Knowledge

Degenerate matter

Source 📝

585:
degenerate particles; however, adding heat does not increase the speed of most of the electrons, because they are stuck in fully occupied quantum states. Pressure is increased only by the mass of the particles, which increases the gravitational force pulling the particles closer together. Therefore, the phenomenon is the opposite of that normally found in matter where if the mass of the matter is increased, the object becomes bigger. In degenerate gas, when the mass is increased, the particles become spaced closer together due to gravity (and the pressure is increased), so the object becomes smaller. Degenerate gas can be compressed to very high densities, typical values being in the range of 10,000 kilograms per cubic centimeter.
2112: 472: 2124: 2196: 1668: 564:
occupy states of higher energy even at low temperatures. Degenerate gases strongly resist further compression because the electrons cannot move to already filled lower energy levels due to the Pauli exclusion principle. Since electrons cannot give up energy by moving to lower energy states, no thermal energy can be extracted. The momentum of the fermions in the fermion gas nevertheless generates pressure, termed "degeneracy pressure".
2160: 2184: 2136: 2172: 2148: 492:
that temperature has a negligible effect on the total pressure. The adjacent figure shows the thermal pressure (red line) and total pressure (blue line) in a Fermi gas, with the difference between the two being the degeneracy pressure. As the temperature falls, the density and the degeneracy pressure increase, until the degeneracy pressure contributes most of the total pressure.
715:. However, because protons are much more massive than electrons, the same momentum represents a much smaller velocity for protons than for electrons. As a result, in matter with approximately equal numbers of protons and electrons, proton degeneracy pressure is much smaller than electron degeneracy pressure, and proton degeneracy is usually modelled as a correction to the 541:
quantum states are filled up to the Fermi energy. Most stars are supported against their own gravitation by normal thermal gas pressure, while in white dwarf stars the supporting force comes from the degeneracy pressure of the electron gas in their interior. In neutron stars, the degenerate particles are neutrons.
682:
at a given energy. This phenomenon is compounded by the fact that the pressures within neutron stars are much higher than those in white dwarfs. The pressure increase is caused by the fact that the compactness of a neutron star causes gravitational forces to be much higher than in a less compact body
584:
of electrons are quite high and the rate of collision between electrons and other particles is quite low, therefore degenerate electrons can travel great distances at velocities that approach the speed of light. Instead of temperature, the pressure in a degenerate gas depends only on the speed of the
579:
are luminous not because they are generating energy but rather because they have trapped a large amount of heat which is gradually radiated away. Normal gas exerts higher pressure when it is heated and expands, but the pressure in a degenerate gas does not depend on the temperature. When gas becomes
784:
for neutron-degenerate objects. Whether quark-degenerate matter forms at all in these situations depends on the equations of state of both neutron-degenerate matter and quark-degenerate matter, both of which are poorly known. Quark stars are considered to be an intermediate category between neutron
170:
model. Examples include electrons in metals and in white dwarf stars and neutrons in neutron stars. The electrons are confined by Coulomb attraction to positive ion cores; the neutrons are confined by gravitation attraction. The fermions, forced in to higher levels by the Pauli principle, exert
92:
remains non-zero even at absolute zero temperature. Adding particles or reducing the volume forces the particles into higher-energy quantum states. In this situation, a compression force is required, and is made manifest as a resisting pressure. The key feature is that this degeneracy pressure does
605:
and with realistic Coulomb corrections, the corresponding mass limit is around 1.38 solar masses. The limit may also change with the chemical composition of the object, as it affects the ratio of mass to number of electrons present. The object's rotation, which counteracts the gravitational force,
540:
such as electrons, protons, and neutrons rather than molecules of ordinary matter. The electron gas in ordinary metals and in the interior of white dwarfs are two examples. Following the Pauli exclusion principle, there can be only one fermion occupying each quantum state. In a degenerate gas, all
563:
In an ordinary fermion gas in which thermal effects dominate, most of the available electron energy levels are unfilled and the electrons are free to move to these states. As particle density is increased, electrons progressively fill the lower energy states and additional electrons are forced to
516:
electrons alone as a degenerate gas, while the majority of the electrons are regarded as occupying bound quantum states. This solid state contrasts with degenerate matter that forms the body of a white dwarf, where most of the electrons would be treated as occupying free particle momentum states.
491:
All matter experiences both normal thermal pressure and degeneracy pressure, but in commonly encountered gases, thermal pressure dominates so much that degeneracy pressure can be ignored. Likewise, degenerate matter still has normal thermal pressure; the degeneracy pressure dominates to the point
800:
and as the low temperature ground state limit for states of matter. The electron degeneracy pressure occurs in the ground state systems which are non-degenerate in energy levels. The term "degeneracy" derives from work on the specific heat of gases that pre-dates the use of the term in quantum
127:
were almost completely ionised and closely packed. Fowler described white dwarfs as composed of a gas of particles that became degenerate at low temperature; he also pointed out that ordinary atoms are broadly similar in regards to the filling of energy levels by fermions. Milne proposed that
667:, usually either as a result of a merger or by feeding off of a close binary partner. Above the Chandrasekhar limit, the gravitational pressure at the core exceeds the electron degeneracy pressure, and electrons begin to combine with protons to produce neutrons (via inverse 710:
Sufficiently dense matter containing protons experiences proton degeneracy pressure, in a manner similar to the electron degeneracy pressure in electron-degenerate matter: protons confined to a sufficiently small volume have a large uncertainty in their momentum due to the
162:. The Pauli principle allows only one fermion in each quantum state and the confinement ensures that energy of these states increases as they are filled. The lowest states fill up and fermions are forced to occupy high energy states even at low temperature. 495:
While degeneracy pressure usually dominates at extremely high densities, it is the ratio between degenerate pressure and thermal pressure which determines degeneracy. Given a sufficiently drastic increase in temperature (such as during a red giant star's
87:
prevents identical fermions from occupying the same quantum state. At lowest total energy (when the thermal energy of the particles is negligible), all the lowest energy quantum states are filled. This state is referred to as full degeneracy. This
600:
for objects with typical compositions expected for white dwarf stars (carbon and oxygen with two baryons per electron). This mass cut-off is appropriate only for a star supported by ideal electron degeneracy pressure under Newtonian gravity; in
392: 503:
Degeneracy pressure contributes to the pressure of conventional solids, but these are not usually considered to be degenerate matter because a significant contribution to their pressure is provided by electrical repulsion of
544:
A fermion gas in which all quantum states below a given energy level are filled is called a fully degenerate fermion gas. The difference between this energy level and the lowest energy level is known as the Fermi energy.
165:
While the Pauli principle and Fermi-Dirac distribution applies to all matter, the interesting cases for degenerate matter involve systems of many fermions. These cases can be understood with the help of the
614:
that run out of fuel. During this shrinking, an electron-degenerate gas forms in the core, providing sufficient degeneracy pressure as it is compressed to resist further collapse. Above this mass limit, a
575:, largely helium and carbon nuclei, floating in a sea of electrons, which have been stripped from the nuclei. Degenerate gas is an almost perfect conductor of heat and does not obey ordinary gas laws. 462: 244: 675:). The result is an extremely compact star composed of "nuclear matter", which is predominantly a degenerate neutron gas with a small admixture of degenerate proton and electron gases. 927:
Andrew G. Truscott, Kevin E. Strecker, William I. McAlexander, Guthrie Partridge, and Randall G. Hulet, "Observation of Fermi Pressure in a Gas of Trapped Atoms", Science, 2 March 2001
280: 641:, which are partially supported by the pressure from a degenerate neutron gas. Neutron stars are formed either directly from the supernova of stars with masses between 10 and 25 1332:
Hanle, Paul A. "The Coming of Age of Erwin Schrödinger: His Quantum Statistics of Ideal Gases". Archive for History of Exact Sciences, vol. 17, no. 2, 1977, pp. 165–92. JSTOR,
93:
not depend on the temperature but only on the density of the fermions. Degeneracy pressure keeps dense stars in equilibrium, independent of the thermal structure of the star.
769:. The equations of state for the various proposed forms of quark-degenerate matter vary widely, and are usually also poorly defined, due to the difficulty of modelling 79:, an ensemble of non-interacting fermions. In a quantum mechanical description, particles limited to a finite volume may take only a discrete set of energies, called 1350: 776:
Quark-degenerate matter may occur in the cores of neutron stars, depending on the equations of state of neutron-degenerate matter. It may also occur in hypothetical
866:
applied Fermi's model to the puzzle of the stability of white dwarf stars. This approach was extended to relativistic models by later studies and with the work of
678:
Neutrons in a degenerate neutron gas are spaced much more closely than electrons in an electron-degenerate gas because the more massive neutron has a much shorter
1143:
Rotondo, Michael; Rueda, Jorge A.; Ruffini, Remo; Xue, She-Sheng (2011). "Relativistic Feynman-Metropolis-Teller theory for white dwarfs in general relativity".
832:, the effect at low temperatures came to be called "gas degeneracy". A fully degenerate gas has no volume dependence on pressure when temperature approaches 277:
temperature. At relatively low densities, the pressure of a fully degenerate gas can be derived by treating the system as an ideal Fermi gas, in this way
567:
Under high densities, matter becomes a degenerate gas when all electrons are stripped from their parent atoms. The core of a star, once hydrogen burning
273:
is the volume, the pressure exerted by degenerate matter depends only weakly on its temperature. In particular, the pressure remains nonzero even at
580:
super-compressed, particles position right up against each other to produce degenerate gas that behaves more like a solid. In degenerate gases the
398:
is the mass of the individual particles making up the gas. At very high densities, where most of the particles are forced into quantum states with
1439: 405: 1605: 17: 1426:
An english translation of the original work of Enrico Fermi on the quantization of the monoatomic ideal gas, is given in this paper
781: 691: 196: 1551: 1082: 1537: 816:
at very low temperature as "degeneration"; he attributed this to quantum effects. In subsequent work in various papers on
399: 1397: 741:
is expected to occur. Several variations of this hypothesis have been proposed that represent quark-degenerate states.
96:
A degenerate mass whose fermions have velocities close to the speed of light (particle kinetic energy larger than its
2216: 1113: 847:
developed a semi-classical model for electrons in a metal. The model treated the electrons as a gas. Later in 1927,
2111: 1872: 1942: 1867: 1598: 1046: 995: 859:
model for metals. Sommerfeld called the low temperature region with quantum effects a "wholly degenerate gas".
2054: 1882: 683:
with similar mass. The result is a star with a diameter on the order of a thousandth that of a white dwarf.
2064: 1937: 1682: 883: 593: 554: 35: 2102: 867: 2231: 2221: 1591: 155: 84: 45: 468:
is another proportionality constant depending on the properties of the particles making up the gas.
111:, stellar objects composed of degenerate matter, was originally developed in a joint effort between 2089: 1988: 1618: 797: 175: 31: 1578: 1983: 758: 1486: 2226: 2008: 1998: 1748: 1743: 1249:
Annala, Eemeli; Gorda, Tyler; Kurkela, Aleksi; NÀttilÀ, Joonas; Vuorinen, Aleksi (2020-06-01).
852: 817: 141: 65: 174:
The allocation or distribution of fermions into quantum states ranked by energy is called the
1309: 1038: 1031: 712: 387:{\displaystyle P={\frac {(3\pi ^{2})^{2/3}\hbar ^{2}}{5m}}\left({\frac {N}{V}}\right)^{5/3},} 1927: 1687: 1365: 1272: 1215: 1162: 950: 513: 938: 829: 8: 2188: 1902: 1794: 1784: 1697: 1652: 1125: 889: 871: 657: 606:
also changes the limit for any particular object. Celestial objects below this limit are
589: 509: 159: 1369: 1276: 1219: 1166: 954: 761:
materials are degenerate gases of quarks in which quarks pair up in a manner similar to
2176: 2164: 2049: 1978: 1812: 1514: 1467: 1415: 1389: 1262: 1231: 1205: 1178: 1152: 770: 716: 602: 258: 2079: 2074: 2044: 2003: 1892: 1844: 1829: 1722: 1547: 1518: 1506: 1502: 1459: 1393: 1381: 1290: 1235: 1182: 1109: 1088: 1078: 1052: 1042: 1001: 991: 968: 895: 855:
to this electron gas model, computing the specific heat of metals; the result became
848: 793: 525: 30:
This article is about a state of matter. For multiple states with equal energy, see
2140: 2128: 2034: 1657: 1543: 1498: 1451: 1440:"Propaganda in Science: Sommerfeld and the Spread of the Electron Theory of Metals" 1373: 1280: 1227: 1223: 1170: 958: 844: 672: 112: 97: 2024: 1877: 1614: 1557: 1026: 863: 821: 49: 471: 2200: 2116: 1822: 1817: 1774: 1707: 1702: 1174: 805: 766: 742: 581: 568: 521: 505: 1285: 1250: 1092: 2210: 2059: 2039: 1962: 1922: 1857: 1789: 1712: 1510: 1463: 1385: 1294: 1022: 1005: 972: 963: 833: 809: 746: 695: 687: 476: 274: 151: 80: 1579:
Lecture 17: Stellar Evolution. Discusses degenerate gases in models of stars
1414:
Zannoni, Alberto (1999). "On the Quantization of the Monoatomic Ideal Gas".
596:
cannot support the object against collapse. The limit is approximately 1.44
2152: 2084: 1957: 1952: 1947: 1912: 1862: 1779: 1346: 840: 732: 638: 632: 616: 497: 129: 120: 116: 61: 53: 1583: 1056: 916: 588:
There is an upper limit to the mass of an electron-degenerate object, the
1993: 1887: 1799: 1420: 1073:
Taylor, John Robert; Zafiratos, Chris D.; Dubson, Michael Andrew (2004).
762: 699: 679: 653: 607: 576: 558: 191: 57: 1471: 520:
Exotic examples of degenerate matter include neutron degenerate matter,
1932: 1907: 1834: 1804: 1738: 1717: 1377: 1333: 1108:
section 15.3 – R Kippenhahn & A. Weigert, 1990, 3rd printing 1994.
825: 777: 754: 738: 728: 668: 649: 620: 597: 128:
degenerate matter is found in most of the nuclei of stars, not only in
2195: 178:. Degenerate matter exhibits the results of Fermi-Dirac distribution. 1455: 856: 813: 686:
The properties of neutron matter set an upper limit to the mass of a
637:
Neutron degeneracy is analogous to electron degeneracy and exists in
480: 187: 167: 76: 69: 1667: 2069: 1897: 1267: 750: 537: 484: 1210: 1157: 500:), matter can become non-degenerate without reducing its density. 2029: 1917: 1852: 1769: 1764: 737:
At densities greater than those supported by neutron degeneracy,
147: 146:
Degenerate matter exhibits quantum mechanical properties when a
1638: 745:
is a degenerate gas of quarks that is often assumed to contain
512:
of metals derives their physical properties by considering the
508:
and the screening of nuclei from each other by electrons. The
124: 1647: 1633: 571:
reactions stops, becomes a collection of positively charged
1068: 1066: 611: 265:
is the number of particles (typically atoms or molecules),
2147: 1444:
Historical Studies in the Physical and Biological Sciences
1251:"Evidence for quark-matter cores in massive neutron stars" 619:(primarily supported by neutron degeneracy pressure) or a 1643: 1248: 1077:(2 ed.). Upper Saddle River, NJ: Pearson Education. 572: 1196:
Potekhin, A. Y. (2011). "The Physics of Neutron Stars".
1189: 1063: 610:
stars, formed by the gradual shrinking of the cores of
1142: 988:
A History of Astronomy : from 1890 to the Present
64:, where thermal pressure alone is not enough to avoid 2100: 1072: 457:{\displaystyle P=K\left({\frac {N}{V}}\right)^{4/3},} 408: 283: 199: 154:. These properties result from a combination of the 1030: 456: 386: 238: 75:Degenerate matter is usually modelled as an ideal 1037:. New York: Holt, Rinehart and Winston. pp.  943:Monthly Notices of the Royal Astronomical Society 2208: 1484: 1017: 1015: 1535: 1351:"Zur Quantelung des idealen einatomigen Gases" 780:, formed by the collapse of objects above the 1599: 1021: 1012: 239:{\displaystyle P=k_{\rm {B}}{\frac {NT}{V}},} 909: 123:. Eddington had suggested that the atoms in 1613: 1075:Modern physics for scientists and engineers 1606: 1592: 56:to refer to dense stellar objects such as 1419: 1284: 1266: 1209: 1156: 962: 921: 171:pressure preventing further compression. 68:. The term also applies to metals in the 1195: 796:uses the word 'degenerate' in two ways: 470: 190:, whose pressure is proportional to its 52:at low temperature. The term is used in 1485:Koester, D; Chanmugam, G (1990-07-01). 1413: 917:http://apod.nasa.gov/apod/ap100228.html 536:Degenerate gases are gases composed of 14: 2209: 1437: 985: 936: 548: 181: 27:Type of dense exotic matter in physics 1587: 1345: 782:Tolman–Oppenheimer–Volkoff mass limit 626: 1334:http://www.jstor.org/stable/41133485 1307: 892: â€“ Theoretical model in physics 705: 475:Pressure vs temperature curves of a 722: 531: 24: 1242: 656:acquiring a mass in excess of the 212: 25: 2243: 1572: 898:– High-pressure phase of hydrogen 2194: 2182: 2170: 2158: 2146: 2134: 2122: 2110: 1666: 851:applied the Pauli principle via 713:Heisenberg uncertainty principle 692:Tolman–Oppenheimer–Volkoff limit 487:), for a given particle density. 1536:Cohen-Tanoudji, Claude (2011). 1478: 1431: 1407: 1339: 1326: 1301: 1106:Stellar Structure and Evolution 808:described the reduction of the 719:of electron-degenerate matter. 1491:Reports on Progress in Physics 1487:"Physics of white dwarf stars" 1438:Eckert, Michael (1987-01-01). 1228:10.3367/UFNe.0180.201012c.1279 1136: 1118: 1099: 979: 930: 310: 293: 150:system temperature approaches 102:relativistic degenerate matter 13: 1: 2055:Macroscopic quantum phenomena 1529: 2065:Order and disorder (physics) 986:David., Leverington (1995). 937:Fowler, R. H. (1926-12-10). 902: 694:, which is analogous to the 594:electron degeneracy pressure 555:Electron degeneracy pressure 7: 1308:Cain, Fraser (2016-07-25). 990:. London: Springer London. 877: 402:, the pressure is given by 10: 2248: 1539:Advances in Atomic Physics 1503:10.1088/0034-4885/53/7/001 1175:10.1103/PhysRevD.84.084007 868:Subrahmanyan Chandrasekhar 788: 726: 630: 552: 139: 135: 29: 2017: 1971: 1843: 1757: 1731: 1675: 1664: 1626: 1286:10.1038/s41567-020-0914-9 749:in addition to the usual 479:and quantum ideal gases ( 156:Pauli exclusion principle 85:Pauli exclusion principle 46:Pauli exclusion principle 18:Neutron-degenerate matter 2217:Concepts in astrophysics 2090:Thermo-dielectric effect 1989:Enthalpy of vaporization 1683:Bose–Einstein condensate 1336:. Accessed 27 July 2023. 1130:Encyclopaedia Britannica 886:– Degenerate bosonic gas 884:Bose–Einstein condensate 872:model for star stability 798:degenerate energy levels 528:and white dwarf matter. 176:Fermi-Dirac distribution 32:Degenerate energy levels 1984:Enthalpy of sublimation 1310:"What are Quark Stars?" 785:stars and black holes. 623:may be formed instead. 48:significantly alters a 1999:Latent internal energy 1749:Color-glass condensate 1358:Zeitschrift fĂŒr Physik 964:10.1093/mnras/87.2.114 853:Fermi-Dirac statistics 818:quantum thermodynamics 488: 458: 388: 240: 142:Fermi-Dirac statistics 66:gravitational collapse 34:. For other uses, see 1809:Magnetically ordered 1126:"Chandrasekhar limit" 474: 459: 400:relativistic energies 389: 269:is temperature, and 241: 1688:Fermionic condensate 870:became the accepted 759:Color superconductor 406: 281: 197: 1903:Chemical ionization 1795:Programmable matter 1785:Quantum spin liquid 1653:Supercritical fluid 1370:1926ZPhy...36..902F 1277:2020NatPh..16..907A 1220:2010PhyU...53.1235Y 1167:2011PhRvD..84h4007R 1033:Solid state physics 955:1926MNRAS..87..114F 890:Fermi liquid theory 658:Chandrasekhar limit 627:Neutron degeneracy 590:Chandrasekhar limit 549:Electron degeneracy 510:free electron model 477:classical ideal gas 186:Unlike a classical 182:Degeneracy pressure 160:quantum confinement 90:degeneracy pressure 2050:Leidenfrost effect 1979:Enthalpy of fusion 1744:Quark–gluon plasma 1378:10.1007/BF01400221 1364:(11–12): 902–912. 717:equations of state 603:general relativity 489: 454: 384: 259:Boltzmann constant 236: 2098: 2097: 2080:Superheated vapor 2075:Superconductivity 2045:Equation of state 1893:Flash evaporation 1845:Phase transitions 1830:String-net liquid 1723:Photonic molecule 1693:Degenerate matter 1553:978-981-277-496-5 1204:(12): 1235–1256. 1145:Physical Review D 1084:978-0-13-805715-2 1027:Mermin, N. David. 1023:Neil W., Ashcroft 939:"On Dense Matter" 896:Metallic hydrogen 849:Arnold Sommerfeld 830:Erwin Schrödinger 794:Quantum mechanics 706:Proton degeneracy 526:metallic hydrogen 431: 361: 346: 231: 42:Degenerate matter 16:(Redirected from 2239: 2232:Phases of matter 2222:Degenerate stars 2199: 2198: 2187: 2186: 2185: 2175: 2174: 2173: 2163: 2162: 2161: 2151: 2150: 2139: 2138: 2137: 2127: 2126: 2125: 2115: 2114: 2106: 2035:Compressed fluid 1670: 1615:States of matter 1608: 1601: 1594: 1585: 1584: 1568: 1566: 1565: 1556:. Archived from 1544:World Scientific 1523: 1522: 1482: 1476: 1475: 1456:10.2307/27757582 1435: 1429: 1428: 1423: 1421:cond-mat/9912229 1411: 1405: 1404: 1402: 1396:. Archived from 1355: 1343: 1337: 1330: 1324: 1323: 1321: 1320: 1305: 1299: 1298: 1288: 1270: 1246: 1240: 1239: 1213: 1193: 1187: 1186: 1160: 1140: 1134: 1133: 1122: 1116: 1103: 1097: 1096: 1070: 1061: 1060: 1036: 1019: 1010: 1009: 983: 977: 976: 966: 934: 928: 925: 919: 913: 845:Llewellyn Thomas 723:Quark degeneracy 673:electron capture 582:kinetic energies 532:Degenerate gases 463: 461: 460: 455: 450: 449: 445: 436: 432: 424: 393: 391: 390: 385: 380: 379: 375: 366: 362: 354: 347: 345: 337: 336: 335: 326: 325: 321: 308: 307: 291: 245: 243: 242: 237: 232: 227: 219: 217: 216: 215: 113:Arthur Eddington 109:degenerate stars 98:rest mass energy 44:occurs when the 21: 2247: 2246: 2242: 2241: 2240: 2238: 2237: 2236: 2207: 2206: 2205: 2193: 2183: 2181: 2171: 2169: 2159: 2157: 2145: 2135: 2133: 2123: 2121: 2109: 2101: 2099: 2094: 2025:Baryonic matter 2013: 1967: 1938:Saturated fluid 1878:Crystallization 1839: 1813:Antiferromagnet 1753: 1727: 1671: 1662: 1622: 1612: 1575: 1563: 1561: 1554: 1546:. p. 791. 1532: 1527: 1526: 1483: 1479: 1436: 1432: 1412: 1408: 1400: 1353: 1344: 1340: 1331: 1327: 1318: 1316: 1306: 1302: 1247: 1243: 1198:Physics-Uspekhi 1194: 1190: 1141: 1137: 1124: 1123: 1119: 1104: 1100: 1085: 1071: 1064: 1049: 1020: 1013: 998: 984: 980: 935: 931: 926: 922: 914: 910: 905: 880: 864:Ralph H. Fowler 843:and separately 822:Albert Einstein 791: 767:superconductors 735: 727:Main articles: 725: 708: 666: 647: 635: 629: 592:, beyond which 561: 553:Main articles: 551: 534: 441: 437: 423: 419: 418: 407: 404: 403: 371: 367: 353: 349: 348: 338: 331: 327: 317: 313: 309: 303: 299: 292: 290: 282: 279: 278: 256: 220: 218: 211: 210: 206: 198: 195: 194: 184: 144: 138: 107:The concept of 72:approximation. 50:state of matter 39: 28: 23: 22: 15: 12: 11: 5: 2245: 2235: 2234: 2229: 2224: 2219: 2204: 2203: 2191: 2179: 2167: 2155: 2143: 2131: 2119: 2096: 2095: 2093: 2092: 2087: 2082: 2077: 2072: 2067: 2062: 2057: 2052: 2047: 2042: 2037: 2032: 2027: 2021: 2019: 2015: 2014: 2012: 2011: 2006: 2004:Trouton's rule 2001: 1996: 1991: 1986: 1981: 1975: 1973: 1969: 1968: 1966: 1965: 1960: 1955: 1950: 1945: 1940: 1935: 1930: 1925: 1920: 1915: 1910: 1905: 1900: 1895: 1890: 1885: 1880: 1875: 1873:Critical point 1870: 1865: 1860: 1855: 1849: 1847: 1841: 1840: 1838: 1837: 1832: 1827: 1826: 1825: 1820: 1815: 1807: 1802: 1797: 1792: 1787: 1782: 1777: 1775:Liquid crystal 1772: 1767: 1761: 1759: 1755: 1754: 1752: 1751: 1746: 1741: 1735: 1733: 1729: 1728: 1726: 1725: 1720: 1715: 1710: 1708:Strange matter 1705: 1703:Rydberg matter 1700: 1695: 1690: 1685: 1679: 1677: 1673: 1672: 1665: 1663: 1661: 1660: 1655: 1650: 1641: 1636: 1630: 1628: 1624: 1623: 1611: 1610: 1603: 1596: 1588: 1582: 1581: 1574: 1573:External links 1571: 1570: 1569: 1552: 1531: 1528: 1525: 1524: 1497:(7): 837–915. 1477: 1450:(2): 191–233. 1430: 1406: 1403:on 2019-04-06. 1349:(1926-11-01). 1338: 1325: 1314:Universe Today 1300: 1261:(9): 907–910. 1255:Nature Physics 1241: 1188: 1135: 1117: 1098: 1083: 1062: 1047: 1011: 996: 978: 949:(2): 114–122. 929: 920: 907: 906: 904: 901: 900: 899: 893: 887: 879: 876: 839:Early in 1927 806:Walther Nernst 790: 787: 773:interactions. 765:in electrical 763:Cooper pairing 747:strange quarks 743:Strange matter 724: 721: 707: 704: 671:, also termed 664: 645: 631:Main article: 628: 625: 569:nuclear fusion 550: 547: 533: 530: 522:strange matter 453: 448: 444: 440: 435: 430: 427: 422: 417: 414: 411: 383: 378: 374: 370: 365: 360: 357: 352: 344: 341: 334: 330: 324: 320: 316: 312: 306: 302: 298: 295: 289: 286: 254: 235: 230: 226: 223: 214: 209: 205: 202: 183: 180: 140:Main article: 137: 134: 81:quantum states 26: 9: 6: 4: 3: 2: 2244: 2233: 2230: 2228: 2227:Exotic matter 2225: 2223: 2220: 2218: 2215: 2214: 2212: 2202: 2197: 2192: 2190: 2180: 2178: 2168: 2166: 2156: 2154: 2149: 2144: 2142: 2132: 2130: 2120: 2118: 2113: 2108: 2107: 2104: 2091: 2088: 2086: 2083: 2081: 2078: 2076: 2073: 2071: 2068: 2066: 2063: 2061: 2060:Mpemba effect 2058: 2056: 2053: 2051: 2048: 2046: 2043: 2041: 2040:Cooling curve 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2022: 2020: 2016: 2010: 2007: 2005: 2002: 2000: 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1980: 1977: 1976: 1974: 1970: 1964: 1963:Vitrification 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1929: 1928:Recombination 1926: 1924: 1923:Melting point 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1881: 1879: 1876: 1874: 1871: 1869: 1868:Critical line 1866: 1864: 1861: 1859: 1858:Boiling point 1856: 1854: 1851: 1850: 1848: 1846: 1842: 1836: 1833: 1831: 1828: 1824: 1821: 1819: 1816: 1814: 1811: 1810: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1791: 1790:Exotic matter 1788: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1762: 1760: 1756: 1750: 1747: 1745: 1742: 1740: 1737: 1736: 1734: 1730: 1724: 1721: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1680: 1678: 1674: 1669: 1659: 1656: 1654: 1651: 1649: 1645: 1642: 1640: 1637: 1635: 1632: 1631: 1629: 1625: 1620: 1616: 1609: 1604: 1602: 1597: 1595: 1590: 1589: 1586: 1580: 1577: 1576: 1560:on 2012-05-11 1559: 1555: 1549: 1545: 1541: 1540: 1534: 1533: 1520: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1488: 1481: 1473: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1434: 1427: 1422: 1417: 1410: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1360:(in German). 1359: 1352: 1348: 1342: 1335: 1329: 1315: 1311: 1304: 1296: 1292: 1287: 1282: 1278: 1274: 1269: 1264: 1260: 1256: 1252: 1245: 1237: 1233: 1229: 1225: 1221: 1217: 1212: 1207: 1203: 1199: 1192: 1184: 1180: 1176: 1172: 1168: 1164: 1159: 1154: 1151:(8): 084007. 1150: 1146: 1139: 1131: 1127: 1121: 1115: 1114:0-387-58013-1 1111: 1107: 1102: 1094: 1090: 1086: 1080: 1076: 1069: 1067: 1058: 1054: 1050: 1044: 1040: 1035: 1034: 1028: 1024: 1018: 1016: 1007: 1003: 999: 993: 989: 982: 974: 970: 965: 960: 956: 952: 948: 944: 940: 933: 924: 918: 912: 908: 897: 894: 891: 888: 885: 882: 881: 875: 873: 869: 865: 862:Also in 1927 860: 858: 854: 850: 846: 842: 837: 835: 834:absolute zero 831: 827: 823: 819: 815: 811: 810:specific heat 807: 802: 799: 795: 786: 783: 779: 774: 772: 768: 764: 760: 756: 752: 748: 744: 740: 734: 730: 720: 718: 714: 703: 701: 697: 696:Chandrasekhar 693: 689: 684: 681: 676: 674: 670: 663: 660:of 1.44  659: 655: 651: 644: 640: 639:neutron stars 634: 624: 622: 618: 613: 609: 604: 599: 595: 591: 586: 583: 578: 574: 570: 565: 560: 556: 546: 542: 539: 529: 527: 523: 518: 515: 511: 507: 506:atomic nuclei 501: 499: 493: 486: 482: 478: 473: 469: 467: 451: 446: 442: 438: 433: 428: 425: 420: 415: 412: 409: 401: 397: 381: 376: 372: 368: 363: 358: 355: 350: 342: 339: 332: 328: 322: 318: 314: 304: 300: 296: 287: 284: 276: 275:absolute zero 272: 268: 264: 260: 253: 250:is pressure, 249: 233: 228: 224: 221: 207: 203: 200: 193: 189: 179: 177: 172: 169: 163: 161: 157: 153: 152:absolute zero 149: 143: 133: 131: 130:compact stars 126: 122: 118: 114: 110: 105: 103: 99: 94: 91: 86: 82: 78: 73: 71: 67: 63: 62:neutron stars 59: 55: 51: 47: 43: 37: 33: 19: 2189:Solar System 2085:Superheating 1958:Vaporization 1953:Triple point 1948:Supercooling 1913:Lambda point 1863:Condensation 1780:Time crystal 1758:Other states 1698:Quantum Hall 1692: 1562:. Retrieved 1558:the original 1538: 1494: 1490: 1480: 1447: 1443: 1433: 1425: 1409: 1398:the original 1361: 1357: 1341: 1328: 1317:. Retrieved 1313: 1303: 1258: 1254: 1244: 1201: 1197: 1191: 1148: 1144: 1138: 1129: 1120: 1105: 1101: 1074: 1032: 987: 981: 946: 942: 932: 923: 911: 861: 841:Enrico Fermi 838: 803: 792: 775: 771:strong force 739:quark matter 736: 733:Strange star 709: 688:neutron star 685: 677: 661: 654:white dwarfs 650:solar masses 642: 636: 633:Neutron star 617:neutron star 598:solar masses 587: 577:White dwarfs 566: 562: 543: 535: 519: 502: 498:helium flash 494: 490: 465: 395: 270: 266: 262: 251: 247: 185: 173: 164: 145: 121:Arthur Milne 117:Ralph Fowler 108: 106: 101: 100:) is called 95: 89: 74: 58:white dwarfs 54:astrophysics 41: 40: 2177:Outer space 2165:Spaceflight 1994:Latent heat 1943:Sublimation 1888:Evaporation 1823:Ferromagnet 1818:Ferrimagnet 1800:Dark matter 1732:High energy 801:mechanics. 778:quark stars 700:white dwarf 608:white dwarf 559:White dwarf 192:temperature 2211:Categories 2009:Volatility 1972:Quantities 1933:Regelation 1908:Ionization 1883:Deposition 1835:Superglass 1805:Antimatter 1739:QCD matter 1718:Supersolid 1713:Superfluid 1676:Low energy 1564:2012-01-31 1530:References 1319:2021-01-15 1268:1903.09121 1093:1319408575 1048:0030839939 997:1447121244 826:Max Planck 729:Quark star 698:limit for 680:wavelength 669:beta decay 621:black hole 514:conduction 36:Degeneracy 2141:Astronomy 2129:Chemistry 1519:250915046 1511:0034-4885 1464:0890-9997 1394:123334672 1386:0044-3328 1347:Fermi, E. 1295:1745-2481 1236:119231427 1211:1102.5735 1183:119120610 1158:1012.0154 1006:840277483 973:0035-8711 903:Citations 857:Fermi gas 828:, and by 652:), or by 481:Fermi gas 329:ℏ 301:π 188:ideal gas 168:Fermi gas 77:Fermi gas 70:Fermi gas 2070:Spinodal 2018:Concepts 1898:Freezing 1472:27757582 1029:(1976). 878:See also 804:In 1914 757:quarks. 538:fermions 485:Bose gas 125:Sirius B 2201:Science 2117:Physics 2103:Portals 2030:Binodal 1918:Melting 1853:Boiling 1770:Crystal 1765:Colloid 1366:Bibcode 1273:Bibcode 1216:Bibcode 1163:Bibcode 951:Bibcode 789:History 702:stars. 257:is the 148:fermion 136:Concept 1658:Plasma 1639:Liquid 1550:  1517:  1509:  1470:  1462:  1392:  1384:  1293:  1234:  1181:  1112:  1091:  1081:  1057:934604 1055:  1045:  1004:  994:  971:  690:, the 464:where 394:where 246:where 83:. The 2153:Stars 1648:Vapor 1634:Solid 1627:State 1515:S2CID 1468:JSTOR 1416:arXiv 1401:(PDF) 1390:S2CID 1354:(PDF) 1263:arXiv 1232:S2CID 1206:arXiv 1179:S2CID 1153:arXiv 824:, by 814:gases 612:stars 1619:list 1548:ISBN 1507:ISSN 1460:ISSN 1382:ISSN 1291:ISSN 1110:ISBN 1089:OCLC 1079:ISBN 1053:OCLC 1043:ISBN 1002:OCLC 992:ISBN 969:ISSN 915:see 755:down 753:and 731:and 573:ions 557:and 158:and 119:and 60:and 1644:Gas 1499:doi 1452:doi 1374:doi 1281:doi 1224:doi 1171:doi 959:doi 820:by 812:of 2213:: 1646:/ 1542:. 1513:. 1505:. 1495:53 1493:. 1489:. 1466:. 1458:. 1448:17 1446:. 1442:. 1424:. 1388:. 1380:. 1372:. 1362:36 1356:. 1312:. 1289:. 1279:. 1271:. 1259:16 1257:. 1253:. 1230:. 1222:. 1214:. 1202:53 1200:. 1177:. 1169:. 1161:. 1149:84 1147:. 1128:. 1087:. 1065:^ 1051:. 1041:. 1039:39 1025:; 1014:^ 1000:. 967:. 957:. 947:87 945:. 941:. 874:. 836:. 751:up 524:, 483:, 261:, 132:. 115:, 104:. 2105:: 1621:) 1617:( 1607:e 1600:t 1593:v 1567:. 1521:. 1501:: 1474:. 1454:: 1418:: 1376:: 1368:: 1322:. 1297:. 1283:: 1275:: 1265:: 1238:. 1226:: 1218:: 1208:: 1185:. 1173:: 1165:: 1155:: 1132:. 1095:. 1059:. 1008:. 975:. 961:: 953:: 665:☉ 662:M 648:( 646:☉ 643:M 466:K 452:, 447:3 443:/ 439:4 434:) 429:V 426:N 421:( 416:K 413:= 410:P 396:m 382:, 377:3 373:/ 369:5 364:) 359:V 356:N 351:( 343:m 340:5 333:2 323:3 319:/ 315:2 311:) 305:2 297:3 294:( 288:= 285:P 271:V 267:T 263:N 255:B 252:k 248:P 234:, 229:V 225:T 222:N 213:B 208:k 204:= 201:P 38:. 20:)

Index

Neutron-degenerate matter
Degenerate energy levels
Degeneracy
Pauli exclusion principle
state of matter
astrophysics
white dwarfs
neutron stars
gravitational collapse
Fermi gas
Fermi gas
quantum states
Pauli exclusion principle
rest mass energy
Arthur Eddington
Ralph Fowler
Arthur Milne
Sirius B
compact stars
Fermi-Dirac statistics
fermion
absolute zero
Pauli exclusion principle
quantum confinement
Fermi gas
Fermi-Dirac distribution
ideal gas
temperature
Boltzmann constant
absolute zero

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑