Knowledge

Alexander polynomial

Source 📝

4904: 3075: 4916: 3504:
of knot Floer homology is the Alexander polynomial. While the Alexander polynomial gives a lower bound on the genus of a knot, showed that knot Floer homology detects the genus. Similarly, while the Alexander polynomial gives an obstruction to a knot complement fibering over the circle, showed that
666:
Consider the entry corresponding to a particular region and crossing. If the region is not adjacent to the crossing, the entry is 0. If the region is adjacent to the crossing, the entry depends on its location. The following table gives the entry, determined by the location of the region at the
2629: 1177: 3479: 2886: 3202: 2969:
later rediscovered this in a different form and showed that the skein relation together with a choice of value on the unknot was enough to determine the polynomial. Conway's version is a polynomial in
3286: 2772: 2219: 1058: 2708: 2487: 1979:
Kauffman describes the first construction of the Alexander polynomial via state sums derived from physical models. A survey of these topic and other connections with physics are given in.
2394: 2278: 1928: 3505:
knot Floer homology completely determines when a knot complement fibers over the circle. The knot Floer homology groups are part of the Heegaard Floer homology family of invariants; see
946: 444:. It turns out that the Alexander polynomial of a knot is the same polynomial for the mirror image knot. In other words, it cannot distinguish between a knot and its mirror image. 2955: 1583: 1377: 2079: 2001:
Knots with symmetries are known to have restricted Alexander polynomials. Nonetheless, the Alexander polynomial can fail to detect some symmetries, such as strong invertibility.
3069: 2657: 1837: 1753: 1717: 1681: 982: 442: 3117: 2434: 1424: 1338: 1291: 1244: 246: 3351: 3313: 661: 3500:
Using pseudo-holomorphic curves, Ozsváth-Szabó and Rasmussen associated a bigraded abelian group, called knot Floer homology, to each isotopy class of knots. The graded
3001: 59:
in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial.
820: 790: 399: 331: 2138: 192: 152: 2512: 2335: 545: 1783: 1534: 1484: 1454: 365: 2106: 2033: 1589:
From the point of view of the definition, this is an expression of the fact that the knot complement is a homology circle, generated by the covering transformation
1957: 611: 503: 883: 761: 692: 408:
Alexander proved that the Alexander ideal is nonzero and always principal. Thus an Alexander polynomial always exists, and is clearly a knot invariant, denoted
2906: 2306: 1627: 1607: 1504: 1197: 860: 840: 736: 714: 585: 565: 477: 305: 285: 260: 2517: 1982:
There are other relations with surfaces and smooth 4-dimensional topology. For example, under certain assumptions, there is a way of modifying a smooth
1070: 3071:
are link diagrams resulting from crossing and smoothing changes on a local region of a specified crossing of the diagram, as indicated in the figure.
3764: 3356: 2780: 3525:
Alexander describes his skein relation toward the end of his paper under the heading "miscellaneous theorems", which is possibly why it got lost.
371:, take a generator; this is called an Alexander polynomial of the knot. Since this is only unique up to multiplication by the Laurent monomial 3600:, Theorem 11.5.3, p. 150. Kawauchi credits this result to Kondo, H. (1979), "Knots of unknotting number 1 and their Alexander polynomials", 3756: 3124: 3210: 1789:
Every integral Laurent polynomial which is both symmetric and evaluates to a unit at 1 is the Alexander polynomial of a knot.
4281: 4207: 4000: 3979: 3957: 3933: 3741: 842:
is not necessarily the number of crossings in the knot. To resolve this ambiguity, divide out the largest possible power of
4849: 2713: 401:, one often fixes a particular unique form. Alexander's choice of normalization is to make the polynomial have a positive 2147: 1990:
that consists of removing a neighborhood of a two-dimensional torus and replacing it with a knot complement crossed with
995: 4768: 4124: 4062: 2439: 1976:; i.e., bounds a "locally-flat" topological disc in the 4-ball, if the Alexander polynomial of the knot is trivial. 103:
and gluing together infinitely many copies of the resulting manifold with boundary in a cyclic manner. There is a
2340: 2224: 1860: 4315: 2662: 902: 4007:(covers several different approaches, explains relations between different versions of the Alexander polynomial) 766:
Remove two columns corresponding to adjacent regions from the matrix, and work out the determinant of the new
4763: 4758: 4634: 4235: 4920: 4335: 4214:(explains classical approach using the Alexander invariant; knot and link table with Alexander polynomials) 1995: 4225: 2915: 1543: 1343: 452:
The following procedure for computing the Alexander polynomial was given by J. W. Alexander in his paper.
4957: 4397: 4230: 3917: 3729: 2038: 3752: 3021: 2634: 36: 1800: 4947: 4467: 4462: 4403: 4274: 1722: 1686: 1632: 951: 411: 4962: 3830: 3087: 1382: 1296: 1249: 1202: 204: 4595: 4071: 3318: 3291: 616: 2977: 4809: 4778: 795: 769: 374: 310: 3529:
mentions in her paper that Mark Kidwell brought her attention to Alexander's relation in 1970.
2111: 161: 121: 4639: 4129: 2399: 512: 1758: 1509: 1459: 1429: 505:
regions of the knot diagram. To work out the Alexander polynomial, first one must create an
344: 4952: 4942: 4908: 4267: 4183: 4090: 4030: 3877: 3849: 3501: 2084: 2015: 195: 1933: 948:, and introduced non-commutative differential calculus, which also permits one to compute 885:
if necessary, so that the constant term is positive. This gives the Alexander polynomial.
8: 4716: 4699: 3913: 1973: 1854: 1847: 590: 482: 104: 4187: 4094: 4034: 3853: 3604:
16: 551-559, and to Sakai, T. (1977), "A remark on the Alexander polynomials of knots",
3538:
Detailed exposition of this approach about higher Alexander polynomials can be found in
2492: 2315: 1065: 865: 743: 674: 4737: 4684: 4298: 4294: 4173: 4156: 4138: 4108: 4080: 4046: 4020: 3922: 3881: 3839: 3783: 2966: 2891: 2291: 1612: 1592: 1489: 1182: 845: 825: 792:
matrix. Depending on the columns removed, the answer will differ by multiplication by
721: 699: 570: 550: 462: 290: 270: 199: 72: 44: 3778: 4834: 4783: 4733: 4689: 4649: 4644: 4562: 4247: 4203: 4050: 3996: 3975: 3953: 3929: 3901: 3865: 3737: 4160: 4112: 4869: 4694: 4590: 4325: 4148: 4098: 4038: 3885: 3857: 3821: 3773: 2624:{\displaystyle \Delta _{K}(t)=\Delta _{f(S^{1}\times \{0\})}(t^{a})\Delta _{K'}(t)} 1969: 506: 56: 4120: 4058: 1172:{\displaystyle {\overline {H_{1}X}}\simeq \mathrm {Hom} _{\mathbb {Z} }(H_{1}X,G)} 4829: 4793: 4728: 4674: 4629: 4622: 4512: 4424: 4307: 3990: 3947: 3873: 3825: 2008:
fibers over the circle, then the Alexander polynomial of the knot is known to be
2005: 1994:. The result is a smooth 4-manifold homeomorphic to the original, though now the 1963: 368: 96: 88: 40: 4259: 1719:
defined as the order ideal of its infinite-cyclic covering space. In this case
4889: 4788: 4750: 4669: 4582: 4457: 4449: 4409: 4252: 3967: 3943: 3506: 2909: 2309: 1998:
has been modified by multiplication with the Alexander polynomial of the knot.
1987: 1839: 889: 84: 52: 28: 4103: 4066: 4042: 3474:{\displaystyle \Delta (L_{+})-\Delta (L_{-})=(t^{1/2}-t^{-1/2})\Delta (L_{0})} 2881:{\displaystyle \Delta _{K_{1}\#K_{2}}(t)=\Delta _{K_{1}}(t)\Delta _{K_{2}}(t)} 4936: 4824: 4612: 4605: 4600: 3869: 3734:
The Knot Book: An elementary introduction to the mathematical theory of knots
1843: 402: 334: 4256:. – knot and link tables with computed Alexander and Conway polynomials 3905: 4839: 4819: 4723: 4706: 4502: 4439: 4195: 3928:. Princeton Mathematical Series. Vol. 39. Princeton University Press. 4152: 3861: 4854: 4617: 4522: 4391: 4371: 4361: 4353: 4345: 4290: 3526: 3489: 20: 95:. This covering can be obtained by cutting the knot complement along a 55:, although its significance was not realized until the discovery of the 4874: 4859: 4814: 4711: 4664: 4659: 4654: 4484: 4381: 3787: 2965:
Alexander proved the Alexander polynomial satisfies a skein relation.
1983: 1064:
From the point of view of the definition, this is an expression of the
32: 3844: 4879: 4547: 4178: 4143: 4085: 4025: 3893: 3809: 2141: 2012:(the coefficients of the highest and lowest order terms are equal to 896: 613:
columns to the regions. The values for the matrix entries are either
3659: 4864: 4474: 456: 76: 3207:
The relationship to the standard Alexander polynomial is given by
1857:
knot, the Alexander polynomial satisfies the Fox–Milnor condition
667:
crossing from the perspective of the incoming undercrossing line.
3896:(1961). "A quick trip through knot theory". In Fort, M.K. (ed.). 3074: 1540:
Furthermore, the Alexander polynomial evaluates to a unit on 1:
4884: 4532: 4492: 4243: 3492:
for an example computing the Conway polynomial of the trefoil.
1755:
is, up to sign, equal to the order of the torsion subgroup of
114:. Consider the first homology (with integer coefficients) of 4773: 3748:(accessible introduction utilizing a skein relation approach) 3197:{\displaystyle \nabla (L_{+})-\nabla (L_{-})=z\nabla (L_{0})} 3900:. Englewood Cliffs. N. J.: Prentice-Hall. pp. 120–167. 1966:
is bounded below by the degree of the Alexander polynomial.
4844: 4011:
Ni, Yi (2007). "Knot Floer homology detects fibred knots".
3898:
Proceedings of the University of Georgia Topology Institute
1792: 3795:
Birman, Joan (1993). "New points of view in knot theory".
3647: 341:
and does not depend on choice of presentation matrix. If
3695: 3481:. Note that this relation gives a Laurent polynomial in 3671: 3611: 3281:{\displaystyle \Delta _{L}(t^{2})=\nabla _{L}(t-t^{-1})} 888:
The Alexander polynomial can also be computed from the
367:, set the ideal equal to 0. If the Alexander ideal is 929: 3974:(4th ed.). World Scientific Publishing Company. 3683: 3359: 3321: 3294: 3213: 3127: 3090: 3024: 3018:
Suppose we are given an oriented link diagram, where
2980: 2918: 2894: 2783: 2767:{\displaystyle H_{1}(S^{1}\times D^{2})=\mathbb {Z} } 2716: 2665: 2637: 2520: 2495: 2442: 2402: 2343: 2318: 2294: 2227: 2150: 2114: 2087: 2041: 2018: 1936: 1863: 1803: 1761: 1725: 1689: 1635: 1615: 1595: 1546: 1512: 1492: 1462: 1432: 1385: 1346: 1299: 1252: 1205: 1185: 1073: 998: 987: 954: 905: 868: 848: 828: 798: 772: 746: 724: 702: 677: 619: 593: 573: 553: 515: 485: 465: 414: 377: 347: 313: 293: 273: 207: 164: 124: 3567: 2283: 2214:{\displaystyle \Delta _{K}(t)={\rm {Det}}(tI-g_{*})} 287:, is less than or equal to the number of relations, 47:
showed a version of this polynomial, now called the
3635: 3623: 3921: 3473: 3345: 3315:must be properly normalized (by multiplication of 3307: 3280: 3196: 3111: 3063: 2995: 2949: 2900: 2880: 2766: 2702: 2651: 2623: 2506: 2481: 2428: 2388: 2329: 2300: 2272: 2213: 2132: 2100: 2073: 2027: 1951: 1922: 1831: 1777: 1747: 1711: 1675: 1621: 1601: 1577: 1528: 1498: 1478: 1448: 1418: 1371: 1332: 1285: 1238: 1191: 1171: 1053:{\displaystyle \Delta _{K}(t^{-1})=\Delta _{K}(t)} 1052: 976: 940: 877: 854: 834: 814: 784: 755: 730: 708: 686: 655: 605: 579: 559: 539: 497: 471: 436: 393: 359: 325: 299: 279: 240: 186: 146: 4289: 3828:(October 1998). "Knots, links, and 4-manifolds". 3765:Transactions of the American Mathematical Society 3555: 4934: 4127:(2004b). "Holomorphic disks and genus bounds". 3820: 3707: 3653: 3579: 2960: 2482:{\displaystyle S^{1}\times D^{2}\subset S^{3}} 899:considered a copresentation of the knot group 307:, then we consider the ideal generated by all 35:with integer coefficients to each knot type. 4275: 4119: 3912: 3701: 3617: 3495: 1842:the commutator subgroup of the knot group is 1199:is the quotient of the field of fractions of 4172:(Thesis). Harvard University. p. 6378. 4057: 3677: 2573: 2567: 2389:{\displaystyle f:S^{1}\times D^{2}\to S^{3}} 2273:{\displaystyle g_{*}\colon H_{1}S\to H_{1}S} 1923:{\displaystyle \Delta _{K}(t)=f(t)f(t^{-1})} 158:acts on the homology and so we can consider 3757:"Topological Invariants of Knots and Links" 2703:{\displaystyle K'\subset S^{1}\times D^{2}} 1959:is some other integral Laurent polynomial. 1456:ie: as an abelian group it is identical to 941:{\displaystyle \pi _{1}(S^{3}\backslash K)} 447: 4282: 4268: 3816:. Ginn and Co. after 1977 Springer Verlag. 3807: 3539: 4177: 4167: 4142: 4102: 4084: 4024: 3843: 3777: 3751: 3689: 3573: 2760: 2645: 1387: 1301: 1254: 1207: 1113: 333:minors of the matrix; this is the zeroth 209: 3988: 3966: 3942: 3665: 3641: 3629: 3597: 1797:Since the Alexander ideal is principal, 1793:Geometric significance of the polynomial 4194: 4067:"Holomorphic disks and knot invariants" 2489:is an unknotted solid torus containing 992:The Alexander polynomial is symmetric: 4935: 3794: 3561: 3119:(where O is any diagram of the unknot) 1972:proved that a knot in the 3-sphere is 259:The module is finitely presentable; a 4263: 3728: 4915: 2950:{\displaystyle \Delta _{K}(t)=\pm 1} 1578:{\displaystyle \Delta _{K}(1)=\pm 1} 1372:{\displaystyle {\overline {H_{1}X}}} 4202:(2nd ed.). Publish or Perish. 4170:Floer homology and knot complements 3892: 3585: 3081:Here are Conway's skein relations: 2974:with integer coefficients, denoted 2074:{\displaystyle S\to C_{K}\to S^{1}} 895:After the work of J. W. Alexander, 696:on the right before undercrossing: 13: 4010: 3713: 3452: 3382: 3360: 3296: 3244: 3215: 3175: 3150: 3128: 3091: 3073: 2981: 2920: 2853: 2827: 2799: 2785: 2598: 2544: 2522: 2181: 2178: 2175: 2152: 1865: 1805: 1727: 1691: 1548: 1107: 1104: 1101: 1032: 1000: 988:Basic properties of the polynomial 956: 740:on the right after undercrossing: 671:on the left before undercrossing: 416: 14: 4974: 4218: 3779:10.1090/S0002-9947-1928-1501429-1 3736:. American Mathematical Society. 3064:{\displaystyle L_{+},L_{-},L_{0}} 2652:{\displaystyle a\in \mathbb {Z} } 2284:Relations to satellite operations 718:on the left after undercrossing: 4914: 4903: 4902: 3353:) to satisfy the skein relation 2280:is the induced map on homology. 1832:{\displaystyle \Delta _{K}(t)=1} 1486:but the covering transformation 267:. If the number of generators, 4248:The Alexander-Conway Polynomial 2659:is the integer that represents 1683:it has an Alexander polynomial 4769:Dowker–Thistlethwaite notation 3591: 3532: 3519: 3468: 3455: 3449: 3404: 3398: 3385: 3376: 3363: 3275: 3253: 3237: 3224: 3191: 3178: 3166: 3153: 3144: 3131: 3100: 3094: 2990: 2984: 2935: 2929: 2875: 2869: 2849: 2843: 2820: 2814: 2753: 2727: 2618: 2612: 2594: 2581: 2576: 2551: 2537: 2531: 2423: 2412: 2373: 2254: 2208: 2186: 2167: 2161: 2124: 2058: 2045: 1946: 1940: 1917: 1901: 1895: 1889: 1880: 1874: 1820: 1814: 1748:{\displaystyle \Delta _{M}(1)} 1742: 1736: 1712:{\displaystyle \Delta _{M}(t)} 1706: 1700: 1676:{\displaystyle rank(H_{1}M)=1} 1664: 1648: 1563: 1557: 1413: 1391: 1327: 1305: 1280: 1258: 1233: 1211: 1166: 1144: 1139: 1117: 1047: 1041: 1025: 1009: 977:{\displaystyle \Delta _{K}(t)} 971: 965: 935: 916: 534: 516: 437:{\displaystyle \Delta _{K}(t)} 431: 425: 263:for this module is called the 235: 213: 181: 175: 141: 135: 1: 3549: 62: 3112:{\displaystyle \nabla (O)=1} 2777:Examples: For a connect-sum 2108:is the knot complement, let 1419:{\displaystyle \mathbb {Z} } 1364: 1333:{\displaystyle \mathbb {Z} } 1286:{\displaystyle \mathbb {Z} } 1239:{\displaystyle \mathbb {Z} } 1091: 1066:Poincaré Duality isomorphism 241:{\displaystyle \mathbb {Z} } 51:, could be computed using a 7: 4231:Encyclopedia of Mathematics 3814:Introduction to Knot Theory 3606:Math. Sem. Notes Kobe Univ. 3346:{\displaystyle \pm t^{n/2}} 3308:{\displaystyle \Delta _{L}} 3013:Conway–Alexander polynomial 3005:Alexander–Conway polynomial 2961:Alexander–Conway polynomial 2337:(there exists an embedding 656:{\displaystyle 0,1,-1,t,-t} 49:Alexander–Conway polynomial 39:discovered this, the first 10: 4979: 3722: 3654:Fintushel & Stern 1998 3496:Relation to Floer homology 2996:{\displaystyle \nabla (z)} 1629:is a 3-manifold such that 459:diagram of the knot with 37:James Waddell Alexander II 4898: 4802: 4759:Alexander–Briggs notation 4746: 4581: 4483: 4448: 4306: 4168:Rasmussen, Jacob (2003). 4104:10.1016/j.aim.2003.05.001 4043:10.1007/s00222-007-0075-9 3702:Ozsváth & Szabó 2004b 3618:Freedman & Quinn 1990 815:{\displaystyle \pm t^{n}} 785:{\displaystyle n\times n} 394:{\displaystyle \pm t^{n}} 326:{\displaystyle r\times r} 4013:Inventiones Mathematicae 3989:Kawauchi, Akio (2012) . 3831:Inventiones Mathematicae 3678:Ozsváth & Szabó 2004 3540:Crowell & Fox (1963) 3512: 3509:for further discussion. 2133:{\displaystyle g:S\to S} 2081:is a fiber bundle where 1996:Seiberg–Witten invariant 448:Computing the polynomial 187:{\displaystyle H_{1}(X)} 147:{\displaystyle H_{1}(X)} 4850:List of knots and links 4398:Kinoshita–Terasaka knot 4072:Advances in Mathematics 3992:A Survey of Knot Theory 3924:Topology of 4-manifolds 2429:{\displaystyle K=f(K')} 1846:(i.e. equal to its own 567:rows correspond to the 540:{\displaystyle (n,n+2)} 105:covering transformation 4226:"Alexander invariants" 3475: 3347: 3309: 3282: 3198: 3113: 3078: 3065: 2997: 2951: 2902: 2882: 2768: 2704: 2653: 2625: 2508: 2483: 2430: 2390: 2331: 2302: 2274: 2215: 2134: 2102: 2075: 2029: 1953: 1924: 1833: 1779: 1778:{\displaystyle H_{1}M} 1749: 1713: 1677: 1623: 1603: 1579: 1530: 1529:{\displaystyle t^{-1}} 1500: 1480: 1479:{\displaystyle H_{1}X} 1450: 1449:{\displaystyle H_{1}X} 1420: 1373: 1334: 1287: 1240: 1193: 1173: 1054: 978: 942: 879: 856: 836: 816: 786: 757: 732: 710: 688: 657: 607: 581: 561: 541: 499: 473: 438: 395: 361: 360:{\displaystyle r>s} 327: 301: 281: 248:. This is called the 242: 188: 154:. The transformation 148: 4640:Finite type invariant 4153:10.2140/gt.2004.8.311 4130:Geometry and Topology 3862:10.1007/s002220050268 3797:Bull. Amer. Math. Soc 3476: 3348: 3310: 3283: 3199: 3114: 3077: 3066: 2998: 2952: 2903: 2883: 2769: 2705: 2654: 2626: 2509: 2484: 2431: 2391: 2332: 2303: 2275: 2216: 2135: 2103: 2101:{\displaystyle C_{K}} 2076: 2030: 2028:{\displaystyle \pm 1} 1954: 1925: 1834: 1780: 1750: 1714: 1678: 1624: 1609:. More generally if 1604: 1580: 1531: 1501: 1481: 1451: 1421: 1374: 1335: 1288: 1241: 1194: 1174: 1055: 979: 943: 880: 857: 837: 822:, where the power of 817: 787: 758: 733: 711: 689: 658: 608: 582: 562: 542: 500: 479:crossings; there are 474: 439: 396: 362: 328: 302: 282: 243: 189: 149: 43:, in 1923. In 1969, 3914:Freedman, Michael H. 3502:Euler characteristic 3357: 3319: 3292: 3211: 3125: 3088: 3022: 2978: 2916: 2892: 2781: 2714: 2663: 2635: 2518: 2493: 2440: 2400: 2341: 2316: 2292: 2225: 2148: 2112: 2085: 2039: 2016: 1952:{\displaystyle f(t)} 1934: 1861: 1801: 1759: 1723: 1687: 1633: 1613: 1593: 1544: 1510: 1490: 1460: 1430: 1383: 1344: 1297: 1250: 1203: 1183: 1071: 996: 952: 903: 866: 846: 826: 796: 770: 744: 722: 700: 675: 617: 591: 571: 551: 513: 483: 463: 412: 375: 345: 311: 291: 271: 205: 162: 122: 25:Alexander polynomial 4810:Alexander's theorem 4188:2003math......6378R 4095:2002math......9056O 4035:2007InMat.170..577N 3854:1998InMat.134..363F 3668:, symmetry section. 1974:topologically slice 1855:topologically slice 1848:commutator subgroup 1340:-module, and where 606:{\displaystyle n+2} 587:crossings, and the 498:{\displaystyle n+2} 261:presentation matrix 250:Alexander invariant 200:Laurent polynomials 4958:John Horton Conway 3949:Formal Knot Theory 3808:Crowell, Richard; 3471: 3343: 3305: 3278: 3194: 3109: 3079: 3061: 2993: 2947: 2898: 2878: 2764: 2700: 2649: 2621: 2507:{\displaystyle K'} 2504: 2479: 2426: 2386: 2330:{\displaystyle K'} 2327: 2312:with pattern knot 2298: 2270: 2211: 2130: 2098: 2071: 2025: 1949: 1920: 1829: 1775: 1745: 1709: 1673: 1619: 1599: 1575: 1526: 1496: 1476: 1446: 1416: 1369: 1330: 1293:, considered as a 1283: 1236: 1189: 1169: 1050: 974: 938: 878:{\displaystyle -1} 875: 852: 832: 812: 782: 756:{\displaystyle -1} 753: 728: 706: 687:{\displaystyle -t} 684: 653: 603: 577: 557: 537: 495: 469: 434: 391: 357: 323: 297: 277: 238: 184: 144: 4930: 4929: 4784:Reidemeister move 4650:Khovanov homology 4645:Hyperbolic volume 4209:978-0-914098-16-4 4137:(2004): 311–334. 4002:978-3-0348-9227-8 3981:978-981-4383-00-4 3972:Knots and Physics 3959:978-0-486-45052-0 3935:978-0-691-08577-7 3822:Fintushel, Ronald 3743:978-0-8218-3678-1 3009:Conway polynomial 2901:{\displaystyle K} 2301:{\displaystyle K} 1622:{\displaystyle M} 1602:{\displaystyle t} 1499:{\displaystyle t} 1379:is the conjugate 1367: 1192:{\displaystyle G} 1094: 1060:for all knots K. 855:{\displaystyle t} 835:{\displaystyle n} 731:{\displaystyle t} 709:{\displaystyle 1} 580:{\displaystyle n} 560:{\displaystyle n} 472:{\displaystyle n} 300:{\displaystyle s} 280:{\displaystyle r} 198:over the ring of 4970: 4948:Diagram algebras 4918: 4917: 4906: 4905: 4870:Tait conjectures 4573: 4572: 4558: 4557: 4543: 4542: 4435: 4434: 4420: 4419: 4404:(−2,3,7) pretzel 4284: 4277: 4270: 4261: 4260: 4239: 4213: 4191: 4181: 4164: 4146: 4116: 4106: 4088: 4054: 4028: 4015:. Invent. Math. 4006: 3985: 3963: 3939: 3927: 3909: 3889: 3847: 3826:Stern, Ronald J. 3817: 3804: 3791: 3781: 3761: 3753:Alexander, J. W. 3747: 3717: 3711: 3705: 3699: 3693: 3687: 3681: 3675: 3669: 3663: 3657: 3651: 3645: 3639: 3633: 3627: 3621: 3615: 3609: 3595: 3589: 3583: 3577: 3571: 3565: 3559: 3543: 3536: 3530: 3523: 3480: 3478: 3477: 3472: 3467: 3466: 3448: 3447: 3443: 3424: 3423: 3419: 3397: 3396: 3375: 3374: 3352: 3350: 3349: 3344: 3342: 3341: 3337: 3314: 3312: 3311: 3306: 3304: 3303: 3287: 3285: 3284: 3279: 3274: 3273: 3252: 3251: 3236: 3235: 3223: 3222: 3203: 3201: 3200: 3195: 3190: 3189: 3165: 3164: 3143: 3142: 3118: 3116: 3115: 3110: 3070: 3068: 3067: 3062: 3060: 3059: 3047: 3046: 3034: 3033: 3002: 3000: 2999: 2994: 2956: 2954: 2953: 2948: 2928: 2927: 2910:Whitehead double 2908:is an untwisted 2907: 2905: 2904: 2899: 2887: 2885: 2884: 2879: 2868: 2867: 2866: 2865: 2842: 2841: 2840: 2839: 2813: 2812: 2811: 2810: 2798: 2797: 2773: 2771: 2770: 2765: 2763: 2752: 2751: 2739: 2738: 2726: 2725: 2709: 2707: 2706: 2701: 2699: 2698: 2686: 2685: 2673: 2658: 2656: 2655: 2650: 2648: 2630: 2628: 2627: 2622: 2611: 2610: 2609: 2593: 2592: 2580: 2579: 2563: 2562: 2530: 2529: 2513: 2511: 2510: 2505: 2503: 2488: 2486: 2485: 2480: 2478: 2477: 2465: 2464: 2452: 2451: 2435: 2433: 2432: 2427: 2422: 2395: 2393: 2392: 2387: 2385: 2384: 2372: 2371: 2359: 2358: 2336: 2334: 2333: 2328: 2326: 2307: 2305: 2304: 2299: 2279: 2277: 2276: 2271: 2266: 2265: 2250: 2249: 2237: 2236: 2220: 2218: 2217: 2212: 2207: 2206: 2185: 2184: 2160: 2159: 2139: 2137: 2136: 2131: 2107: 2105: 2104: 2099: 2097: 2096: 2080: 2078: 2077: 2072: 2070: 2069: 2057: 2056: 2034: 2032: 2031: 2026: 1986:by performing a 1970:Michael Freedman 1958: 1956: 1955: 1950: 1929: 1927: 1926: 1921: 1916: 1915: 1873: 1872: 1838: 1836: 1835: 1830: 1813: 1812: 1784: 1782: 1781: 1776: 1771: 1770: 1754: 1752: 1751: 1746: 1735: 1734: 1718: 1716: 1715: 1710: 1699: 1698: 1682: 1680: 1679: 1674: 1660: 1659: 1628: 1626: 1625: 1620: 1608: 1606: 1605: 1600: 1584: 1582: 1581: 1576: 1556: 1555: 1535: 1533: 1532: 1527: 1525: 1524: 1505: 1503: 1502: 1497: 1485: 1483: 1482: 1477: 1472: 1471: 1455: 1453: 1452: 1447: 1442: 1441: 1425: 1423: 1422: 1417: 1412: 1411: 1390: 1378: 1376: 1375: 1370: 1368: 1363: 1359: 1358: 1348: 1339: 1337: 1336: 1331: 1326: 1325: 1304: 1292: 1290: 1289: 1284: 1279: 1278: 1257: 1245: 1243: 1242: 1237: 1232: 1231: 1210: 1198: 1196: 1195: 1190: 1178: 1176: 1175: 1170: 1156: 1155: 1143: 1142: 1138: 1137: 1116: 1110: 1095: 1090: 1086: 1085: 1075: 1059: 1057: 1056: 1051: 1040: 1039: 1024: 1023: 1008: 1007: 983: 981: 980: 975: 964: 963: 947: 945: 944: 939: 928: 927: 915: 914: 884: 882: 881: 876: 862:and multiply by 861: 859: 858: 853: 841: 839: 838: 833: 821: 819: 818: 813: 811: 810: 791: 789: 788: 783: 762: 760: 759: 754: 737: 735: 734: 729: 715: 713: 712: 707: 693: 691: 690: 685: 662: 660: 659: 654: 612: 610: 609: 604: 586: 584: 583: 578: 566: 564: 563: 558: 546: 544: 543: 538: 507:incidence matrix 504: 502: 501: 496: 478: 476: 475: 470: 443: 441: 440: 435: 424: 423: 400: 398: 397: 392: 390: 389: 366: 364: 363: 358: 332: 330: 329: 324: 306: 304: 303: 298: 286: 284: 283: 278: 265:Alexander matrix 254:Alexander module 247: 245: 244: 239: 234: 233: 212: 193: 191: 190: 185: 174: 173: 153: 151: 150: 145: 134: 133: 83:be the infinite 57:Jones polynomial 31:which assigns a 4978: 4977: 4973: 4972: 4971: 4969: 4968: 4967: 4963:Knot invariants 4933: 4932: 4931: 4926: 4894: 4798: 4764:Conway notation 4748: 4742: 4729:Tricolorability 4577: 4571: 4568: 4567: 4566: 4556: 4553: 4552: 4551: 4541: 4538: 4537: 4536: 4528: 4518: 4508: 4498: 4479: 4458:Composite knots 4444: 4433: 4430: 4429: 4428: 4425:Borromean rings 4418: 4415: 4414: 4413: 4387: 4377: 4367: 4357: 4349: 4341: 4331: 4321: 4302: 4288: 4224: 4221: 4210: 4200:Knots and Links 4003: 3982: 3968:Kauffman, Louis 3960: 3944:Kauffman, Louis 3936: 3759: 3744: 3730:Adams, Colin C. 3725: 3720: 3712: 3708: 3700: 3696: 3688: 3684: 3676: 3672: 3664: 3660: 3652: 3648: 3640: 3636: 3628: 3624: 3616: 3612: 3596: 3592: 3584: 3580: 3572: 3568: 3560: 3556: 3552: 3547: 3546: 3537: 3533: 3524: 3520: 3515: 3498: 3462: 3458: 3439: 3432: 3428: 3415: 3411: 3407: 3392: 3388: 3370: 3366: 3358: 3355: 3354: 3333: 3329: 3325: 3320: 3317: 3316: 3299: 3295: 3293: 3290: 3289: 3266: 3262: 3247: 3243: 3231: 3227: 3218: 3214: 3212: 3209: 3208: 3185: 3181: 3160: 3156: 3138: 3134: 3126: 3123: 3122: 3089: 3086: 3085: 3055: 3051: 3042: 3038: 3029: 3025: 3023: 3020: 3019: 3007:(also known as 3003:and called the 2979: 2976: 2975: 2963: 2923: 2919: 2917: 2914: 2913: 2893: 2890: 2889: 2861: 2857: 2856: 2852: 2835: 2831: 2830: 2826: 2806: 2802: 2793: 2789: 2788: 2784: 2782: 2779: 2778: 2759: 2747: 2743: 2734: 2730: 2721: 2717: 2715: 2712: 2711: 2694: 2690: 2681: 2677: 2666: 2664: 2661: 2660: 2644: 2636: 2633: 2632: 2602: 2601: 2597: 2588: 2584: 2558: 2554: 2547: 2543: 2525: 2521: 2519: 2516: 2515: 2496: 2494: 2491: 2490: 2473: 2469: 2460: 2456: 2447: 2443: 2441: 2438: 2437: 2415: 2401: 2398: 2397: 2380: 2376: 2367: 2363: 2354: 2350: 2342: 2339: 2338: 2319: 2317: 2314: 2313: 2293: 2290: 2289: 2286: 2261: 2257: 2245: 2241: 2232: 2228: 2226: 2223: 2222: 2202: 2198: 2174: 2173: 2155: 2151: 2149: 2146: 2145: 2113: 2110: 2109: 2092: 2088: 2086: 2083: 2082: 2065: 2061: 2052: 2048: 2040: 2037: 2036: 2035:). In fact, if 2017: 2014: 2013: 2006:knot complement 1935: 1932: 1931: 1908: 1904: 1868: 1864: 1862: 1859: 1858: 1808: 1804: 1802: 1799: 1798: 1795: 1766: 1762: 1760: 1757: 1756: 1730: 1726: 1724: 1721: 1720: 1694: 1690: 1688: 1685: 1684: 1655: 1651: 1634: 1631: 1630: 1614: 1611: 1610: 1594: 1591: 1590: 1551: 1547: 1545: 1542: 1541: 1517: 1513: 1511: 1508: 1507: 1491: 1488: 1487: 1467: 1463: 1461: 1458: 1457: 1437: 1433: 1431: 1428: 1427: 1404: 1400: 1386: 1384: 1381: 1380: 1354: 1350: 1349: 1347: 1345: 1342: 1341: 1318: 1314: 1300: 1298: 1295: 1294: 1271: 1267: 1253: 1251: 1248: 1247: 1224: 1220: 1206: 1204: 1201: 1200: 1184: 1181: 1180: 1151: 1147: 1130: 1126: 1112: 1111: 1100: 1099: 1081: 1077: 1076: 1074: 1072: 1069: 1068: 1035: 1031: 1016: 1012: 1003: 999: 997: 994: 993: 990: 959: 955: 953: 950: 949: 923: 919: 910: 906: 904: 901: 900: 867: 864: 863: 847: 844: 843: 827: 824: 823: 806: 802: 797: 794: 793: 771: 768: 767: 745: 742: 741: 723: 720: 719: 701: 698: 697: 676: 673: 672: 618: 615: 614: 592: 589: 588: 572: 569: 568: 552: 549: 548: 514: 511: 510: 484: 481: 480: 464: 461: 460: 450: 419: 415: 413: 410: 409: 385: 381: 376: 373: 372: 346: 343: 342: 339:Alexander ideal 312: 309: 308: 292: 289: 288: 272: 269: 268: 226: 222: 208: 206: 203: 202: 169: 165: 163: 160: 159: 129: 125: 123: 120: 119: 97:Seifert surface 89:knot complement 65: 41:knot polynomial 17: 12: 11: 5: 4976: 4966: 4965: 4960: 4955: 4950: 4945: 4928: 4927: 4925: 4924: 4912: 4899: 4896: 4895: 4893: 4892: 4890:Surgery theory 4887: 4882: 4877: 4872: 4867: 4862: 4857: 4852: 4847: 4842: 4837: 4832: 4827: 4822: 4817: 4812: 4806: 4804: 4800: 4799: 4797: 4796: 4791: 4789:Skein relation 4786: 4781: 4776: 4771: 4766: 4761: 4755: 4753: 4744: 4743: 4741: 4740: 4734:Unknotting no. 4731: 4726: 4721: 4720: 4719: 4709: 4704: 4703: 4702: 4697: 4692: 4687: 4682: 4672: 4667: 4662: 4657: 4652: 4647: 4642: 4637: 4632: 4627: 4626: 4625: 4615: 4610: 4609: 4608: 4598: 4593: 4587: 4585: 4579: 4578: 4576: 4575: 4569: 4560: 4554: 4545: 4539: 4530: 4526: 4520: 4516: 4510: 4506: 4500: 4496: 4489: 4487: 4481: 4480: 4478: 4477: 4472: 4471: 4470: 4465: 4454: 4452: 4446: 4445: 4443: 4442: 4437: 4431: 4422: 4416: 4407: 4401: 4395: 4389: 4385: 4379: 4375: 4369: 4365: 4359: 4355: 4351: 4347: 4343: 4339: 4333: 4329: 4323: 4319: 4312: 4310: 4304: 4303: 4287: 4286: 4279: 4272: 4264: 4258: 4257: 4253:The Knot Atlas 4240: 4220: 4219:External links 4217: 4216: 4215: 4208: 4192: 4165: 4121:Ozsváth, Peter 4117: 4059:Ozsváth, Peter 4055: 4019:(3): 577–608. 4008: 4001: 3995:. Birkhäuser. 3986: 3980: 3964: 3958: 3940: 3934: 3910: 3890: 3838:(2): 363–400. 3818: 3805: 3792: 3772:(2): 275–306. 3749: 3742: 3724: 3721: 3719: 3718: 3706: 3694: 3690:Rasmussen 2003 3682: 3670: 3658: 3646: 3634: 3622: 3610: 3602:Osaka J. Math. 3590: 3578: 3574:Alexander 1928 3566: 3553: 3551: 3548: 3545: 3544: 3531: 3517: 3516: 3514: 3511: 3507:Floer homology 3497: 3494: 3470: 3465: 3461: 3457: 3454: 3451: 3446: 3442: 3438: 3435: 3431: 3427: 3422: 3418: 3414: 3410: 3406: 3403: 3400: 3395: 3391: 3387: 3384: 3381: 3378: 3373: 3369: 3365: 3362: 3340: 3336: 3332: 3328: 3324: 3302: 3298: 3277: 3272: 3269: 3265: 3261: 3258: 3255: 3250: 3246: 3242: 3239: 3234: 3230: 3226: 3221: 3217: 3205: 3204: 3193: 3188: 3184: 3180: 3177: 3174: 3171: 3168: 3163: 3159: 3155: 3152: 3149: 3146: 3141: 3137: 3133: 3130: 3120: 3108: 3105: 3102: 3099: 3096: 3093: 3058: 3054: 3050: 3045: 3041: 3037: 3032: 3028: 2992: 2989: 2986: 2983: 2962: 2959: 2946: 2943: 2940: 2937: 2934: 2931: 2926: 2922: 2897: 2877: 2874: 2871: 2864: 2860: 2855: 2851: 2848: 2845: 2838: 2834: 2829: 2825: 2822: 2819: 2816: 2809: 2805: 2801: 2796: 2792: 2787: 2762: 2758: 2755: 2750: 2746: 2742: 2737: 2733: 2729: 2724: 2720: 2697: 2693: 2689: 2684: 2680: 2676: 2672: 2669: 2647: 2643: 2640: 2620: 2617: 2614: 2608: 2605: 2600: 2596: 2591: 2587: 2583: 2578: 2575: 2572: 2569: 2566: 2561: 2557: 2553: 2550: 2546: 2542: 2539: 2536: 2533: 2528: 2524: 2502: 2499: 2476: 2472: 2468: 2463: 2459: 2455: 2450: 2446: 2425: 2421: 2418: 2414: 2411: 2408: 2405: 2383: 2379: 2375: 2370: 2366: 2362: 2357: 2353: 2349: 2346: 2325: 2322: 2310:satellite knot 2297: 2285: 2282: 2269: 2264: 2260: 2256: 2253: 2248: 2244: 2240: 2235: 2231: 2210: 2205: 2201: 2197: 2194: 2191: 2188: 2183: 2180: 2177: 2172: 2169: 2166: 2163: 2158: 2154: 2140:represent the 2129: 2126: 2123: 2120: 2117: 2095: 2091: 2068: 2064: 2060: 2055: 2051: 2047: 2044: 2024: 2021: 1948: 1945: 1942: 1939: 1919: 1914: 1911: 1907: 1903: 1900: 1897: 1894: 1891: 1888: 1885: 1882: 1879: 1876: 1871: 1867: 1840:if and only if 1828: 1825: 1822: 1819: 1816: 1811: 1807: 1794: 1791: 1787: 1786: 1774: 1769: 1765: 1744: 1741: 1738: 1733: 1729: 1708: 1705: 1702: 1697: 1693: 1672: 1669: 1666: 1663: 1658: 1654: 1650: 1647: 1644: 1641: 1638: 1618: 1598: 1574: 1571: 1568: 1565: 1562: 1559: 1554: 1550: 1538: 1537: 1523: 1520: 1516: 1495: 1475: 1470: 1466: 1445: 1440: 1436: 1415: 1410: 1407: 1403: 1399: 1396: 1393: 1389: 1366: 1362: 1357: 1353: 1329: 1324: 1321: 1317: 1313: 1310: 1307: 1303: 1282: 1277: 1274: 1270: 1266: 1263: 1260: 1256: 1235: 1230: 1227: 1223: 1219: 1216: 1213: 1209: 1188: 1168: 1165: 1162: 1159: 1154: 1150: 1146: 1141: 1136: 1133: 1129: 1125: 1122: 1119: 1115: 1109: 1106: 1103: 1098: 1093: 1089: 1084: 1080: 1049: 1046: 1043: 1038: 1034: 1030: 1027: 1022: 1019: 1015: 1011: 1006: 1002: 989: 986: 973: 970: 967: 962: 958: 937: 934: 931: 926: 922: 918: 913: 909: 890:Seifert matrix 874: 871: 851: 831: 809: 805: 801: 781: 778: 775: 764: 763: 752: 749: 738: 727: 716: 705: 694: 683: 680: 652: 649: 646: 643: 640: 637: 634: 631: 628: 625: 622: 602: 599: 596: 576: 556: 536: 533: 530: 527: 524: 521: 518: 494: 491: 488: 468: 449: 446: 433: 430: 427: 422: 418: 388: 384: 380: 356: 353: 350: 322: 319: 316: 296: 276: 237: 232: 229: 225: 221: 218: 215: 211: 183: 180: 177: 172: 168: 143: 140: 137: 132: 128: 64: 61: 53:skein relation 29:knot invariant 16:Knot invariant 15: 9: 6: 4: 3: 2: 4975: 4964: 4961: 4959: 4956: 4954: 4951: 4949: 4946: 4944: 4941: 4940: 4938: 4923: 4922: 4913: 4911: 4910: 4901: 4900: 4897: 4891: 4888: 4886: 4883: 4881: 4878: 4876: 4873: 4871: 4868: 4866: 4863: 4861: 4858: 4856: 4853: 4851: 4848: 4846: 4843: 4841: 4838: 4836: 4833: 4831: 4828: 4826: 4825:Conway sphere 4823: 4821: 4818: 4816: 4813: 4811: 4808: 4807: 4805: 4801: 4795: 4792: 4790: 4787: 4785: 4782: 4780: 4777: 4775: 4772: 4770: 4767: 4765: 4762: 4760: 4757: 4756: 4754: 4752: 4745: 4739: 4735: 4732: 4730: 4727: 4725: 4722: 4718: 4715: 4714: 4713: 4710: 4708: 4705: 4701: 4698: 4696: 4693: 4691: 4688: 4686: 4683: 4681: 4678: 4677: 4676: 4673: 4671: 4668: 4666: 4663: 4661: 4658: 4656: 4653: 4651: 4648: 4646: 4643: 4641: 4638: 4636: 4633: 4631: 4628: 4624: 4621: 4620: 4619: 4616: 4614: 4611: 4607: 4604: 4603: 4602: 4599: 4597: 4596:Arf invariant 4594: 4592: 4589: 4588: 4586: 4584: 4580: 4564: 4561: 4549: 4546: 4534: 4531: 4524: 4521: 4514: 4511: 4504: 4501: 4494: 4491: 4490: 4488: 4486: 4482: 4476: 4473: 4469: 4466: 4464: 4461: 4460: 4459: 4456: 4455: 4453: 4451: 4447: 4441: 4438: 4426: 4423: 4411: 4408: 4405: 4402: 4399: 4396: 4393: 4390: 4383: 4380: 4373: 4370: 4363: 4360: 4358: 4352: 4350: 4344: 4337: 4334: 4327: 4324: 4317: 4314: 4313: 4311: 4309: 4305: 4300: 4296: 4292: 4285: 4280: 4278: 4273: 4271: 4266: 4265: 4262: 4255: 4254: 4249: 4245: 4241: 4237: 4233: 4232: 4227: 4223: 4222: 4211: 4205: 4201: 4197: 4196:Rolfsen, Dale 4193: 4189: 4185: 4180: 4175: 4171: 4166: 4162: 4158: 4154: 4150: 4145: 4140: 4136: 4132: 4131: 4126: 4125:Szabó, Zoltán 4122: 4118: 4114: 4110: 4105: 4100: 4096: 4092: 4087: 4082: 4079:(1): 58–116. 4078: 4074: 4073: 4068: 4064: 4063:Szabó, Zoltán 4060: 4056: 4052: 4048: 4044: 4040: 4036: 4032: 4027: 4022: 4018: 4014: 4009: 4004: 3998: 3994: 3993: 3987: 3983: 3977: 3973: 3969: 3965: 3961: 3955: 3951: 3950: 3945: 3941: 3937: 3931: 3926: 3925: 3919: 3915: 3911: 3907: 3903: 3899: 3895: 3891: 3887: 3883: 3879: 3875: 3871: 3867: 3863: 3859: 3855: 3851: 3846: 3845:dg-ga/9612014 3841: 3837: 3833: 3832: 3827: 3823: 3819: 3815: 3811: 3806: 3803:(2): 253–287. 3802: 3798: 3793: 3789: 3785: 3780: 3775: 3771: 3767: 3766: 3758: 3754: 3750: 3745: 3739: 3735: 3731: 3727: 3726: 3715: 3710: 3703: 3698: 3691: 3686: 3679: 3674: 3667: 3666:Kawauchi 2012 3662: 3655: 3650: 3643: 3642:Kauffman 2012 3638: 3631: 3630:Kauffman 1983 3626: 3619: 3614: 3607: 3603: 3599: 3598:Kawauchi 2012 3594: 3587: 3582: 3575: 3570: 3563: 3558: 3554: 3541: 3535: 3528: 3522: 3518: 3510: 3508: 3503: 3493: 3491: 3486: 3484: 3463: 3459: 3444: 3440: 3436: 3433: 3429: 3425: 3420: 3416: 3412: 3408: 3401: 3393: 3389: 3379: 3371: 3367: 3338: 3334: 3330: 3326: 3322: 3300: 3270: 3267: 3263: 3259: 3256: 3248: 3240: 3232: 3228: 3219: 3186: 3182: 3172: 3169: 3161: 3157: 3147: 3139: 3135: 3121: 3106: 3103: 3097: 3084: 3083: 3082: 3076: 3072: 3056: 3052: 3048: 3043: 3039: 3035: 3030: 3026: 3016: 3014: 3010: 3006: 2987: 2973: 2968: 2958: 2944: 2941: 2938: 2932: 2924: 2911: 2895: 2872: 2862: 2858: 2846: 2836: 2832: 2823: 2817: 2807: 2803: 2794: 2790: 2775: 2756: 2748: 2744: 2740: 2735: 2731: 2722: 2718: 2695: 2691: 2687: 2682: 2678: 2674: 2670: 2667: 2641: 2638: 2615: 2606: 2603: 2589: 2585: 2570: 2564: 2559: 2555: 2548: 2540: 2534: 2526: 2500: 2497: 2474: 2470: 2466: 2461: 2457: 2453: 2448: 2444: 2419: 2416: 2409: 2406: 2403: 2381: 2377: 2368: 2364: 2360: 2355: 2351: 2347: 2344: 2323: 2320: 2311: 2295: 2281: 2267: 2262: 2258: 2251: 2246: 2242: 2238: 2233: 2229: 2203: 2199: 2195: 2192: 2189: 2170: 2164: 2156: 2143: 2127: 2121: 2118: 2115: 2093: 2089: 2066: 2062: 2053: 2049: 2042: 2022: 2019: 2011: 2007: 2002: 1999: 1997: 1993: 1989: 1985: 1980: 1977: 1975: 1971: 1967: 1965: 1960: 1943: 1937: 1912: 1909: 1905: 1898: 1892: 1886: 1883: 1877: 1869: 1856: 1851: 1849: 1845: 1841: 1826: 1823: 1817: 1809: 1790: 1772: 1767: 1763: 1739: 1731: 1703: 1695: 1670: 1667: 1661: 1656: 1652: 1645: 1642: 1639: 1636: 1616: 1596: 1588: 1587: 1586: 1572: 1569: 1566: 1560: 1552: 1521: 1518: 1514: 1493: 1473: 1468: 1464: 1443: 1438: 1434: 1408: 1405: 1401: 1397: 1394: 1360: 1355: 1351: 1322: 1319: 1315: 1311: 1308: 1275: 1272: 1268: 1264: 1261: 1228: 1225: 1221: 1217: 1214: 1186: 1163: 1160: 1157: 1152: 1148: 1134: 1131: 1127: 1123: 1120: 1096: 1087: 1082: 1078: 1067: 1063: 1062: 1061: 1044: 1036: 1028: 1020: 1017: 1013: 1004: 985: 968: 960: 932: 924: 920: 911: 907: 898: 893: 891: 886: 872: 869: 849: 829: 807: 803: 799: 779: 776: 773: 750: 747: 739: 725: 717: 703: 695: 681: 678: 670: 669: 668: 664: 650: 647: 644: 641: 638: 635: 632: 629: 626: 623: 620: 600: 597: 594: 574: 554: 531: 528: 525: 522: 519: 508: 492: 489: 486: 466: 458: 453: 445: 428: 420: 406: 404: 403:constant term 386: 382: 378: 370: 354: 351: 348: 340: 336: 335:Fitting ideal 320: 317: 314: 294: 274: 266: 262: 257: 255: 251: 230: 227: 223: 219: 216: 201: 197: 178: 170: 166: 157: 138: 130: 126: 117: 113: 109: 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 60: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 4919: 4907: 4835:Double torus 4820:Braid theory 4679: 4635:Crossing no. 4630:Crosscap no. 4316:Figure-eight 4251: 4229: 4199: 4179:math/0306378 4169: 4144:math/0311496 4134: 4128: 4086:math/0209056 4076: 4070: 4026:math/0607156 4016: 4012: 3991: 3971: 3948: 3923: 3918:Quinn, Frank 3897: 3835: 3829: 3813: 3800: 3796: 3769: 3763: 3733: 3709: 3697: 3685: 3673: 3661: 3649: 3637: 3625: 3613: 3605: 3601: 3593: 3581: 3569: 3557: 3534: 3521: 3499: 3487: 3482: 3206: 3080: 3017: 3012: 3008: 3004: 2971: 2964: 2776: 2287: 2009: 2003: 2000: 1991: 1981: 1978: 1968: 1961: 1852: 1796: 1788: 1539: 991: 894: 887: 765: 665: 454: 451: 407: 338: 264: 258: 253: 249: 155: 115: 111: 107: 100: 92: 85:cyclic cover 80: 68: 66: 48: 24: 18: 4953:Polynomials 4943:Knot theory 4670:Linking no. 4591:Alternating 4392:Conway knot 4372:Carrick mat 4326:Three-twist 4291:Knot theory 4246:" and " 3952:. Courier. 3608:5: 451~456. 3562:Birman 1993 3527:Joan Birman 3490:knot theory 2967:John Conway 1426:-module to 45:John Conway 21:mathematics 4937:Categories 4830:Complement 4794:Tabulation 4751:operations 4675:Polynomial 4665:Link group 4660:Knot group 4623:Invertible 4601:Bridge no. 4583:Invariants 4513:Cinquefoil 4382:Perko pair 4308:Hyperbolic 3894:Fox, Ralph 3810:Fox, Ralph 3550:References 2396:such that 2288:If a knot 1984:4-manifold 1964:knot genus 1962:Twice the 118:, denoted 110:acting on 63:Definition 33:polynomial 4724:Stick no. 4680:Alexander 4618:Chirality 4563:Solomon's 4523:Septafoil 4450:Satellite 4410:Whitehead 4336:Stevedore 4244:Main Page 4236:EMS Press 4051:119159648 3946:(2006) . 3870:0020-9910 3732:(2004) . 3453:Δ 3434:− 3426:− 3394:− 3383:Δ 3380:− 3361:Δ 3323:± 3297:Δ 3268:− 3260:− 3245:∇ 3216:Δ 3176:∇ 3162:− 3151:∇ 3148:− 3129:∇ 3092:∇ 3044:− 2982:∇ 2942:± 2921:Δ 2854:Δ 2828:Δ 2800:# 2786:Δ 2741:× 2688:× 2675:⊂ 2642:∈ 2599:Δ 2565:× 2545:Δ 2523:Δ 2467:⊂ 2454:× 2374:→ 2361:× 2255:→ 2239:: 2234:∗ 2204:∗ 2196:− 2153:Δ 2142:monodromy 2125:→ 2059:→ 2046:→ 2020:± 1910:− 1866:Δ 1806:Δ 1728:Δ 1692:Δ 1570:± 1549:Δ 1519:− 1406:− 1365:¯ 1320:− 1273:− 1226:− 1132:− 1097:≃ 1092:¯ 1033:Δ 1018:− 1001:Δ 957:Δ 930:∖ 908:π 897:Ralph Fox 870:− 800:± 777:× 748:− 679:− 648:− 633:− 417:Δ 379:± 369:principal 318:× 228:− 4909:Category 4779:Mutation 4747:Notation 4700:Kauffman 4613:Brunnian 4606:2-bridge 4475:Knot sum 4406:(12n242) 4198:(1990). 4161:11374897 4113:11246611 4065:(2004). 3970:(2012). 3920:(1990). 3906:73203715 3812:(1963). 3755:(1928). 3586:Fox 1961 3288:. Here 2671:′ 2631:, where 2607:′ 2514:), then 2501:′ 2436:, where 2420:′ 2324:′ 1506:acts by 509:of size 457:oriented 455:Take an 77:3-sphere 4921:Commons 4840:Fibered 4738:problem 4707:Pretzel 4685:Bracket 4503:Trefoil 4440:L10a140 4400:(11n42) 4394:(11n34) 4362:Endless 4238:, 2001 4184:Bibcode 4091:Bibcode 4031:Bibcode 3886:3752148 3878:1650308 3850:Bibcode 3799:. N.S. 3788:1989123 3723:Sources 3714:Ni 2007 2912:, then 2144:, then 2004:If the 1988:surgery 1844:perfect 547:. The 87:of the 79:. Let 75:in the 4885:Writhe 4855:Ribbon 4690:HOMFLY 4533:Unlink 4493:Unknot 4468:Square 4463:Granny 4206:  4159:  4111:  4049:  3999:  3978:  3956:  3932:  3904:  3884:  3876:  3868:  3786:  3740:  2221:where 1930:where 1853:For a 1179:where 196:module 23:, the 4875:Twist 4860:Slice 4815:Berge 4803:Other 4774:Flype 4712:Prime 4695:Jones 4655:Genus 4485:Torus 4299:links 4295:knots 4174:arXiv 4157:S2CID 4139:arXiv 4109:S2CID 4081:arXiv 4047:S2CID 4021:arXiv 3882:S2CID 3840:arXiv 3784:JSTOR 3760:(PDF) 3513:Notes 2888:. If 2308:is a 2010:monic 71:be a 27:is a 4880:Wild 4845:Knot 4749:and 4736:and 4717:list 4548:Hopf 4297:and 4204:ISBN 3997:ISBN 3976:ISBN 3954:ISBN 3930:ISBN 3902:OCLC 3866:ISSN 3738:ISBN 3488:See 352:> 73:knot 67:Let 4865:Sum 4386:161 4384:(10 4250:", 4149:doi 4099:doi 4077:186 4039:doi 4017:170 3858:doi 3836:134 3774:doi 3015:). 3011:or 2710:in 1850:). 1246:by 337:or 252:or 99:of 91:of 19:In 4939:: 4565:(4 4550:(2 4535:(0 4525:(7 4515:(5 4505:(3 4495:(0 4427:(6 4412:(5 4376:18 4374:(8 4364:(7 4338:(6 4328:(5 4318:(4 4234:, 4228:, 4182:. 4155:. 4147:. 4133:. 4123:; 4107:. 4097:. 4089:. 4075:. 4069:. 4061:; 4045:. 4037:. 4029:. 3916:; 3880:. 3874:MR 3872:. 3864:. 3856:. 3848:. 3834:. 3824:; 3801:28 3782:. 3770:30 3768:. 3762:. 3485:. 2957:. 2774:. 1585:. 984:. 892:. 663:. 405:. 256:. 194:a 4574:) 4570:1 4559:) 4555:1 4544:) 4540:1 4529:) 4527:1 4519:) 4517:1 4509:) 4507:1 4499:) 4497:1 4436:) 4432:2 4421:) 4417:1 4388:) 4378:) 4368:) 4366:4 4356:3 4354:6 4348:2 4346:6 4342:) 4340:1 4332:) 4330:2 4322:) 4320:1 4301:) 4293:( 4283:e 4276:t 4269:v 4242:" 4212:. 4190:. 4186:: 4176:: 4163:. 4151:: 4141:: 4135:8 4115:. 4101:: 4093:: 4083:: 4053:. 4041:: 4033:: 4023:: 4005:. 3984:. 3962:. 3938:. 3908:. 3888:. 3860:: 3852:: 3842:: 3790:. 3776:: 3746:. 3716:. 3704:. 3692:. 3680:. 3656:. 3644:. 3632:. 3620:. 3588:. 3576:. 3564:. 3542:. 3483:t 3469:) 3464:0 3460:L 3456:( 3450:) 3445:2 3441:/ 3437:1 3430:t 3421:2 3417:/ 3413:1 3409:t 3405:( 3402:= 3399:) 3390:L 3386:( 3377:) 3372:+ 3368:L 3364:( 3339:2 3335:/ 3331:n 3327:t 3301:L 3276:) 3271:1 3264:t 3257:t 3254:( 3249:L 3241:= 3238:) 3233:2 3229:t 3225:( 3220:L 3192:) 3187:0 3183:L 3179:( 3173:z 3170:= 3167:) 3158:L 3154:( 3145:) 3140:+ 3136:L 3132:( 3107:1 3104:= 3101:) 3098:O 3095:( 3057:0 3053:L 3049:, 3040:L 3036:, 3031:+ 3027:L 2991:) 2988:z 2985:( 2972:z 2945:1 2939:= 2936:) 2933:t 2930:( 2925:K 2896:K 2876:) 2873:t 2870:( 2863:2 2859:K 2850:) 2847:t 2844:( 2837:1 2833:K 2824:= 2821:) 2818:t 2815:( 2808:2 2804:K 2795:1 2791:K 2761:Z 2757:= 2754:) 2749:2 2745:D 2736:1 2732:S 2728:( 2723:1 2719:H 2696:2 2692:D 2683:1 2679:S 2668:K 2646:Z 2639:a 2619:) 2616:t 2613:( 2604:K 2595:) 2590:a 2586:t 2582:( 2577:) 2574:} 2571:0 2568:{ 2560:1 2556:S 2552:( 2549:f 2541:= 2538:) 2535:t 2532:( 2527:K 2498:K 2475:3 2471:S 2462:2 2458:D 2449:1 2445:S 2424:) 2417:K 2413:( 2410:f 2407:= 2404:K 2382:3 2378:S 2369:2 2365:D 2356:1 2352:S 2348:: 2345:f 2321:K 2296:K 2268:S 2263:1 2259:H 2252:S 2247:1 2243:H 2230:g 2209:) 2200:g 2193:I 2190:t 2187:( 2182:t 2179:e 2176:D 2171:= 2168:) 2165:t 2162:( 2157:K 2128:S 2122:S 2119:: 2116:g 2094:K 2090:C 2067:1 2063:S 2054:K 2050:C 2043:S 2023:1 1992:S 1947:) 1944:t 1941:( 1938:f 1918:) 1913:1 1906:t 1902:( 1899:f 1896:) 1893:t 1890:( 1887:f 1884:= 1881:) 1878:t 1875:( 1870:K 1827:1 1824:= 1821:) 1818:t 1815:( 1810:K 1785:. 1773:M 1768:1 1764:H 1743:) 1740:1 1737:( 1732:M 1707:) 1704:t 1701:( 1696:M 1671:1 1668:= 1665:) 1662:M 1657:1 1653:H 1649:( 1646:k 1643:n 1640:a 1637:r 1617:M 1597:t 1573:1 1567:= 1564:) 1561:1 1558:( 1553:K 1536:. 1522:1 1515:t 1494:t 1474:X 1469:1 1465:H 1444:X 1439:1 1435:H 1414:] 1409:1 1402:t 1398:, 1395:t 1392:[ 1388:Z 1361:X 1356:1 1352:H 1328:] 1323:1 1316:t 1312:, 1309:t 1306:[ 1302:Z 1281:] 1276:1 1269:t 1265:, 1262:t 1259:[ 1255:Z 1234:] 1229:1 1222:t 1218:, 1215:t 1212:[ 1208:Z 1187:G 1167:) 1164:G 1161:, 1158:X 1153:1 1149:H 1145:( 1140:] 1135:1 1128:t 1124:, 1121:t 1118:[ 1114:Z 1108:m 1105:o 1102:H 1088:X 1083:1 1079:H 1048:) 1045:t 1042:( 1037:K 1029:= 1026:) 1021:1 1014:t 1010:( 1005:K 972:) 969:t 966:( 961:K 936:) 933:K 925:3 921:S 917:( 912:1 873:1 850:t 830:n 808:n 804:t 780:n 774:n 751:1 726:t 704:1 682:t 651:t 645:, 642:t 639:, 636:1 630:, 627:1 624:, 621:0 601:2 598:+ 595:n 575:n 555:n 535:) 532:2 529:+ 526:n 523:, 520:n 517:( 493:2 490:+ 487:n 467:n 432:) 429:t 426:( 421:K 387:n 383:t 355:s 349:r 321:r 315:r 295:s 275:r 236:] 231:1 224:t 220:, 217:t 214:[ 210:Z 182:) 179:X 176:( 171:1 167:H 156:t 142:) 139:X 136:( 131:1 127:H 116:X 112:X 108:t 101:K 93:K 81:X 69:K

Index

mathematics
knot invariant
polynomial
James Waddell Alexander II
knot polynomial
John Conway
skein relation
Jones polynomial
knot
3-sphere
cyclic cover
knot complement
Seifert surface
covering transformation
module
Laurent polynomials
presentation matrix
Fitting ideal
principal
constant term
oriented
incidence matrix
Seifert matrix
Ralph Fox
Poincaré Duality isomorphism
if and only if
perfect
commutator subgroup
topologically slice
knot genus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.