: 1059: 1056: 1055: 1052: 1050: 1047: 1045: 1042: 1039: 1038: 1035: 1033: 1030: 1028: 1025: 1022: 1021: 1018: 1016: 1013: 1011: 1008: 1005: 1004: 1001: 999: 996: 994: 991: 988: 987: 984: 982: 979: 977: 974: 971: 970: 967: 965: 962: 960: 957: 954: 953: 950: 948: 945: 943: 940: 937: 936: 932: 929: 927: 925: 922: 919: 918: 914: 911: 909: 907: 904: 901: 900: 896: 893: 891: 889: 886: 883: 882: 878: 875: 873: 871: 868: 865: 864: 860: 857: 855: 853: 850: 847: 846: 843: 840: 838: 836: 833: 830: 829: 825: 823: 821: 819: 816: 813: 812: 808: 806: 804: 802: 799: 796: 795: 791: 789: 787: 785: 782: 779: 778: 774: 772: 770: 768: 765: 762: 761: 757: 755: 753: 751: 748: 745: 744: 741: 739: 736: 734: 731: 728: 727: 724: 722: 719: 717: 714: 711: 710: 707: 705: 702: 700: 697: 694: 693: 690: 688: 685: 683: 680: 677: 676: 672: 670: 668: 666: 663: 660: 659: 656: 654: 651: 649: 646: 643: 642: 639: 637: 634: 632: 629: 626: 625: 622: 620: 617: 615: 612: 609: 608: 605: 603: 600: 598: 595: 592: 591: 588: 586: 583: 581: 578: 575: 574: 571: 569: 566: 564: 561: 558: 557: 554: 552: 549: 547: 544: 541: 540: 537: 535: 532: 530: 527: 524: 523: 520: 518: 515: 513: 510: 507: 506: 502: 500: 498: 496: 493: 490: 489: 486: 483: 481: 479: 476: 473: 472: 469: 466: 464: 462: 459: 456: 455: 452: 449: 447: 445: 442: 439: 438: 434: 432: 430: 428: 425: 422: 421: 417: 415: 413: 411: 408: 405: 404: 401: 399: 396: 394: 391: 388: 387: 384: 382: 379: 377: 374: 371: 370: 367: 365: 362: 360: 357: 354: 353: 350: 348: 345: 343: 340: 337: 336: 332: 329: 324: 320: 317: 314: 313: 310: 308: 304: 299: 297: 296:absolute zero 293: 289: 288:Bohr magneton 285: 281: 277: 269: 265: 261: 257: 252: 250: 246: 242: 238: 234: 230: 227:The elements 225: 223: 219: 216:> 298K). 212: 205: 201: 197: 193: 189: 185: 184:ferromagnetic 175: 172: 170: 165: 159: 157: 153: 149: 145: 141: 137: 133: 129: 118: 116: 115:helimagnetism 112: 107: 105: 101: 96: 94: 90: 86: 81: 76: 74: 73:paramagnetism 70: 66: 56: 54: 50: 46: 37: 29: 21: 1932:diamagnetism 1873:. Retrieved 1835:. Retrieved 1785:cite journal 1742: 1738: 1630: 1626: 1620: 1587: 1583: 1577: 1544: 1540: 1534: 1501: 1497: 1491: 1450: 1446: 1440: 1429:. Retrieved 1420: 1413: 1372: 1368: 1362: 1329: 1325: 1319: 1260: 1256: 1246: 1221: 1213: 1202: 1186: 1129:Protactinium 767:Praseodymium 322: 300: 253: 237:helimagnetic 226: 222:helimagnetic 210: 203: 181: 173: 160: 156:space groups 124: 108: 97: 77: 69:diamagnetism 62: 44: 42: 1584:Physica B+C 673:5.6 * 10 K 286:, (compare 140:Curie-point 2046:Categories 2019:spin glass 1752:1502.04724 1431:2020-08-09 1270:1906.07239 1196:030611030X 1178:References 870:Dysprosium 835:Gadolinium 597:Technetium 580:Molybdenum 229:Dysprosium 218:Gadolinium 71:or Pauli 1918:Magnetism 1777:119290828 1745:: 17–27. 1663:250746005 1655:0031-8949 1612:0378-4363 1569:0031-9015 1526:0021-8979 1483:250905837 1475:0953-8984 1397:0304-4289 1346:0028-0836 1311:189998035 1295:1521-4095 1163:Americium 784:Neodymium 733:Lanthanum 648:Palladium 635:0.0003 K 614:Ruthenium 546:Zirconium 503:6 * 10 K 427:Manganese 346:0.0004 K 264:unit cell 152:Shubnikov 93:magnetite 43:The term 2029:spin ice 1405:56409310 1303:32319146 1078:Thallium 993:Tungsten 976:Tantalum 942:Lutetium 912:18.74 K 897:132.2 K 879:180.2 K 841:293.4 K 818:Europium 801:Samarium 410:Chromium 393:Vanadium 376:Titanium 359:Aluminum 305:exhibit 1757:Bibcode 1635:Bibcode 1592:Bibcode 1549:Bibcode 1506:Bibcode 1455:Bibcode 1377:Bibcode 1369:Pramana 1354:4383791 1275:Bibcode 1146:Uranium 1112:Thorium 1065:4.15 K 1061:Mercury 1044:Iridium 1010:Rhenium 997:0.01 K 963:0.38 K 959:Hafnium 924:Thulium 915:85.7 K 888:Holmium 876:92.1 K 852:Terbium 809:13.3 K 792:19.9 K 686:0.52 K 682:Cadmium 631:Rhodium 584:0.92 K 567:9.25 K 563:Niobium 533:1.08 K 529:Gallium 516:0.85 K 467:1390 K 450:1044 K 363:1.18 K 342:Lithium 249:Thulium 245:Terbium 241:Holmium 138:or the 1875:27 Sep 1837:27 Sep 1775:  1661:  1653:  1610:  1567:  1524:  1481:  1473:  1403:  1395:  1352:  1344:  1326:Nature 1309:  1301:  1293:  1234:  1194:  1150:1.3 K 1133:1.4 K 1116:1.4 K 1099:7.2 K 1082:2.4 K 1048:0.1 K 1031:0.7 K 1027:Osmium 1014:1.7 K 980:4.4 K 946:0.1 K 906:Erbium 861:230 K 858:221 K 750:Cerium 720:3.7 K 703:3.4 K 699:Indium 665:Silver 652:1.4 K 618:0.5 K 601:8.2 K 550:0.6 K 495:Copper 484:630 K 478:Nickel 461:Cobalt 435:100 K 418:311 K 397:5.4 K 380:0.5 K 280:silver 276:copper 247:, and 233:Erbium 196:nickel 194:, and 192:cobalt 134:of an 1773:S2CID 1747:arXiv 1659:S2CID 1479:S2CID 1425:(PDF) 1401:S2CID 1350:S2CID 1307:S2CID 1265:arXiv 933:56 K 930:32 K 894:20 K 826:91 K 775:25 K 758:13 K 318:Name 1877:2018 1839:2018 1791:link 1651:ISSN 1631:T49A 1608:ISSN 1565:ISSN 1522:ISSN 1471:ISSN 1393:ISSN 1342:ISSN 1299:PMID 1291:ISSN 1232:ISBN 1192:ISBN 1167:1 K 1095:Lead 737:6 K 512:Zinc 444:Iron 315:No. 290:and 278:and 231:and 188:iron 1765:doi 1743:514 1643:doi 1600:doi 1588:126 1557:doi 1514:doi 1463:doi 1385:doi 1334:doi 1330:401 1283:doi 1228:428 1159:95 1142:92 1125:91 1108:90 1091:82 1074:81 1057:80 1040:77 1023:76 1006:75 989:74 972:73 955:72 938:71 920:69 902:68 884:67 866:66 848:65 831:64 814:63 797:62 780:60 763:59 746:58 729:57 716:Tin 712:50 695:49 678:48 661:47 644:46 627:45 610:44 593:43 576:42 559:41 542:40 525:31 508:30 491:29 474:28 457:27 440:26 423:25 406:24 389:23 372:22 355:13 2048:: 1847:^ 1799:^ 1787:}} 1783:{{ 1771:. 1763:. 1755:. 1741:. 1671:^ 1657:. 1649:. 1641:. 1629:. 1606:. 1598:. 1586:. 1563:. 1555:. 1545:28 1543:. 1520:. 1512:. 1502:76 1500:. 1477:. 1469:. 1461:. 1451:10 1449:. 1399:. 1391:. 1383:. 1373:60 1371:. 1348:. 1340:. 1328:. 1305:. 1297:. 1289:. 1281:. 1273:. 1261:32 1259:. 1255:. 1230:. 338:3 298:. 243:, 202:, 190:, 158:. 117:. 75:. 55:. 1910:e 1903:t 1896:v 1879:. 1841:. 1793:) 1779:. 1767:: 1759:: 1749:: 1665:. 1645:: 1637:: 1614:. 1602:: 1594:: 1571:. 1559:: 1551:: 1528:. 1516:: 1508:: 1485:. 1465:: 1457:: 1434:. 1407:. 1387:: 1379:: 1356:. 1336:: 1313:. 1285:: 1277:: 1267:: 1240:. 326:c 323:T 272:4 270:P 214:c 211:T 207:c 204:T

Index




crystallographic lattice
solid-state physics
Pauli exclusion principle
diamagnetism
paramagnetism
ferromagnetism
antiferromagnetism
ferrimagnetism
magnetite
Stoner picture of magnetism
Heisenberg model
magnetic space groups
helimagnetism
neutron diffraction
NĂ©el temperature
antiferromagnet
Curie-point
Bragg reflections
superstructure
Shubnikov
space groups
absorption edge
anomalous X-ray diffraction
ferromagnetic
iron
cobalt
nickel

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑