Knowledge

Meissner effect

Source 📝

1461: 1267: 1228: 1248: 33: 1475: 843: 1266: 1196:
of the orbital spin of electrons about the nuclei of an atom induced electromagnetically by the application of an applied field. In superconductors the illusion of perfect diamagnetism arises from persistent screening currents which flow to oppose the applied field (the Meissner effect); not solely the orbital spin.
1133:
explained by infinite conductivity, but only by the London equation. The placement and subsequent levitation of a magnet above an already superconducting material does not demonstrate the Meissner effect, while an initially stationary magnet later being repelled by a superconductor as it is cooled below its critical
954:
as long as the current is not too large. Some type-II superconductors exhibit a small but finite resistance in the mixed state due to motion of the flux vortices induced by the Lorentz forces from the current. As the cores of the vortices are normal electrons, their motion will have dissipation. At a
1216:
in 1935. This theory explained resistanceless transport and the Meissner effect, and allowed the first theoretical predictions for superconductivity to be made. However, this theory only explained experimental observations—it did not allow the microscopic origins of the superconducting properties to
1195:
are defined by the generation of a spontaneous magnetization of a material which directly opposes the direction of an applied field. However, the fundamental origins of diamagnetism in superconductors and normal materials are very different. In normal materials diamagnetism arises as a direct result
1132:
at zero resistance. However, the Meissner effect is distinct from this: when an ordinary conductor is cooled so that it makes the transition to a superconducting state in the presence of a constant applied magnetic field, the magnetic flux is expelled during the transition. This effect cannot be
1148:. A reason this is not the case is that no change in flux was made to induce the current. Another explanation is that since the superconductor experiences zero resistance, there cannot be an induced emf in the superconductor. The persisting current therefore is not a result of Faraday's Law. 909:
A superconductor with little or no magnetic field within it is said to be in the Meissner state. The Meissner state breaks down when the applied magnetic field is too strong. Superconductors can be divided into two classes according to how this breakdown occurs.
1227: 1272:
The cylinder has been cooled from 4.2 K to 1.6 K. The current in the electromagnet has been kept constant, but the tin became superconducting at about 3 K. Magnetic flux has been expelled from the cylinder (the Meissner
1247: 1064: 889:
discovered this phenomenon in 1933 by measuring the magnetic field distribution outside superconducting tin and lead samples. The samples, in the presence of an applied magnetic field, were cooled below their
898:
is conserved by a superconductor: when the interior field decreases, the exterior field increases. The experiment demonstrated for the first time that superconductors were more than just perfect
902:
and provided a uniquely defining property of the superconductor state. The ability for the expulsion effect is determined by the nature of equilibrium formed by the neutralization within the
1962:
pp. 486–489 gives a simple mathematical discussion of the surface currents responsible for the Meissner effect, in the case of a long magnet levitated above a superconducting plane.
1114:
the internal bulk of the superconductor from the external applied field. As the field expulsion, or cancellation, does not change with time, the currents producing this effect (called
1339: 1439: 1189: 1221:
in 1957, from which the penetration depth and the Meissner effect result. However, some physicists argue that BCS theory does not explain the Meissner effect.
590: 846:
Diagram of the Meissner effect. Magnetic field lines, represented as arrows, are excluded from a superconductor when it is below its critical temperature.
563: 1160:, meaning that the total magnetic field is very close to zero deep inside them (many penetration depths from the surface). This means that their volume 575: 2379: 1233:
A tin cylinder—in a Dewar flask filled with liquid helium—has been placed between the poles of an electromagnet. The magnetic field is about 8
1942:
By the man who explained the Meissner effect. pp. 34–37 gives a technical discussion of the Meissner effect for a superconducting sphere.
1092:
emerged during the phase transition from conductor to superconductor, for example by reducing the temperature below critical temperature.
2049: 1015: 870:
during its transition to the superconducting state when it is cooled below the critical temperature. This expulsion will repel a nearby
2112: 1860: 826: 595: 1095:
In a weak applied field (less than the critical field that breaks down the superconducting phase), a superconductor expels nearly all
2022: 1260:= 8 mT (80 G). Tin is in the normally conducting state. The compass needles indicate that magnetic flux permeates the cylinder. 605: 430: 1975: 1955: 1935: 1140:
The persisting currents that exist in the superconductor to expel the magnetic field is commonly misconceived as a result of
1125:, the magnetic field is not completely canceled. Each superconducting material has its own characteristic penetration depth. 894:, whereupon the samples cancelled nearly all interior magnetic fields. They detected this effect only indirectly because the 445: 440: 67: 2471: 2209: 2087: 2003: 929:
of regions of normal material carrying a magnetic field mixed with regions of superconducting material containing no field.
455: 1111: 2319: 965:, superconductivity is destroyed. The mixed state is caused by vortices in the electronic superfluid, sometimes called 891: 2407: 1605: 57: 325: 2128: 1205: 1460: 2324: 2042: 240: 2107: 2077: 819: 585: 62: 1362: 918:, superconductivity is abruptly destroyed when the strength of the applied field rises above a critical value 2448: 2300: 2244: 2219: 1593: 1283:
The Meissner superconductivity effect serves as an important paradigm for the generation mechanism of a mass
1145: 600: 305: 1088:
from whatever value it possesses at the surface. This exclusion of magnetic field is a manifestation of the
2502: 2350: 2279: 1128:
Any perfect conductor will prevent any change to magnetic flux passing through its surface due to ordinary
465: 205: 72: 1294: 195: 2295: 2214: 758: 633: 530: 505: 425: 2512: 2507: 2402: 2397: 2082: 2035: 2000:
Short video from Imperial College London about the Meissner effect and levitating trains of the future.
258: 2355: 2102: 1129: 1006: 812: 773: 300: 290: 230: 225: 165: 1621:
Callaway, D. J. E. (1990). "On the remarkable structure of the superconducting intermediate state".
2138: 1442: 1122: 1074: 851: 310: 1417: 743: 245: 2481: 2340: 2272: 2189: 1161: 623: 150: 140: 135: 925:. Depending on the geometry of the sample, one may obtain an intermediate state consisting of a 748: 718: 2392: 2365: 2345: 2267: 1167: 933: 570: 340: 115: 2017: 1992: 2262: 1919: 1597: 1543:
Meissner, W.; Ochsenfeld, R. (1933). "Ein neuer Effekt bei Eintritt der SupraleitfÀhigkeit".
915: 668: 355: 345: 295: 285: 2466: 2422: 1869: 1820: 1771: 1722: 1673: 1632: 1554: 899: 793: 693: 658: 410: 275: 175: 160: 95: 1701:
Hirsch, J. E. (2012). "The origin of the Meissner effect in new and old superconductors".
989:, are type I, while almost all impure and compound superconductors are type II. 32: 8: 1734: 1545: 1411: 946:
leads to a mixed state (also known as the vortex state) in which an increasing amount of
753: 733: 728: 535: 520: 405: 375: 270: 200: 1873: 1824: 1775: 1726: 1677: 1636: 1558: 2453: 2204: 2164: 1905: 1836: 1810: 1738: 1712: 1570: 1115: 628: 368: 170: 130: 1832: 450: 2229: 2058: 1971: 1951: 1931: 1840: 1801: 1742: 1644: 1623: 1601: 1518: 1446: 1157: 1089: 1085: 886: 688: 1574: 2438: 2412: 2184: 2159: 2092: 1877: 1828: 1779: 1730: 1681: 1640: 1562: 978: 951: 878: 788: 703: 663: 653: 540: 495: 478: 395: 330: 100: 24: 2461: 1901: 1762: 1703: 1664: 1366: 1346: 1081: 986: 723: 648: 643: 510: 385: 350: 210: 110: 763: 2199: 2143: 2133: 2097: 1493: 1480: 1466: 1373: 1354: 867: 863: 683: 678: 500: 390: 315: 265: 215: 188: 145: 120: 90: 83: 1997: 2496: 1784: 1757: 1141: 1110:
within the London penetration depth from the surface. These surface currents
1104: 1096: 997:
The Meissner effect was given a phenomenological explanation by the brothers
947: 895: 798: 783: 768: 708: 420: 335: 320: 235: 220: 125: 1686: 1659: 2234: 2224: 2179: 2174: 1488: 1238: 1213: 1209: 1192: 1002: 998: 778: 673: 638: 580: 515: 435: 400: 280: 155: 926: 2360: 2169: 1370: 1358: 1134: 698: 550: 380: 42: 1910: 1099:
by setting up electric currents near its surface, as the magnetic field
2072: 1882: 1855: 1815: 1566: 1498: 1234: 1218: 1156:
Superconductors in the Meissner state exhibit perfect diamagnetism, or
415: 1474: 903: 738: 713: 525: 47: 2027: 2387: 2014:
is a state variable/Meissner effect/Energy gap (Giaever)/BCS model.
1059:{\displaystyle \nabla ^{2}\mathbf {H} =\lambda ^{-2}\mathbf {H} \,} 490: 485: 105: 1926:. Structure of matter series. Vol. 1 (Revised 2nd ed.). 1717: 1904:(1922). "Theoretical remark on the superconductivity of metals". 1799:
Wilczek, F. (2000). "The recent excitement in high-density QCD".
982: 970: 460: 950:
penetrates the material, but there remains no resistance to the
842: 966: 871: 545: 52: 2443: 2417: 1927: 2476: 1758:"Spontaneous symmetry breakdown without massless bosons" 1657: 1084:, predicts that the magnetic field in a superconductor 1658:
Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. (1957).
1993:
The Meissner effect - The Feynman Lectures on Physics
1420: 1297: 1170: 1018: 1456: 1922:(1960). "Macroscopic Theory of Superconductivity". 1278: 839:
Expulsion of a magnetic field from a superconductor
1542: 1433: 1333: 1183: 1058: 936:, raising the applied field past a critical value 1217:be identified. This was done successfully by the 2494: 1970:. Dover Books on Physics (2nd ed.). Dover. 1204:The discovery of the Meissner effect led to the 1587: 1118:or screening currents) do not decay with time. 969:because the flux carried by these vortices is 2043: 820: 2023:Historical Background of the Meissner Effect 1856:"Superconductivity for particular theorists" 2050: 2036: 1861:Progress of Theoretical Physics Supplement 1009:in a superconductor is minimized provided 827: 813: 31: 1909: 1881: 1814: 1783: 1716: 1685: 1055: 1900: 1853: 1620: 1588:Landau, L. D.; Lifschitz, E. M. (1984). 1536: 841: 1965: 1798: 1151: 576:Electromagnetism and special relativity 2495: 1998:Meissner Effect (Science from scratch) 1945: 1918: 1700: 1005:, who showed that the electromagnetic 892:superconducting transition temperature 2057: 2031: 1755: 596:Maxwell equations in curved spacetime 2006:Video about Type 1 Superconductors: 1369:, which generates the masses of the 1334:{\displaystyle \lambda _{M}:=h/(Mc)} 1590:Electrodynamics of Continuous Media 1073:is the magnetic field and λ is the 13: 1894: 1020: 14: 2524: 2004:Introduction to superconductivity 1986: 1968:Introduction to Superconductivity 1948:Electricity, Magnetism, and Light 1473: 1459: 1279:Paradigm for the Higgs mechanism 1265: 1246: 1226: 1051: 1030: 1208:theory of superconductivity by 1199: 955:second critical field strength 2018:Meissner Effect (Hyperphysics) 1847: 1792: 1749: 1735:10.1088/0031-8949/85/03/035704 1694: 1651: 1614: 1596:. Vol. 8 (2nd ed.). 1581: 1511: 1361:. In fact, this analogy is an 1328: 1319: 992: 1: 1833:10.1016/S0375-9474(99)00601-6 1660:"Theory of superconductivity" 1594:Course of Theoretical Physics 1504: 1121:Near the surface, within the 601:Relativistic electromagnetism 2010:= 0/Transition temperatures/ 1645:10.1016/0550-3213(90)90672-Z 1434:{\displaystyle \lambda _{M}} 1080:This equation, known as the 7: 1982:A good technical reference. 1519:"Meissner effect | physics" 1452: 10: 2529: 2380:Technological applications 326:LiĂ©nard–Wiechert potential 2431: 2378: 2333: 2309: 2288: 2252: 2243: 2152: 2122:Characteristic parameters 2121: 2065: 1184:{\displaystyle \chi _{v}} 1130:electromagnetic induction 860:Meißner–Ochsenfeld effect 591:Mathematical descriptions 301:Electromagnetic radiation 291:Electromagnetic induction 231:Magnetic vector potential 226:Magnetic scalar potential 2139:London penetration depth 1785:10.1103/PhysRev.145.1156 1443:London penetration depth 1123:London penetration depth 1075:London penetration depth 981:superconductors, except 862:) is the expulsion of a 852:condensed-matter physics 2432:List of superconductors 2310:By critical temperature 1687:10.1103/physrev.106.162 1523:Encyclopedia Britannica 1162:magnetic susceptibility 934:type-II superconductors 141:Electrostatic induction 136:Electrostatic discharge 1946:Saslow, W. M. (2002). 1441:is identical with the 1435: 1335: 1185: 1060: 916:type-I superconductors 877:The German physicists 847: 571:Electromagnetic tensor 2078:Bean's critical state 1854:Weinberg, S. (1986). 1756:Higgs, P. W. (1966). 1598:Butterworth-Heinemann 1436: 1336: 1186: 1061: 906:of a superconductor. 845: 564:Covariant formulation 356:Synchrotron radiation 296:Electromagnetic pulse 286:Electromagnetic field 2253:By magnetic response 1966:Tinkham, M. (2004). 1418: 1295: 1287:(i.e., a reciprocal 1168: 1152:Perfect diamagnetism 1086:decays exponentially 1016: 606:Stress–energy tensor 531:Reluctance (complex) 276:Displacement current 2503:Magnetic levitation 2205:persistent currents 2190:Little–Parks effect 1874:1986PThPS..86...43W 1825:2000NuPhA.663..257W 1776:1966PhRv..145.1156H 1727:2012PhyS...85c5704H 1678:1957PhRv..106..162B 1637:1990NuPhB.344..627C 1559:1933NW.....21..787M 1546:Naturwissenschaften 1412:high-energy physics 1410:gauge particles in 1116:persistent currents 521:Magnetomotive force 406:Electromotive force 376:Alternating current 311:Jefimenko equations 271:Cyclotron radiation 2165:Andreev reflection 2160:Abrikosov vortices 1883:10.1143/PTPS.86.43 1567:10.1007/BF01504252 1431: 1331: 1181: 1056: 848: 369:Electrical network 206:Gauss magnetic law 171:Static electricity 131:Electric potential 2513:Superconductivity 2508:Quantum magnetism 2490: 2489: 2408:quantum computing 2374: 2373: 2230:superdiamagnetism 2059:Superconductivity 1977:978-0-486-43503-9 1957:978-0-12-619455-5 1937:978-0-486-60044-4 1802:Nuclear Physics A 1672:(1175): 162–164. 1624:Nuclear Physics B 1447:superconductivity 1445:in the theory of 1158:superdiamagnetism 1090:superdiamagnetism 887:Robert Ochsenfeld 837: 836: 536:Reluctance (real) 506:Gyrator–capacitor 451:Resonant cavities 341:Maxwell equations 2520: 2439:bilayer graphene 2413:Rutherford cable 2325:room temperature 2320:high temperature 2250: 2249: 2210:proximity effect 2185:Josephson effect 2129:coherence length 2052: 2045: 2038: 2029: 2028: 1981: 1961: 1941: 1915: 1913: 1888: 1887: 1885: 1851: 1845: 1844: 1818: 1796: 1790: 1789: 1787: 1770:(4): 1156–1163. 1753: 1747: 1746: 1720: 1698: 1692: 1691: 1689: 1655: 1649: 1648: 1618: 1612: 1611: 1585: 1579: 1578: 1540: 1534: 1533: 1531: 1529: 1515: 1483: 1478: 1477: 1469: 1464: 1463: 1440: 1438: 1437: 1432: 1430: 1429: 1408: 1407: 1406: 1399: 1398: 1390: 1389: 1388: 1381: 1380: 1365:example for the 1340: 1338: 1337: 1332: 1318: 1307: 1306: 1269: 1250: 1230: 1206:phenomenological 1190: 1188: 1187: 1182: 1180: 1179: 1065: 1063: 1062: 1057: 1054: 1049: 1048: 1033: 1028: 1027: 987:carbon nanotubes 952:electric current 829: 822: 815: 496:Electric machine 479:Magnetic circuit 441:Parallel circuit 431:Network analysis 396:Electric current 331:London equations 176:Triboelectricity 166:Potential energy 35: 25:Electromagnetism 16: 15: 2528: 2527: 2523: 2522: 2521: 2519: 2518: 2517: 2493: 2492: 2491: 2486: 2457: 2427: 2370: 2329: 2316:low temperature 2305: 2284: 2239: 2195:Meissner effect 2148: 2144:Silsbee current 2117: 2083:Ginzburg–Landau 2061: 2056: 1989: 1978: 1958: 1938: 1911:physics/0510251 1897: 1895:Further reading 1892: 1891: 1852: 1848: 1797: 1793: 1763:Physical Review 1754: 1750: 1704:Physica Scripta 1699: 1695: 1665:Physical Review 1656: 1652: 1619: 1615: 1608: 1586: 1582: 1553:(44): 787–788. 1541: 1537: 1527: 1525: 1517: 1516: 1512: 1507: 1479: 1472: 1465: 1458: 1455: 1425: 1421: 1419: 1416: 1415: 1405: 1403: 1402: 1401: 1397: 1395: 1394: 1393: 1392: 1387: 1385: 1384: 1383: 1379: 1377: 1376: 1375: 1374: 1367:Higgs mechanism 1347:Planck constant 1314: 1302: 1298: 1296: 1293: 1292: 1281: 1274: 1270: 1261: 1251: 1242: 1231: 1202: 1175: 1171: 1169: 1166: 1165: 1154: 1082:London equation 1050: 1041: 1037: 1029: 1023: 1019: 1017: 1014: 1013: 995: 964: 945: 927:baroque pattern 923: 879:Walther Meißner 856:Meissner effect 840: 833: 804: 803: 619: 611: 610: 566: 556: 555: 511:Induction motor 481: 471: 470: 386:Current density 371: 361: 360: 351:Poynting vector 261: 259:Electrodynamics 251: 250: 246:Right-hand rule 211:Magnetic dipole 201:Biot–Savart law 191: 181: 180: 116:Electric dipole 111:Electric charge 86: 12: 11: 5: 2526: 2516: 2515: 2510: 2505: 2488: 2487: 2485: 2484: 2479: 2474: 2469: 2464: 2459: 2455: 2451: 2446: 2441: 2435: 2433: 2429: 2428: 2426: 2425: 2420: 2415: 2410: 2405: 2400: 2395: 2393:electromagnets 2390: 2384: 2382: 2376: 2375: 2372: 2371: 2369: 2368: 2363: 2358: 2353: 2348: 2343: 2337: 2335: 2334:By composition 2331: 2330: 2328: 2327: 2322: 2317: 2313: 2311: 2307: 2306: 2304: 2303: 2301:unconventional 2298: 2292: 2290: 2289:By explanation 2286: 2285: 2283: 2282: 2277: 2276: 2275: 2270: 2265: 2256: 2254: 2247: 2245:Classification 2241: 2240: 2238: 2237: 2232: 2227: 2222: 2217: 2212: 2207: 2202: 2197: 2192: 2187: 2182: 2177: 2172: 2167: 2162: 2156: 2154: 2150: 2149: 2147: 2146: 2141: 2136: 2134:critical field 2131: 2125: 2123: 2119: 2118: 2116: 2115: 2110: 2105: 2103:Mattis–Bardeen 2100: 2095: 2090: 2088:Kohn–Luttinger 2085: 2080: 2075: 2069: 2067: 2063: 2062: 2055: 2054: 2047: 2040: 2032: 2026: 2025: 2020: 2015: 2001: 1995: 1988: 1987:External links 1985: 1984: 1983: 1976: 1963: 1956: 1943: 1936: 1916: 1896: 1893: 1890: 1889: 1846: 1816:hep-ph/9908480 1791: 1748: 1693: 1650: 1631:(3): 627–645. 1613: 1606: 1580: 1535: 1509: 1508: 1506: 1503: 1502: 1501: 1496: 1494:Silsbee effect 1491: 1485: 1484: 1481:Science portal 1470: 1467:Physics portal 1454: 1451: 1428: 1424: 1404: 1396: 1386: 1378: 1355:speed of light 1330: 1327: 1324: 1321: 1317: 1313: 1310: 1305: 1301: 1280: 1277: 1276: 1275: 1271: 1264: 1262: 1256:= 4.2 K, 1252: 1245: 1243: 1232: 1225: 1201: 1198: 1178: 1174: 1153: 1150: 1067: 1066: 1053: 1047: 1044: 1040: 1036: 1032: 1026: 1022: 994: 991: 975: 974: 959: 940: 930: 921: 868:superconductor 864:magnetic field 838: 835: 834: 832: 831: 824: 817: 809: 806: 805: 802: 801: 796: 791: 786: 781: 776: 771: 766: 761: 756: 751: 746: 741: 736: 731: 726: 721: 716: 711: 706: 701: 696: 691: 686: 681: 676: 671: 666: 661: 656: 651: 646: 641: 636: 631: 626: 620: 617: 616: 613: 612: 609: 608: 603: 598: 593: 588: 586:Four-potential 583: 578: 573: 567: 562: 561: 558: 557: 554: 553: 548: 543: 538: 533: 528: 523: 518: 513: 508: 503: 501:Electric motor 498: 493: 488: 482: 477: 476: 473: 472: 469: 468: 463: 458: 456:Series circuit 453: 448: 443: 438: 433: 428: 426:Kirchhoff laws 423: 418: 413: 408: 403: 398: 393: 391:Direct current 388: 383: 378: 372: 367: 366: 363: 362: 359: 358: 353: 348: 346:Maxwell tensor 343: 338: 333: 328: 323: 318: 316:Larmor formula 313: 308: 303: 298: 293: 288: 283: 278: 273: 268: 266:Bremsstrahlung 262: 257: 256: 253: 252: 249: 248: 243: 238: 233: 228: 223: 218: 216:Magnetic field 213: 208: 203: 198: 192: 189:Magnetostatics 187: 186: 183: 182: 179: 178: 173: 168: 163: 158: 153: 148: 143: 138: 133: 128: 123: 121:Electric field 118: 113: 108: 103: 98: 93: 91:Charge density 87: 84:Electrostatics 82: 81: 78: 77: 76: 75: 70: 65: 60: 55: 50: 45: 37: 36: 28: 27: 21: 20: 19:Articles about 9: 6: 4: 3: 2: 2525: 2514: 2511: 2509: 2506: 2504: 2501: 2500: 2498: 2483: 2480: 2478: 2475: 2473: 2470: 2468: 2465: 2463: 2460: 2458: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2436: 2434: 2430: 2424: 2421: 2419: 2416: 2414: 2411: 2409: 2406: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2385: 2383: 2381: 2377: 2367: 2364: 2362: 2359: 2357: 2354: 2352: 2351:heavy fermion 2349: 2347: 2344: 2342: 2339: 2338: 2336: 2332: 2326: 2323: 2321: 2318: 2315: 2314: 2312: 2308: 2302: 2299: 2297: 2294: 2293: 2291: 2287: 2281: 2280:ferromagnetic 2278: 2274: 2271: 2269: 2266: 2264: 2261: 2260: 2258: 2257: 2255: 2251: 2248: 2246: 2242: 2236: 2233: 2231: 2228: 2226: 2225:supercurrents 2223: 2221: 2218: 2216: 2213: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2183: 2181: 2178: 2176: 2173: 2171: 2168: 2166: 2163: 2161: 2158: 2157: 2155: 2151: 2145: 2142: 2140: 2137: 2135: 2132: 2130: 2127: 2126: 2124: 2120: 2114: 2111: 2109: 2106: 2104: 2101: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2079: 2076: 2074: 2071: 2070: 2068: 2064: 2060: 2053: 2048: 2046: 2041: 2039: 2034: 2033: 2030: 2024: 2021: 2019: 2016: 2013: 2009: 2005: 2002: 1999: 1996: 1994: 1991: 1990: 1979: 1973: 1969: 1964: 1959: 1953: 1949: 1944: 1939: 1933: 1929: 1925: 1921: 1920:London, F. W. 1917: 1912: 1907: 1903: 1899: 1898: 1884: 1879: 1875: 1871: 1867: 1863: 1862: 1857: 1850: 1842: 1838: 1834: 1830: 1826: 1822: 1817: 1812: 1808: 1804: 1803: 1795: 1786: 1781: 1777: 1773: 1769: 1765: 1764: 1759: 1752: 1744: 1740: 1736: 1732: 1728: 1724: 1719: 1714: 1711:(3): 035704. 1710: 1706: 1705: 1697: 1688: 1683: 1679: 1675: 1671: 1667: 1666: 1661: 1654: 1646: 1642: 1638: 1634: 1630: 1626: 1625: 1617: 1609: 1607:0-7506-2634-8 1603: 1599: 1595: 1591: 1584: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1547: 1539: 1524: 1520: 1514: 1510: 1500: 1497: 1495: 1492: 1490: 1487: 1486: 1482: 1476: 1471: 1468: 1462: 1457: 1450: 1448: 1444: 1426: 1422: 1414:. The length 1413: 1409: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1325: 1322: 1315: 1311: 1308: 1303: 1299: 1290: 1286: 1268: 1263: 1259: 1255: 1249: 1244: 1240: 1236: 1229: 1224: 1223: 1222: 1220: 1215: 1211: 1207: 1197: 1194: 1176: 1172: 1163: 1159: 1149: 1147: 1146:Faraday's Law 1143: 1138: 1136: 1131: 1126: 1124: 1119: 1117: 1113: 1109: 1106: 1105:magnetization 1102: 1098: 1097:magnetic flux 1093: 1091: 1087: 1083: 1078: 1076: 1072: 1045: 1042: 1038: 1034: 1024: 1012: 1011: 1010: 1008: 1004: 1000: 990: 988: 984: 980: 972: 968: 962: 958: 953: 949: 948:magnetic flux 943: 939: 935: 931: 928: 924: 917: 913: 912: 911: 907: 905: 901: 897: 896:magnetic flux 893: 888: 884: 880: 875: 873: 869: 865: 861: 857: 853: 844: 830: 825: 823: 818: 816: 811: 810: 808: 807: 800: 797: 795: 792: 790: 787: 785: 782: 780: 777: 775: 772: 770: 767: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 690: 687: 685: 682: 680: 677: 675: 672: 670: 667: 665: 662: 660: 657: 655: 652: 650: 647: 645: 642: 640: 637: 635: 632: 630: 627: 625: 622: 621: 615: 614: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 568: 565: 560: 559: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 522: 519: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 492: 489: 487: 484: 483: 480: 475: 474: 467: 464: 462: 459: 457: 454: 452: 449: 447: 444: 442: 439: 437: 434: 432: 429: 427: 424: 422: 421:Joule heating 419: 417: 414: 412: 409: 407: 404: 402: 399: 397: 394: 392: 389: 387: 384: 382: 379: 377: 374: 373: 370: 365: 364: 357: 354: 352: 349: 347: 344: 342: 339: 337: 336:Lorentz force 334: 332: 329: 327: 324: 322: 319: 317: 314: 312: 309: 307: 304: 302: 299: 297: 294: 292: 289: 287: 284: 282: 279: 277: 274: 272: 269: 267: 264: 263: 260: 255: 254: 247: 244: 242: 239: 237: 236:Magnetization 234: 232: 229: 227: 224: 222: 221:Magnetic flux 219: 217: 214: 212: 209: 207: 204: 202: 199: 197: 194: 193: 190: 185: 184: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 147: 144: 142: 139: 137: 134: 132: 129: 127: 126:Electric flux 124: 122: 119: 117: 114: 112: 109: 107: 104: 102: 99: 97: 94: 92: 89: 88: 85: 80: 79: 74: 71: 69: 66: 64: 63:Computational 61: 59: 56: 54: 51: 49: 46: 44: 41: 40: 39: 38: 34: 30: 29: 26: 23: 22: 18: 17: 2361:oxypnictides 2296:conventional 2235:superstripes 2194: 2180:flux pumping 2175:flux pinning 2170:Cooper pairs 2011: 2007: 1967: 1950:. Academic. 1947: 1923: 1902:Einstein, A. 1865: 1859: 1849: 1806: 1800: 1794: 1767: 1761: 1751: 1708: 1702: 1696: 1669: 1663: 1653: 1628: 1622: 1616: 1589: 1583: 1550: 1544: 1538: 1526:. Retrieved 1522: 1513: 1489:Flux pinning 1350: 1342: 1288: 1284: 1282: 1257: 1253: 1214:Heinz London 1203: 1200:Consequences 1193:Diamagnetics 1155: 1139: 1127: 1120: 1107: 1100: 1094: 1079: 1070: 1068: 1003:Heinz London 996: 976: 960: 956: 941: 937: 919: 908: 882: 881:(anglicized 876: 859: 855: 849: 581:Four-current 516:Linear motor 401:Electrolysis 281:Eddy current 241:Permeability 161:Polarization 156:Permittivity 2220:SU(2) color 2200:Homes's law 1924:Superfluids 1809:: 257–271. 1371:electroweak 1359:gauge field 1135:temperature 1007:free energy 993:Explanation 551:Transformer 381:Capacitance 306:Faraday law 101:Coulomb law 43:Electricity 2497:Categories 2356:iron-based 2215:reentrance 1505:References 1499:Superfluid 1235:millitesla 1219:BCS theory 1142:Lenz's Law 977:Most pure 900:conductors 618:Scientists 466:Waveguides 446:Resistance 416:Inductance 196:AmpĂšre law 2153:Phenomena 1868:: 43–53. 1841:119354272 1743:118418121 1718:1201.0139 1423:λ 1300:λ 1173:χ 1043:− 1039:λ 1021:∇ 979:elemental 971:quantized 904:unit cell 774:Steinmetz 704:Kirchhoff 689:Jefimenko 684:Hopkinson 669:Helmholtz 664:Heaviside 526:Permeance 411:Impedance 151:Insulator 146:Gauss law 96:Conductor 73:Phenomena 68:Textbooks 48:Magnetism 2388:cryotron 2346:cuprates 2341:covalent 2098:Matthias 2066:Theories 1575:37842752 1528:22 April 1453:See also 1357:) for a 1273:effect). 1103:induces 883:Meissner 799:Wiechert 754:Poynting 644:Einstein 491:DC motor 486:AC motor 321:Lenz law 106:Electret 2482:more... 2366:organic 1870:Bibcode 1821:Bibcode 1772:Bibcode 1723:Bibcode 1674:Bibcode 1633:Bibcode 1555:Bibcode 1363:abelian 1353:is the 1345:is the 983:niobium 967:fluxons 866:from a 784:Thomson 759:Ritchie 749:Poisson 734:Neumann 729:Maxwell 724:Lorentz 719:LiĂ©nard 649:Faraday 634:Coulomb 461:Voltage 436:Ohm law 58:History 2259:Types 2093:London 1974:  1954:  1934:  1839:  1741:  1604:  1573:  1341:where 1191:= −1. 1137:does. 1112:shield 1069:where 885:) and 872:magnet 854:, the 769:Singer 764:Savart 744:Ørsted 709:Larmor 699:Kelvin 654:Fizeau 624:AmpĂšre 546:Stator 53:Optics 2472:TBCCO 2444:BSCCO 2423:wires 2418:SQUID 1928:Dover 1906:arXiv 1837:S2CID 1811:arXiv 1739:S2CID 1713:arXiv 1571:S2CID 1289:range 1210:Fritz 999:Fritz 794:Weber 789:Volta 779:Tesla 694:Joule 679:Hertz 674:Henry 659:Gauss 541:Rotor 2477:YBCO 2467:NbTi 2462:NbSn 2449:LBCO 1972:ISBN 1952:ISBN 1932:ISBN 1602:ISBN 1530:2017 1391:and 1349:and 1237:(80 1212:and 1001:and 985:and 858:(or 714:Lenz 639:Davy 629:Biot 2454:MgB 2403:NMR 2398:MRI 2273:1.5 2113:WHH 2108:RVB 2073:BCS 1878:doi 1829:doi 1807:663 1780:doi 1768:145 1731:doi 1682:doi 1670:106 1641:doi 1629:344 1563:doi 1164:is 1144:or 932:In 914:In 850:In 739:Ohm 2499:: 2268:II 1930:. 1876:. 1866:86 1864:. 1858:. 1835:. 1827:. 1819:. 1805:. 1778:. 1766:. 1760:. 1737:. 1729:. 1721:. 1709:85 1707:. 1680:. 1668:. 1662:. 1639:. 1627:. 1600:. 1592:. 1569:. 1561:. 1551:21 1549:. 1521:. 1449:. 1309::= 1291:, 1241:). 1077:. 874:. 2456:2 2263:I 2051:e 2044:t 2037:v 2012:B 2008:R 1980:. 1960:. 1940:. 1914:. 1908:: 1886:. 1880:: 1872:: 1843:. 1831:: 1823:: 1813:: 1788:. 1782:: 1774:: 1745:. 1733:: 1725:: 1715:: 1690:. 1684:: 1676:: 1647:. 1643:: 1635:: 1610:. 1577:. 1565:: 1557:: 1532:. 1427:M 1400:Z 1382:W 1351:c 1343:h 1329:) 1326:c 1323:M 1320:( 1316:/ 1312:h 1304:M 1285:M 1258:B 1254:T 1239:G 1177:v 1108:M 1101:H 1071:H 1052:H 1046:2 1035:= 1031:H 1025:2 973:. 963:2 961:c 957:H 944:1 942:c 938:H 922:c 920:H 828:e 821:t 814:v

Index

Electromagnetism
Solenoid
Electricity
Magnetism
Optics
History
Computational
Textbooks
Phenomena
Electrostatics
Charge density
Conductor
Coulomb law
Electret
Electric charge
Electric dipole
Electric field
Electric flux
Electric potential
Electrostatic discharge
Electrostatic induction
Gauss law
Insulator
Permittivity
Polarization
Potential energy
Static electricity
Triboelectricity
Magnetostatics
AmpĂšre law

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑