Knowledge

A5/1

Source 📝

699:
milliseconds of encrypted off-the-air cellular conversation and finds the correct key in less than a second on a personal computer. We extend this attack to a (more complex) ciphertext-only attack on A5/1. We then describe new (active) attacks on the protocols of networks that use A5/1, A5/3, or even GPRS. These attacks exploit flaws in the GSM protocols, and they work whenever the mobile phone supports a weak cipher such as A5/2. We emphasize that these attacks are on the protocols, and are thus applicable whenever the cellular phone supports a weak cipher, for example, they are also applicable for attacking A5/3 networks using the cryptanalysis of A5/1. Unlike previous attacks on GSM that require unrealistic information, like long known plaintext periods, our attacks are very practical and do not require any knowledge of the content of the conversation. Furthermore, we describe how to fortify the attacks to withstand reception errors. As a result, our attacks allow attackers to tap conversations and decrypt them either in real-time, or at any later time.
2366: 544: 92: 586:
says that the British insisted on weaker encryption, with Haug saying he was told by the British delegate that this was to allow the British secret service to eavesdrop more easily. The British proposed a key length of 48 bits, while the West Germans wanted stronger encryption to protect against East
534:
Similarly, the 22-bits of the frame number are added in 22 cycles. Then the entire system is clocked using the normal majority clocking mechanism for 100 cycles, with the output discarded. After this is completed, the cipher is ready to produce two 114 bit sequences of output keystream, first 114 for
726:
launched a project to develop a practical attack on A5/1. The attack requires the construction of a large look-up table of approximately 3 terabytes. Together with the scanning capabilities developed as part of the sister project, the group expected to be able to record any GSM call or SMS encrypted
577:
According to professor Jan Arild Audestad, at the standardization process which started in 1982, A5/1 was originally proposed to have a key length of 128 bits. At that time, 128 bits was projected to be secure for at least 15 years. It is now believed that 128 bits would in fact also still be secure
415:
The registers are clocked in a stop/go fashion using a majority rule. Each register has an associated clocking bit. At each cycle, the clocking bit of all three registers is examined and the majority bit is determined. A register is clocked if the clocking bit agrees with the majority bit. Hence at
698:
We present a very practical ciphertext-only cryptanalysis of GSM encrypted communication, and various active attacks on the GSM protocols. These attacks can even break into GSM networks that use "unbreakable" ciphers. We first describe a ciphertext-only attack on A5/2 that requires a few dozen
623:
in real time using a time-memory tradeoff attack, based on earlier work by Jovan Golic. One tradeoff allows an attacker to reconstruct the key in one second from two minutes of known plaintext or in several minutes from two seconds of known plain text, but he must first complete an expensive
404:
These degrees were not chosen at random: since the degrees of the three registers are relatively prime, the period of this generator is the product of the periods of the three registers. Thus the period of A5/1 (before repetition) is 2^64 bits (2 to the power of 64).
711:-based cryptographic accelerator COPACOBANA. COPACOBANA was the first commercially available solution using fast time-memory trade-off techniques that could be used to attack the popular A5/1 and A5/2 algorithms, used in GSM voice encryption, as well as the 794:
One might think of using A5/1 as pseudo-random generator with a 64-bit initialization seed (key size), but it is not reliable. It loses its randomness after only 8 MB (which represents the period of the largest of the three registers).
599:
in 1994. Anderson's basic idea was to guess the complete content of the registers R1 and R2 and about half of the register R3. In this way the clocking of all three registers is determined and the second half of R3 can be computed.
646:
Ekdahl and Johansson published an attack on the initialisation procedure which breaks A5/1 in a few minutes using two to five minutes of conversation plaintext. This attack does not require a preprocessing stage. In 2004, Maximov
1401: 123:
of 54 bits. This weakness was rectified with the introduction of Comp128v3 which yields proper 64 bits keys. When operating in GPRS / EDGE mode, higher bandwidth radio modulation allows for larger 348 bits frames, and
752:
architecture. Starting in the middle of September 2009, the project ran the equivalent of 12 Nvidia GeForce GTX 260. According to the authors, the approach can be used on any cipher with key size up to 64-bits.
603:
In 1997, Golic presented an attack based on solving sets of linear equations which has a time complexity of 2 (the units are in terms of number of solutions of a system of linear equations which are required).
107:. In a typical channel and in one direction, one burst is sent every 4.615 milliseconds and contains 114 bits available for information. A5/1 is used to produce for each burst a 114 bit sequence of 791:
Since the degrees of the three LFSRs are relatively prime, the period of this generator is the product of the periods of the three LFSRs, which represents 2^64 bits (2 to the power of 64).
243: 391: 119:
together with a publicly known 22-bit frame number. Older fielded GSM implementations using Comp128v1 for key generation, had 10 of the key bits fixed at zero, resulting in an effective
624:
preprocessing stage which requires 2 steps to compute around 300 GB of data. Several tradeoffs between preprocessing, data requirements, attack time and memory complexity are possible.
756:
In December 2009, the A5/1 Cracking Project attack tables for A5/1 were announced by Chris Paget and Karsten Nohl. The tables use a combination of compression techniques, including
457: 304: 1513: 835: 558:
Some attacks require an expensive preprocessing stage after which the cipher can be broken in minutes or seconds. Originally, the weaknesses were passive attacks using the
526: 1351: 61:
was developed in 1989. Though both were initially kept secret, the general design was leaked in 1994 and the algorithms were entirely reverse engineered in 1999 by
760:
and distinguished point chains. These tables constituted only parts of the 1.7 TB completed table and had been computed during three months using 40 distributed
1559: 651:
improved this result to an attack requiring "less than one minute of computations, and a few seconds of known conversation". The attack was further improved by
57:
was a deliberate weakening of the algorithm for certain export regions. A5/1 was developed in 1987, when GSM was not yet considered for use outside Europe, and
2346: 2176: 1161: 727:
with A5/1, and within about 3–5 minutes derive the encryption key and hence listen to the call and read the SMS in clear. But the tables weren't released.
723: 37:
standard. It is one of several implementations of the A5 security protocol. It was initially kept secret, but became public knowledge through leaks and
1526: 675:
cipher briefly. A5/2 can be broken easily, and the phone uses the same key as for the stronger A5/1 algorithm. A second attack on A5/1 is outlined, a
1272: 1382: 691: 62: 915: 2014: 1632: 1247: 683: 652: 65:
from a GSM telephone. In 2000, around 130 million GSM customers relied on A5/1 to protect the confidentiality of their voice communications.
2406: 79:
in the mid-1980s over whether GSM encryption should be strong or not. The Germans said it should be, as they shared a long border with the
978: 1446: 1304: 1328: 574:, or even GPRS that allow attackers to tap GSM mobile phone conversations and decrypt them either in real-time, or at any later time. 1877: 1517: 1591: 31: 671:
published several attacks on GSM encryption. The first is an active attack. GSM phones can be convinced to use the much weaker
1144: 1049: 1001: 961: 815: 99:. A register is clocked if its clocking bit (orange) agrees with the clocking bit of one or both of the other two registers. 1066: 1359: 903: 842: 2007: 1939: 1625: 1168: 1162:"Instant Ciphertext-Only Cryptanalysis of GSM Encrypted Communication by Barkan and Biham of Technion (Full Version)" 176: 1563: 324: 1579: 2401: 2225: 2156: 1934: 1924: 1539: 1493: 1202: 132: 2000: 1618: 874: 2341: 2296: 2099: 1279: 2220: 1908: 1767: 1476:
Maximov, Alexander; Thomas Johansson; Steve Babbage (2004). "An Improved Correlation Attack on A5/1".
1386: 694:
published the full version of their 2003 paper, with attacks against A5/X сiphers. The authors claim:
83:; but the other countries didn't feel this way, and the algorithm as now fielded is a French design." 2336: 579: 428: 416:
each step at least two or three registers are clocked, and each register steps with probability 3/4.
263: 1560:"Instant Ciphertext-Only Cryptanalysis of GSM Encrypted Communication (Technical Report CS-2006-07)" 2326: 2316: 2171: 1903: 1241: 712: 552: 635:
also published an attack on A5/1 with a total work complexity of 2 A5/1 clockings given 2 bits of
469: 2411: 2396: 2321: 2311: 2104: 2064: 2057: 2042: 2037: 1125:; Nathan Keller (2003). "Instant Ciphertext-Only Cryptanalysis of GSM Encrypted Communication". 2109: 2052: 1194: 1007: 769: 563: 1457: 2416: 2369: 2215: 2161: 1975: 1949: 1802: 1494:"A pedagogical implementation of the GSM A5/1 and A5/2 "voice privacy" encryption algorithms" 809: 765: 749: 409: 1320: 890: 2331: 2255: 1970: 704: 562:
assumption. In 2003, more serious weaknesses were identified which can be exploited in the
8: 2084: 1898: 1406: 886: 731: 38: 2200: 2184: 2126: 1965: 1595: 1219: 1106:
Barkan, Elad; Eli Biham (2005). "Conditional Estimators: An Effective Attack on A5/1".
773: 716: 116: 135:(LFSRs) with irregular clocking. The three shift registers are specified as follows: 2260: 2250: 2116: 1298: 1140: 1045: 997: 957: 555:
is able to routinely decrypt A5/1 messages according to released internal documents.
547:
The message on the screen of a mobile phone with the warning about lack of ciphering
419:
Initially, the registers are set to zero. Then for 64 cycles, the 64-bit secret key
2195: 2047: 1747: 1223: 1211: 1130: 1081: 1037: 989: 949: 878: 870: 596: 69: 1867: 1862: 1837: 1711: 1135: 1032:
Biham, Eli; Orr Dunkelman (2000). "Cryptanalysis of the A5/1 GSM Stream Cipher".
937: 676: 636: 616: 559: 1665: 1089: 2270: 2190: 2146: 2089: 2074: 1929: 1782: 1737: 780: 640: 1192: 463:
th key bit is added to the least significant bit of each register using XOR —
2390: 2351: 2306: 2265: 2245: 2136: 2094: 2069: 1882: 1842: 1822: 1812: 1777: 1641: 1402:"By cracking cellphone code, NSA has ability to decode private conversations" 1193:
Gueneysu, Tim; Timo Kasper; Martin Novotný; Christof Paar; Andy Rupp (2008).
993: 929: 757: 679:
time-memory tradeoff attack which requires a large amount of precomputation.
632: 620: 608: 23: 1085: 1041: 953: 941: 2301: 2141: 2131: 2121: 2079: 2023: 746: 735: 115:
with the 114 bits prior to modulation. A5/1 is initialised using a 64-bit
2280: 1817: 1675: 583: 80: 882: 2240: 2210: 2205: 2166: 1944: 1215: 933: 612: 543: 120: 34: 1129:. Lecture Notes in Computer Science. Vol. 2729. pp. 600–16. 988:. Lecture Notes in Computer Science. Vol. 1233. pp. 239–55. 916:"Sources: We were pressured to weaken the mobile security in the 80's" 2230: 1857: 1787: 1721: 1428: 1122: 1036:. Lecture Notes in Computer Science. Vol. 1977. pp. 43–51. 719:
against GSM eliminating the need of large precomputed lookup tables.
687: 656: 628: 567: 108: 41:. A number of serious weaknesses in the cipher have been identified. 1583: 1497: 1475: 1309:
Subverting the security base of GSM. Karsten Nohl and Sascha Krißler
948:. Lecture Notes in Computer Science. Vol. 1978. pp. 1–18. 2275: 2235: 1670: 1453: 707:
and Kiel started a research project to create a massively parallel
730:
A similar effort, the A5/1 Cracking Project, was announced at the
551:
A number of attacks on A5/1 have been published, and the American
128:
is then used in a stream cipher mode to maintain confidentiality.
91: 1716: 1690: 1534: 768:. More recently the project has announced a switch to faster ATI 587:
German spying, so the compromise became a key length of 54 bits.
27: 2151: 1807: 1772: 1742: 1706: 1491: 739: 76: 50: 1832: 1827: 928: 1852: 1492:
Briceno, Marc; Ian Goldberg; David Wagner (23 October 1999).
772:
code, together with a change in the format of the tables and
742: 1557: 1120: 72:
reported in 1994 that "there was a terrific row between the
1872: 1847: 1797: 1792: 1660: 804: 761: 708: 672: 571: 125: 96: 73: 58: 54: 1514:"Huge GSM flaw allows hackers to listen in on voice calls" 1680: 783:
in 2013 state that the NSA "can process encrypted A5/1".
776:
announced breaks of A5/1 using the ATI generated tables.
112: 1159: 738:
and Sascha Krißler. It created the look-up tables using
425:
is mixed in according to the following scheme: in cycle
786: 2177:
Cryptographically secure pseudorandom number generator
1064: 570:
and Nathan Keller demonstrated attacks against A5/1,
472: 431: 327: 266: 179: 1602: 1558:
Barkan, Elad; Eli Biham; Nathan Keller (July 2006).
1527:"Technion team cracks GSM cellular phone encryption" 1400:
Timberg, Craig; Soltani, Ashkan (13 December 2013).
639:. The attack requires 32 GB of data storage after a 1380: 1031: 904:NSA Able To Crack A5/1 Cellphone Crypto - Slashdot 520: 451: 385: 298: 237: 662: 566:, or by an active attacker. In 2006 Elad Barkan, 2388: 103:A GSM transmission is organised as sequences of 1447:"A precis of the new attacks on GSM encryption" 1352:"Hackers Show It's Easy to Snoop on a GSM Call" 1240:Nohl, Karsten; Chris Paget (27 December 2009). 1239: 1105: 1399: 2008: 1626: 869: 595:The first attack on the A5/1 was proposed by 238:{\displaystyle x^{19}+x^{18}+x^{17}+x^{14}+1} 1246:. 26th Chaos Communication Congress (26C3). 386:{\displaystyle x^{23}+x^{22}+x^{21}+x^{8}+1} 131:A5/1 is based around a combination of three 1318: 1235: 1233: 979:"Cryptanalysis of Alleged A5 Stream Cipher" 26:used to provide over-the-air communication 2015: 2001: 1633: 1619: 590: 1592:"Animated SVG showing A5/1 stream cypher" 1134: 1065:Ekdahl, Patrik; Thomas Johansson (2003). 942:"Real Time Cryptanalysis of A5/1 on a PC" 1230: 1160:Barkan, Elad; Eli Biham; Nathan Keller. 865: 863: 542: 90: 1321:"Cellphone Encryption Code Is Divulged" 1267: 1265: 1074:IEEE Transactions on Information Theory 2389: 1524: 1303:: CS1 maint: archived copy as title ( 1034:Progress in Cryptology —INDOCRYPT 2000 833: 1996: 1614: 976: 860: 816:Cellular Message Encryption Algorithm 582:. Audestad, Peter van der Arend, and 1444: 1349: 1262: 1127:Advances in Cryptology - CRYPTO 2003 787:Using A5/1 as pseudorandom generator 44: 2407:Mobile telecommunications standards 1478:Selected Areas in Cryptography 2004 1319:O'Brien, Kevin (28 December 2009). 1250:from the original on 6 January 2010 1108:Selected Areas in Cryptography 2005 13: 1640: 1525:Horesh, Hadar (3 September 2003). 1383:"Cracks beginning to show in A5/1" 1331:from the original on 29 April 2011 875:"A5 (Was: HACKING DIGITAL PHONES)" 732:2009 Black Hat security conference 95:The A5/1 stream cipher uses three 14: 2428: 1485: 1381:Frank A. Stevenson (1 May 2010). 946:Fast Software Encryption—FSE 2000 2365: 2364: 2022: 1516:. 25 August 2009. Archived from 1445:Rose, Greg (10 September 2003). 1421: 1393: 1374: 1343: 1312: 1195:"Cryptanalysis with COPACOBANA" 1186: 1153: 1114: 535:downlink, last 114 for uplink. 531:Each register is then clocked. 452:{\displaystyle 0\leq {i}<64} 299:{\displaystyle x^{22}+x^{21}+1} 133:linear-feedback shift registers 2226:Information-theoretic security 1203:IEEE Transactions on Computers 1099: 1058: 1025: 970: 922: 908: 897: 891:2ts9a0$ 95r@lyra.csx.cam.ac.uk 827: 764:nodes and then published over 663:Attacks on A5/1 as used in GSM 512: 506: 497: 491: 482: 476: 408:The bits are indexed with the 86: 1: 834:Quirke, Jeremy (1 May 2004). 821: 1925:block ciphers in stream mode 1136:10.1007/978-3-540-45146-4_35 836:"Security in the GSM system" 521:{\displaystyle R=R\oplus K.} 77:signal intelligence agencies 7: 2342:Message authentication code 2297:Cryptographic hash function 2100:Cryptographic hash function 841:. AusMobile. Archived from 798: 580:advent of quantum computing 538: 10: 2433: 2221:Harvest now, decrypt later 1909:alternating step generator 1580:"Nathan Keller's Homepage" 2360: 2337:Post-quantum cryptography 2289: 2030: 1992: 1958: 1917: 1891: 1760: 1730: 1699: 1689: 1648: 1610: 1606: 1456:Australia. Archived from 977:Golić, Jovan Dj. (1997). 2327:Quantum key distribution 2317:Authenticated encryption 2172:Random number generation 1904:self-shrinking generator 1438: 1067:"Another attack on A5/1" 994:10.1007/3-540-69053-0_17 713:Data Encryption Standard 619:showed that A5/1 can be 564:ciphertext-only scenario 553:National Security Agency 2322:Public-key cryptography 2312:Symmetric-key algorithm 2105:Key derivation function 2065:Cryptographic primitive 2058:Authentication protocol 2043:Outline of cryptography 2038:History of cryptography 1086:10.1109/TIT.2002.806129 1042:10.1007/3-540-44495-5_5 954:10.1007/3-540-44706-7_1 715:(DES). It also enables 591:Known-plaintext attacks 53:and the United States. 2110:Secure Hash Algorithms 2053:Cryptographic protocol 705:Universities of Bochum 701: 548: 522: 453: 387: 300: 239: 100: 2402:Broken stream ciphers 2216:End-to-end encryption 2162:Cryptojacking malware 1976:stream cipher attacks 750:distributed computing 696: 546: 523: 454: 410:least significant bit 388: 301: 240: 94: 2332:Quantum cryptography 2256:Trusted timestamping 1971:correlation immunity 1463:on 27 September 2011 812:, also known as A5/3 779:Documents leaked by 470: 429: 325: 264: 177: 68:Security researcher 2085:Cryptographic nonce 1899:shrinking generator 1649:Widely used ciphers 1566:on 27 December 2019 1520:on 14 October 2009. 1407:The Washington Post 722:In 2008, the group 717:brute force attacks 39:reverse engineering 2201:Subliminal channel 2185:Pseudorandom noise 2127:Key (cryptography) 1966:correlation attack 1362:on 20 January 2012 1350:McMillan, Robert. 1216:10.1109/TC.2008.80 1174:on 25 January 2020 774:Frank A. Stevenson 734:by cryptographers 724:The Hackers Choice 549: 518: 449: 383: 296: 235: 101: 35:cellular telephone 2382: 2381: 2378: 2377: 2261:Key-based routing 2251:Trapdoor function 2117:Digital signature 1988: 1987: 1984: 1983: 1756: 1755: 1598:on 26 March 2012. 1500:on 8 October 2018 1210:(11): 1498–1513. 1146:978-3-540-40674-7 1051:978-3-540-41452-0 1003:978-3-540-62975-7 963:978-3-540-41728-6 918:. 9 January 2014. 402: 401: 45:History and usage 2424: 2368: 2367: 2196:Insecure channel 2048:Classical cipher 2017: 2010: 2003: 1994: 1993: 1697: 1696: 1635: 1628: 1621: 1612: 1611: 1608: 1607: 1604: 1603: 1599: 1594:. Archived from 1587: 1582:. Archived from 1575: 1573: 1571: 1562:. Archived from 1554: 1552: 1550: 1544: 1538:. Archived from 1531: 1521: 1509: 1507: 1505: 1496:. Archived from 1481: 1472: 1470: 1468: 1462: 1451: 1433: 1432: 1425: 1419: 1418: 1416: 1414: 1397: 1391: 1390: 1389:on 6 March 2012. 1385:. Archived from 1378: 1372: 1371: 1369: 1367: 1358:. Archived from 1356:IDG News Service 1347: 1341: 1340: 1338: 1336: 1316: 1310: 1308: 1302: 1294: 1292: 1290: 1284: 1278:. Archived from 1277: 1269: 1260: 1259: 1257: 1255: 1237: 1228: 1227: 1199: 1190: 1184: 1183: 1181: 1179: 1173: 1167:. Archived from 1166: 1157: 1151: 1150: 1138: 1118: 1112: 1111: 1103: 1097: 1096: 1094: 1088:. Archived from 1071: 1062: 1056: 1055: 1029: 1023: 1022: 1020: 1018: 1012: 1006:. Archived from 983: 974: 968: 967: 926: 920: 919: 912: 906: 901: 895: 894: 873:(17 June 1994). 867: 858: 857: 855: 853: 847: 840: 831: 667:In 2003, Barkan 527: 525: 524: 519: 458: 456: 455: 450: 442: 392: 390: 389: 384: 376: 375: 363: 362: 350: 349: 337: 336: 305: 303: 302: 297: 289: 288: 276: 275: 244: 242: 241: 236: 228: 227: 215: 214: 202: 201: 189: 188: 138: 137: 49:A5/1 is used in 2432: 2431: 2427: 2426: 2425: 2423: 2422: 2421: 2387: 2386: 2383: 2374: 2356: 2285: 2026: 2021: 1980: 1954: 1913: 1887: 1752: 1726: 1685: 1644: 1639: 1590: 1586:on 4 June 2008. 1578: 1569: 1567: 1548: 1546: 1545:on 3 March 2016 1542: 1529: 1512: 1503: 1501: 1488: 1466: 1464: 1460: 1449: 1441: 1436: 1431:. January 2020. 1427: 1426: 1422: 1412: 1410: 1398: 1394: 1379: 1375: 1365: 1363: 1348: 1344: 1334: 1332: 1317: 1313: 1296: 1295: 1288: 1286: 1285:on 26 July 2011 1282: 1275: 1273:"Archived copy" 1271: 1270: 1263: 1253: 1251: 1238: 1231: 1197: 1191: 1187: 1177: 1175: 1171: 1164: 1158: 1154: 1147: 1119: 1115: 1104: 1100: 1095:on 25 May 2005. 1092: 1069: 1063: 1059: 1052: 1030: 1026: 1016: 1014: 1013:on 15 July 2010 1010: 1004: 981: 975: 971: 964: 927: 923: 914: 913: 909: 902: 898: 868: 861: 851: 849: 848:on 12 July 2004 845: 838: 832: 828: 824: 801: 789: 677:ciphertext-only 665: 637:known plaintext 627:The same year, 593: 560:known plaintext 541: 471: 468: 467: 438: 430: 427: 426: 371: 367: 358: 354: 345: 341: 332: 328: 326: 323: 322: 284: 280: 271: 267: 265: 262: 261: 250:13, 16, 17, 18 223: 219: 210: 206: 197: 193: 184: 180: 178: 175: 174: 162: 157: 152: 147: 142: 89: 47: 17: 12: 11: 5: 2430: 2420: 2419: 2414: 2412:3GPP standards 2409: 2404: 2399: 2397:Stream ciphers 2380: 2379: 2376: 2375: 2373: 2372: 2361: 2358: 2357: 2355: 2354: 2349: 2347:Random numbers 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2293: 2291: 2287: 2286: 2284: 2283: 2278: 2273: 2271:Garlic routing 2268: 2263: 2258: 2253: 2248: 2243: 2238: 2233: 2228: 2223: 2218: 2213: 2208: 2203: 2198: 2193: 2191:Secure channel 2188: 2182: 2181: 2180: 2169: 2164: 2159: 2154: 2149: 2147:Key stretching 2144: 2139: 2134: 2129: 2124: 2119: 2114: 2113: 2112: 2107: 2102: 2092: 2090:Cryptovirology 2087: 2082: 2077: 2075:Cryptocurrency 2072: 2067: 2062: 2061: 2060: 2050: 2045: 2040: 2034: 2032: 2028: 2027: 2020: 2019: 2012: 2005: 1997: 1990: 1989: 1986: 1985: 1982: 1981: 1979: 1978: 1973: 1968: 1962: 1960: 1956: 1955: 1953: 1952: 1947: 1942: 1937: 1932: 1930:shift register 1927: 1921: 1919: 1915: 1914: 1912: 1911: 1906: 1901: 1895: 1893: 1889: 1888: 1886: 1885: 1880: 1875: 1870: 1865: 1860: 1855: 1850: 1845: 1840: 1835: 1830: 1825: 1820: 1815: 1810: 1805: 1800: 1795: 1790: 1785: 1780: 1775: 1770: 1764: 1762: 1758: 1757: 1754: 1753: 1751: 1750: 1745: 1740: 1734: 1732: 1728: 1727: 1725: 1724: 1719: 1714: 1709: 1703: 1701: 1694: 1687: 1686: 1684: 1683: 1678: 1673: 1668: 1663: 1658: 1652: 1650: 1646: 1645: 1642:Stream ciphers 1638: 1637: 1630: 1623: 1615: 1601: 1600: 1588: 1576: 1555: 1522: 1510: 1487: 1486:External links 1484: 1483: 1482: 1473: 1440: 1437: 1435: 1434: 1420: 1392: 1373: 1342: 1325:New York Times 1311: 1261: 1229: 1185: 1152: 1145: 1121:Barkan, Elad; 1113: 1098: 1057: 1050: 1024: 1002: 986:Eurocrypt 1997 969: 962: 930:Biryukov, Alex 921: 907: 896: 859: 825: 823: 820: 819: 818: 813: 807: 800: 797: 788: 785: 781:Edward Snowden 758:rainbow tables 664: 661: 641:precomputation 592: 589: 540: 537: 529: 528: 517: 514: 511: 508: 505: 502: 499: 496: 493: 490: 487: 484: 481: 478: 475: 448: 445: 441: 437: 434: 400: 399: 398:7, 20, 21, 22 396: 393: 382: 379: 374: 370: 366: 361: 357: 353: 348: 344: 340: 335: 331: 320: 317: 313: 312: 309: 306: 295: 292: 287: 283: 279: 274: 270: 259: 256: 252: 251: 248: 245: 234: 231: 226: 222: 218: 213: 209: 205: 200: 196: 192: 187: 183: 172: 169: 165: 164: 159: 154: 149: 144: 88: 85: 46: 43: 15: 9: 6: 4: 3: 2: 2429: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2395: 2394: 2392: 2385: 2371: 2363: 2362: 2359: 2353: 2352:Steganography 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2307:Stream cipher 2305: 2303: 2300: 2298: 2295: 2294: 2292: 2288: 2282: 2279: 2277: 2274: 2272: 2269: 2267: 2266:Onion routing 2264: 2262: 2259: 2257: 2254: 2252: 2249: 2247: 2246:Shared secret 2244: 2242: 2239: 2237: 2234: 2232: 2229: 2227: 2224: 2222: 2219: 2217: 2214: 2212: 2209: 2207: 2204: 2202: 2199: 2197: 2194: 2192: 2189: 2186: 2183: 2178: 2175: 2174: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2137:Key generator 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2111: 2108: 2106: 2103: 2101: 2098: 2097: 2096: 2095:Hash function 2093: 2091: 2088: 2086: 2083: 2081: 2078: 2076: 2073: 2071: 2070:Cryptanalysis 2068: 2066: 2063: 2059: 2056: 2055: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2035: 2033: 2029: 2025: 2018: 2013: 2011: 2006: 2004: 1999: 1998: 1995: 1991: 1977: 1974: 1972: 1969: 1967: 1964: 1963: 1961: 1957: 1951: 1948: 1946: 1943: 1941: 1938: 1936: 1933: 1931: 1928: 1926: 1923: 1922: 1920: 1916: 1910: 1907: 1905: 1902: 1900: 1897: 1896: 1894: 1890: 1884: 1881: 1879: 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1859: 1856: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1794: 1791: 1789: 1786: 1784: 1781: 1779: 1776: 1774: 1771: 1769: 1766: 1765: 1763: 1761:Other ciphers 1759: 1749: 1746: 1744: 1741: 1739: 1736: 1735: 1733: 1729: 1723: 1720: 1718: 1715: 1713: 1710: 1708: 1705: 1704: 1702: 1698: 1695: 1692: 1688: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1664: 1662: 1659: 1657: 1654: 1653: 1651: 1647: 1643: 1636: 1631: 1629: 1624: 1622: 1617: 1616: 1613: 1609: 1605: 1597: 1593: 1589: 1585: 1581: 1577: 1565: 1561: 1556: 1541: 1537: 1536: 1528: 1523: 1519: 1515: 1511: 1499: 1495: 1490: 1489: 1479: 1474: 1459: 1455: 1448: 1443: 1442: 1430: 1424: 1409: 1408: 1403: 1396: 1388: 1384: 1377: 1361: 1357: 1353: 1346: 1330: 1326: 1322: 1315: 1306: 1300: 1281: 1274: 1268: 1266: 1249: 1245: 1244: 1236: 1234: 1225: 1221: 1217: 1213: 1209: 1205: 1204: 1196: 1189: 1170: 1163: 1156: 1148: 1142: 1137: 1132: 1128: 1124: 1117: 1109: 1102: 1091: 1087: 1083: 1080:(1): 284–89. 1079: 1075: 1068: 1061: 1053: 1047: 1043: 1039: 1035: 1028: 1009: 1005: 999: 995: 991: 987: 980: 973: 965: 959: 955: 951: 947: 943: 939: 935: 931: 925: 917: 911: 905: 900: 892: 888: 884: 880: 876: 872: 871:Ross Anderson 866: 864: 844: 837: 830: 826: 817: 814: 811: 808: 806: 803: 802: 796: 792: 784: 782: 777: 775: 771: 767: 763: 759: 754: 751: 748: 744: 741: 737: 733: 728: 725: 720: 718: 714: 710: 706: 700: 695: 693: 692:Nathan Keller 689: 685: 680: 678: 674: 670: 660: 658: 654: 650: 644: 642: 638: 634: 633:Orr Dunkelman 630: 625: 622: 621:cryptanalysed 618: 614: 610: 609:Alex Biryukov 605: 601: 598: 597:Ross Anderson 588: 585: 581: 575: 573: 569: 565: 561: 556: 554: 545: 536: 532: 515: 509: 503: 500: 494: 488: 485: 479: 473: 466: 465: 464: 462: 446: 443: 439: 435: 432: 424: 423: 417: 413: 411: 406: 397: 394: 380: 377: 372: 368: 364: 359: 355: 351: 346: 342: 338: 333: 329: 321: 318: 315: 314: 310: 307: 293: 290: 285: 281: 277: 272: 268: 260: 257: 254: 253: 249: 246: 232: 229: 224: 220: 216: 211: 207: 203: 198: 194: 190: 185: 181: 173: 170: 167: 166: 160: 155: 150: 145: 140: 139: 136: 134: 129: 127: 122: 118: 114: 110: 106: 98: 93: 84: 82: 78: 75: 71: 70:Ross Anderson 66: 64: 60: 56: 52: 42: 40: 36: 33: 29: 25: 24:stream cipher 21: 16:Stream cipher 2417:GSM standard 2384: 2302:Block cipher 2142:Key schedule 2132:Key exchange 2122:Kleptography 2080:Cryptosystem 2024:Cryptography 1655: 1596:the original 1584:the original 1570:15 September 1568:. Retrieved 1564:the original 1549:15 September 1547:. Retrieved 1540:the original 1533: 1518:the original 1502:. Retrieved 1498:the original 1477: 1465:. Retrieved 1458:the original 1423: 1413:28 September 1411:. Retrieved 1405: 1395: 1387:the original 1376: 1364:. Retrieved 1360:the original 1355: 1345: 1333:. Retrieved 1324: 1314: 1287:. Retrieved 1280:the original 1252:. Retrieved 1242: 1207: 1201: 1188: 1178:15 September 1176:. Retrieved 1169:the original 1155: 1126: 1116: 1107: 1101: 1090:the original 1077: 1073: 1060: 1033: 1027: 1015:. Retrieved 1008:the original 985: 972: 945: 938:David Wagner 924: 910: 899: 850:. Retrieved 843:the original 829: 793: 790: 778: 755: 747:peer-to-peer 736:Karsten Nohl 729: 721: 702: 697: 681: 668: 666: 648: 645: 643:stage of 2. 626: 617:David Wagner 606: 602: 594: 576: 557: 550: 533: 530: 460: 421: 420: 418: 414: 412:(LSB) as 0. 407: 403: 130: 104: 102: 67: 63:Marc Briceno 48: 19: 18: 2290:Mathematics 2281:Mix network 1366:29 December 1335:29 December 1289:29 December 1254:30 December 1243:GSM: SRSLY? 852:8 September 684:Elad Barkan 653:Elad Barkan 584:Thomas Haug 153:polynomial 87:Description 81:Warsaw Pact 2391:Categories 2241:Ciphertext 2211:Decryption 2206:Encryption 2167:Ransomware 1945:T-function 1892:Generators 1768:Achterbahn 1504:23 January 1467:17 October 1017:13 January 934:Adi Shamir 883:uk.telecom 822:References 766:BitTorrent 613:Adi Shamir 578:until the 146:Length in 121:key length 2231:Plaintext 1858:SOBER-128 1788:KCipher-2 1722:SOSEMANUK 1693:Portfolio 1123:Eli Biham 879:Newsgroup 770:Evergreen 688:Eli Biham 682:In 2006, 659:in 2005. 657:Eli Biham 629:Eli Biham 607:In 2000, 568:Eli Biham 501:⊕ 436:≤ 156:Clocking 111:which is 109:keystream 2370:Category 2276:Kademlia 2236:Codetext 2179:(CSPRNG) 2157:Machines 1731:Hardware 1700:Software 1671:Crypto-1 1454:QUALCOMM 1429:"A51-en" 1329:Archived 1299:cite web 1248:Archived 940:(2001). 799:See also 703:In 2007 539:Security 151:Feedback 2031:General 1959:Attacks 1748:Trivium 1717:Salsa20 1691:eSTREAM 1535:Haaretz 1480:: 1–18. 1224:8754598 1110:: 1–19. 887:Usenet: 881::  311:20, 21 161:Tapped 143:number 30:in the 28:privacy 2152:Keygen 1918:Theory 1868:Turing 1863:Spritz 1838:Scream 1808:Phelix 1803:Panama 1773:F-FCSR 1743:MICKEY 1712:Rabbit 1707:HC-128 1666:ChaCha 1222:  1143:  1048:  1000:  960:  889:  810:KASUMI 745:via a 743:GPGPUs 740:Nvidia 669:et al. 649:et al. 459:, the 105:bursts 51:Europe 2187:(PRN) 1940:NLFSR 1853:SOBER 1783:ISAAC 1738:Grain 1543:(PDF) 1530:(PDF) 1461:(PDF) 1450:(PDF) 1439:Notes 1283:(PDF) 1276:(PDF) 1220:S2CID 1198:(PDF) 1172:(PDF) 1165:(PDF) 1093:(PDF) 1070:(PDF) 1011:(PDF) 982:(PDF) 846:(PDF) 839:(PDF) 163:bits 148:bits 113:XORed 97:LFSRs 22:is a 1935:LFSR 1883:WAKE 1878:VMPC 1873:VEST 1848:SNOW 1843:SEAL 1833:RC4A 1828:RC4+ 1823:QUAD 1813:Pike 1798:ORYX 1793:MUGI 1778:FISH 1661:A5/2 1656:A5/1 1572:2019 1551:2019 1506:2017 1469:2004 1415:2016 1368:2009 1337:2009 1305:link 1291:2009 1256:2009 1180:2019 1141:ISBN 1046:ISBN 1019:2016 998:ISBN 958:ISBN 854:2008 805:A5/2 762:CUDA 709:FPGA 673:A5/2 655:and 631:and 615:and 572:A5/3 444:< 158:bit 141:LFSR 126:A5/3 74:NATO 59:A5/2 55:A5/2 20:A5/1 1681:RC4 1212:doi 1131:doi 1082:doi 1038:doi 990:doi 950:doi 117:key 32:GSM 2393:: 1950:IV 1818:Py 1676:E0 1532:. 1452:. 1404:. 1354:. 1327:. 1323:. 1301:}} 1297:{{ 1264:^ 1232:^ 1218:. 1208:57 1206:. 1200:. 1139:. 1078:49 1076:. 1072:. 1044:. 996:. 984:. 956:. 944:. 936:; 932:; 885:. 877:. 862:^ 690:, 686:, 611:, 447:64 395:10 360:21 347:22 334:23 319:23 308:10 286:21 273:22 258:22 225:14 212:17 199:18 186:19 171:19 2016:e 2009:t 2002:v 1634:e 1627:t 1620:v 1574:. 1553:. 1508:. 1471:. 1417:. 1370:. 1339:. 1307:) 1293:. 1258:. 1226:. 1214:: 1182:. 1149:. 1133:: 1084:: 1054:. 1040:: 1021:. 992:: 966:. 952:: 893:. 856:. 516:. 513:] 510:i 507:[ 504:K 498:] 495:0 492:[ 489:R 486:= 483:] 480:0 477:[ 474:R 461:i 440:i 433:0 422:K 381:1 378:+ 373:8 369:x 365:+ 356:x 352:+ 343:x 339:+ 330:x 316:3 294:1 291:+ 282:x 278:+ 269:x 255:2 247:8 233:1 230:+ 221:x 217:+ 208:x 204:+ 195:x 191:+ 182:x 168:1

Index

stream cipher
privacy
GSM
cellular telephone
reverse engineering
Europe
A5/2
A5/2
Marc Briceno
Ross Anderson
NATO
signal intelligence agencies
Warsaw Pact

LFSRs
keystream
XORed
key
key length
A5/3
linear-feedback shift registers
least significant bit

National Security Agency
known plaintext
ciphertext-only scenario
Eli Biham
A5/3
advent of quantum computing
Thomas Haug

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.