Knowledge

Biham–Middleton–Levine traffic model

Source 📝

329: 310: 184: 165: 374: 364: 354: 229: 219: 209: 410: 400: 390: 265: 255: 245: 51:. It consists of a number of cars represented by points on a lattice with a random starting position, where each car may be one of two types: those that only move downwards (shown as blue in this article), and those that only move towards the right (shown as red in this article). The two types of cars take turns to move. During each turn, all the cars for the corresponding type advance by one step if they are not blocked by another car. It may be considered the two-dimensional analogue of the simpler 113: 333: 314: 330: 311: 188: 185: 169: 166: 332: 313: 187: 168: 156:
to achieve a smooth flow of traffic. In contrast, if there is a high number of cars, the system will become jammed to the extent that no single car will move. Typically, in a square lattice, the transition density is when there are around 32% as many cars as there are possible spaces in the lattice.
95:
found that for some traffic densities, there is an intermediate phase characterized by periodic arrangements of jams and smooth flow. In the same year, Angel, Holroyd and Martin were the first to rigorously prove that for densities close to one, the system will always jam. Later, in 2006, Tim Austin
722:
The behaviour of the system on the Klein bottle is much more similar to the one on the torus than the one on the real projective plane. For the Klein bottle setup, the mobility as a function of density starts to decrease slightly sooner than in the torus case, although the behaviour is similar for
823:
respectively. In this case, the number of cars in the system can change over time, and local jams can cause the lattice to appear very different from the usual model, such as having coexistence of jams and free-flowing areas; containing large empty spaces; or containing mostly cars of one type.
779:
is the side length of the presumably square lattice): each time, a random cell is selected and, if it contains a car, it is moved to the next cell if possible. In this case, the intermediate state observed in the usual BML traffic model does not exist, due to the non-deterministic nature of the
723:
densities greater than the critical point. The mobility on the real projective plane decreases more gradually for densities from zero to the critical point. In the real projective plane, local jams may form at the corners of the lattice even though the rest of the lattice is free-flowing.
434:
proved that for densities sufficiently close to one, the system will have no cars moving infinitely often. In 2006, Tim Austin and Itai Benjamini proved that the model will always reach the free-flowing phase if the number of cars is less than half the edge length for a square lattice.
135:
dimensions, the intermediate states are self-organized bands of jams and free-flow with detailed geometric structure, that repeat periodically in time. In non-coprime rectangles, the intermediate states are typically disordered rather than periodic.
331: 312: 186: 167: 731:
A randomized variant of the BML traffic model, called BML-R, was studied in 2010. Under periodic boundaries, instead of updating all cars of the same colour at once during each step, the randomized model performs
297:
dimensions, only periodic orbits exist. In 2008 periodic intermediate phases were also observed in square lattices. Yet, on square lattices disordered intermediate phases are more frequently observed and tend to
635: 499: 258:
Mobility with respect to time for above lattice. Mobility is defined as the number of cars that can move as a fraction of the total. (The points are in the upper-left corner of the image.)
248:
Mobility with respect to time for above lattice. Mobility is defined as the number of cars that can move as a fraction of the total. (The points are in the upper-left corner of the image.)
451:. When the red cars reach the right edge, they reappear on the left edge except flipped vertically; the ones at the bottom are now at the top, and vice versa. More formally, for every 281:
The intermediate phase occurs close to the transition density, combining features from both the jammed and free-flowing phases. There are principally two intermediate phases –
268:
Mobility with respect to time for above lattice. Mobility is defined as the number of cars that can move as a fraction of the total. (The points are on the left side of the image.)
783:
Under open boundary conditions, instead of having cars that drive off one edge wrapping around the other side, new cars are added on the left and top edges with probability
717: 581: 801: 673: 537: 821: 757: 777: 17: 1112:(2006). "For what number of cars must self organization occur in the Biham–Middleton–Levine traffic model from any possible starting configuration?". 430:
regarding the Biham–Middleton–Levine traffic model. Proofs so far have been restricted to the extremes of traffic density. In 2005, Alexander Holroyd
128:: that is, cars that move off the right edge would reappear on the left edge; and cars that move off the bottom edge would reappear on the top edge. 1226:
Cámpora, Daniel; de La Torre, Jaime; García Vázquez, Juan Carlos; Caparrini, Fernando Sancho (August 2010). "BML model on non-orientable surfaces".
1158:
Linesch, Nicholas J.; D'Souza, Raissa M. (15 October 2008). "Periodic states, local effects and coexistence in the BML traffic jam model".
413:
Mobility with respect to time for above lattice. Mobility is defined as the number of cars that can move as a fraction of the total.
403:
Mobility with respect to time for above lattice. Mobility is defined as the number of cars that can move as a fraction of the total.
393:
Mobility with respect to time for above lattice. Mobility is defined as the number of cars that can move as a fraction of the total.
1274:
Ding, Zhong-Jun; Jiang, Rui; Wang, Bing-Hong (2011). "Traffic flow in the Biham–Middleton–Levine model with random update rule".
100:
found that for a square lattice of side N, the model will always self-organize to reach full speed if there are fewer than
873: 590: 454: 967: 1347: 1029: 48: 31: 377:
A 512×512 lattice with density of 37% after 64000 iterations. Traffic is at a disordered intermediate phase.
367:
A 512×512 lattice with density of 33% after 64000 iterations. Traffic is at a disordered intermediate phase.
357:
A 512×512 lattice with density of 31% after 64000 iterations. Traffic is at a disordered intermediate phase.
426:
Despite the simplicity of the model, rigorous analysis is very nontrivial. Nonetheless, there have been
232:
A 512×512 lattice with density of 38% after 64000 iterations. Traffic is at a globally jammed phase.
780:
randomized model; instead the transition from the jammed phase to the free flowing phase is sharp.
1352: 222:
A 512×512 lattice with density of 29% after 64000 iterations. Traffic is at a free-flowing phase.
212:
A 512×512 lattice with density of 27% after 64000 iterations. Traffic is at a free-flowing phase.
131:
There has also been research in rectangular lattices instead of square ones. For rectangles with
678: 542: 1357: 786: 640: 584: 504: 806: 1283: 1235: 1177: 1051: 979: 895: 735: 8: 968:"Coexisting phases and lattice dependence of a cellular automaton model for traffic flow" 341:
intermediate phase observed on a 144×89 rectangular lattice with a traffic density of 39%
322:
intermediate phase observed on a 144×89 rectangular lattice with a traffic density of 38%
144:
Despite the simplicity of the model, it has two highly distinguishable phases – the
1287: 1239: 1181: 1055: 983: 899: 1201: 1167: 1113: 1075: 1041: 927: 885: 762: 427: 92: 45: 587:. In addition to flipping the red cars, the same is done for the blue cars: for every 373: 363: 353: 228: 218: 208: 1299: 1193: 1067: 995: 919: 911: 869: 153: 76: 60: 42: 1205: 1079: 931: 30:
This article is about a traffic flow model. For turbulence model in combustion, see
1291: 1251: 1243: 1185: 1059: 987: 935: 903: 56: 1003: 1247: 1189: 409: 399: 389: 264: 254: 244: 1325: 1295: 1109: 991: 97: 1331: 907: 841: 1341: 1197: 1071: 915: 1303: 999: 448: 91:
flow of traffic suddenly went from smooth flow to a complete jam. In 2005,
88: 1083: 923: 1225: 1063: 890: 286: 1256: 1137: 1028:
Angel, Omer; Holroyd, Alexander E.; Martin, James B. (12 August 2005).
865: 80: 72: 1319: 196:
observed on a 144×89 rectangular lattice with a traffic density of 60%
177:
observed on a 144×89 rectangular lattice with a traffic density of 28%
1118: 1046: 874:"Self-organization and a dynamical transition in traffic-flow models" 121: 52: 1172: 294: 132: 71:
The Biham–Middleton–Levine traffic model was first formulated by
112: 1030:"The Jammed Phase of the Biham–Middleton–Levine Traffic Model" 444: 125: 116:
The fundamental polygon of the torus, on which the cars move
293:(which are provably stable). On rectangular lattices with 120:
The cars are typically placed on a square lattice that is
809: 789: 765: 738: 681: 643: 593: 545: 507: 457: 55:
model. It is possibly the simplest system exhibiting
864: 87:
found that as the density of traffic increased, the
447:, but it is possible to implement the lattice on a 152:. For low numbers of cars, the system will usually 1157: 1027: 815: 795: 771: 751: 711: 667: 630:{\displaystyle x\in \lbrace 0,\ldots ,N-1\rbrace } 629: 575: 531: 494:{\displaystyle y\in \lbrace 0,\ldots ,N-1\rbrace } 493: 443:The model is typically studied on the orientable 1339: 1107: 884:(10). American Physical Society: R6124–R6127. 1273: 583:. It is also possible to implement it on the 1131: 1129: 978:(6). The American Physical Society: 066112. 803:and removed from the right and bottom edges 624: 600: 488: 464: 965: 961: 959: 957: 955: 953: 1138:"The Biham–Middleton–Levine Traffic Model" 842:"The Biham–Middleton–Levine traffic model" 438: 302:densities close to the transition region. 1255: 1221: 1219: 1217: 1215: 1171: 1126: 1117: 1045: 889: 1103: 1101: 1034:Electronic Communications in Probability 950: 833: 408: 398: 388: 372: 362: 352: 327: 308: 263: 253: 243: 227: 217: 207: 182: 163: 111: 1023: 1021: 839: 14: 1340: 1269: 1267: 1212: 1151: 1098: 860: 858: 276: 27:Cellular automaton traffic flow model 1018: 421: 139: 39:Biham–Middleton–Levine traffic model 18:Biham-Middleton-Levine traffic model 1264: 1135: 24: 855: 25: 1369: 1313: 726: 107: 872:; Levine, Dov (November 1992). 706: 682: 662: 644: 637:, a blue car exiting the site 570: 546: 526: 508: 13: 1: 827: 501:, a red car exiting the site 7: 1248:10.1016/j.physa.2010.03.037 1190:10.1016/j.physa.2008.06.052 966:D'Souza, Raissa M. (2005). 10: 1374: 1296:10.1103/PhysRevE.83.047101 992:10.1103/PhysRevE.71.066112 66: 29: 1332:JavaScript implementation 908:10.1103/PhysRevA.46.R6124 712:{\displaystyle (N-x-1,0)} 576:{\displaystyle (0,N-y-1)} 1348:Cellular automaton rules 796:{\displaystyle \alpha } 668:{\displaystyle (x,N-1)} 532:{\displaystyle (N-1,y)} 439:Non-orientable surfaces 1136:Holroyd, Alexander E. 817: 816:{\displaystyle \beta } 797: 773: 753: 713: 669: 631: 577: 533: 495: 414: 404: 394: 378: 368: 358: 342: 323: 269: 259: 249: 233: 223: 213: 197: 178: 117: 818: 798: 774: 754: 752:{\displaystyle L^{2}} 714: 675:would enter the site 670: 632: 585:real projective plane 578: 539:would enter the site 534: 496: 412: 402: 392: 376: 366: 356: 336: 317: 267: 257: 247: 231: 221: 211: 194:globally jammed phase 191: 172: 115: 32:Bray–Moss–Libby model 1326:WebGL implementation 1064:10.1214/ECP.v10-1148 807: 787: 763: 736: 679: 641: 591: 543: 505: 455: 1320:CUDA implementation 1288:2011PhRvE..83d7101D 1240:2010PhyA..389.3290C 1182:2008PhyA..387.6170L 1056:2005math......4001A 1006:on 24 February 2013 984:2005PhRvE..71f6112D 900:1992PhRvA..46.6124B 428:mathematical proofs 870:Middleton, A. Alan 813: 793: 769: 749: 709: 665: 627: 573: 529: 491: 415: 405: 395: 379: 369: 359: 343: 324: 277:Intermediate phase 270: 260: 250: 234: 224: 214: 198: 179: 175:free-flowing phase 150:free-flowing phase 118: 49:traffic flow model 46:cellular automaton 1276:Physical Review E 1234:(16): 3290–3298. 1166:(24): 6170–6176. 840:D'Souza, Raissa. 772:{\displaystyle L} 422:Rigorous analysis 419: 418: 383: 382: 347: 346: 334: 315: 274: 273: 238: 237: 202: 201: 189: 170: 140:Phase transitions 77:A. Alan Middleton 61:self-organization 57:phase transitions 16:(Redirected from 1365: 1308: 1307: 1271: 1262: 1261: 1259: 1223: 1210: 1209: 1175: 1155: 1149: 1148: 1146: 1144: 1133: 1124: 1123: 1121: 1105: 1096: 1095: 1093: 1091: 1082:. Archived from 1049: 1025: 1016: 1015: 1013: 1011: 1002:. Archived from 963: 948: 947: 945: 943: 934:. Archived from 893: 891:cond-mat/9206001 862: 853: 852: 850: 848: 837: 822: 820: 819: 814: 802: 800: 799: 794: 778: 776: 775: 770: 758: 756: 755: 750: 748: 747: 718: 716: 715: 710: 674: 672: 671: 666: 636: 634: 633: 628: 582: 580: 579: 574: 538: 536: 535: 530: 500: 498: 497: 492: 385: 384: 349: 348: 335: 316: 305: 304: 285:(which could be 240: 239: 204: 203: 190: 171: 160: 159: 124:equivalent to a 21: 1373: 1372: 1368: 1367: 1366: 1364: 1363: 1362: 1338: 1337: 1334:by Maciej Baron 1328:by Jason Davies 1316: 1311: 1272: 1265: 1224: 1213: 1156: 1152: 1142: 1140: 1134: 1127: 1110:Benjamini, Itai 1106: 1099: 1089: 1087: 1026: 1019: 1009: 1007: 964: 951: 941: 939: 863: 856: 846: 844: 838: 834: 830: 808: 805: 804: 788: 785: 784: 764: 761: 760: 759:updates (where 743: 739: 737: 734: 733: 729: 680: 677: 676: 642: 639: 638: 592: 589: 588: 544: 541: 540: 506: 503: 502: 456: 453: 452: 441: 424: 328: 309: 279: 183: 164: 154:organize itself 142: 110: 83:in 1992. Biham 69: 43:self-organizing 35: 28: 23: 22: 15: 12: 11: 5: 1371: 1361: 1360: 1355: 1353:Lattice models 1350: 1336: 1335: 1329: 1323: 1315: 1314:External links 1312: 1310: 1309: 1263: 1211: 1150: 1125: 1097: 1017: 949: 854: 831: 829: 826: 812: 792: 768: 746: 742: 728: 725: 708: 705: 702: 699: 696: 693: 690: 687: 684: 664: 661: 658: 655: 652: 649: 646: 626: 623: 620: 617: 614: 611: 608: 605: 602: 599: 596: 572: 569: 566: 563: 560: 557: 554: 551: 548: 528: 525: 522: 519: 516: 513: 510: 490: 487: 484: 481: 478: 475: 472: 469: 466: 463: 460: 440: 437: 423: 420: 417: 416: 406: 396: 381: 380: 370: 360: 345: 344: 325: 278: 275: 272: 271: 261: 251: 236: 235: 225: 215: 200: 199: 180: 141: 138: 109: 106: 98:Itai Benjamini 93:Raissa D'Souza 68: 65: 26: 9: 6: 4: 3: 2: 1370: 1359: 1356: 1354: 1351: 1349: 1346: 1345: 1343: 1333: 1330: 1327: 1324: 1321: 1318: 1317: 1305: 1301: 1297: 1293: 1289: 1285: 1282:(4): 047101. 1281: 1277: 1270: 1268: 1258: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1222: 1220: 1218: 1216: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1174: 1169: 1165: 1161: 1154: 1139: 1132: 1130: 1120: 1115: 1111: 1108:Austin, Tim; 1104: 1102: 1086:on 2016-03-04 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1048: 1043: 1039: 1035: 1031: 1024: 1022: 1005: 1001: 997: 993: 989: 985: 981: 977: 973: 969: 962: 960: 958: 956: 954: 938:on 2013-02-24 937: 933: 929: 925: 921: 917: 913: 909: 905: 901: 897: 892: 887: 883: 879: 875: 871: 867: 861: 859: 843: 836: 832: 825: 810: 790: 781: 766: 744: 740: 727:Randomization 724: 720: 703: 700: 697: 694: 691: 688: 685: 659: 656: 653: 650: 647: 621: 618: 615: 612: 609: 606: 603: 597: 594: 586: 567: 564: 561: 558: 555: 552: 549: 523: 520: 517: 514: 511: 485: 482: 479: 476: 473: 470: 467: 461: 458: 450: 446: 436: 433: 429: 411: 407: 401: 397: 391: 387: 386: 375: 371: 365: 361: 355: 351: 350: 340: 326: 321: 307: 306: 303: 301: 296: 292: 288: 284: 266: 262: 256: 252: 246: 242: 241: 230: 226: 220: 216: 210: 206: 205: 195: 181: 176: 162: 161: 158: 155: 151: 147: 137: 134: 129: 127: 123: 122:topologically 114: 108:Lattice space 105: 103: 99: 94: 90: 86: 82: 78: 74: 64: 62: 58: 54: 50: 47: 44: 40: 33: 19: 1358:Traffic flow 1322:by Daniel Lu 1279: 1275: 1257:11441/107117 1231: 1227: 1163: 1159: 1153: 1141:. Retrieved 1119:math/0607759 1088:. Retrieved 1084:the original 1047:math/0504001 1037: 1033: 1008:. Retrieved 1004:the original 975: 972:Phys. Rev. E 971: 940:. Retrieved 936:the original 881: 878:Phys. Rev. A 877: 845:. Retrieved 835: 782: 730: 721: 449:Klein bottle 442: 431: 425: 338: 319: 299: 290: 282: 280: 193: 174: 149: 146:jammed phase 145: 143: 130: 119: 101: 89:steady-state 84: 70: 38: 36: 1143:14 December 1090:14 December 1040:: 167–178. 1010:14 December 942:14 December 866:Biham, Ofer 287:meta-stable 1342:Categories 828:References 339:disordered 283:disordered 148:, and the 81:Dov Levine 73:Ofer Biham 1228:Physica A 1198:0378-4371 1173:0709.3604 1160:Physica A 1072:1083-589X 916:1050-2947 847:4 January 811:β 791:α 695:− 689:− 657:− 619:− 610:… 598:∈ 565:− 559:− 515:− 483:− 474:… 462:∈ 104:/2 cars. 1304:21599339 1206:18321146 1080:10913106 1000:16089825 932:14543020 320:periodic 300:dominate 291:periodic 53:Rule 184 1284:Bibcode 1236:Bibcode 1178:Bibcode 1052:Bibcode 980:Bibcode 924:9907993 896:Bibcode 295:coprime 133:coprime 67:History 1302:  1204:  1196:  1078:  1070:  998:  930:  922:  914:  289:) and 79:, and 1202:S2CID 1168:arXiv 1114:arXiv 1076:S2CID 1042:arXiv 928:S2CID 886:arXiv 445:torus 432:et al 126:torus 85:et al 41:is a 1300:PMID 1194:ISSN 1145:2012 1092:2012 1068:ISSN 1012:2012 996:PMID 944:2012 920:PMID 912:ISSN 849:2015 96:and 59:and 37:The 1292:doi 1252:hdl 1244:doi 1232:389 1186:doi 1164:387 1060:doi 988:doi 904:doi 1344:: 1298:. 1290:. 1280:83 1278:. 1266:^ 1250:. 1242:. 1230:. 1214:^ 1200:. 1192:. 1184:. 1176:. 1162:. 1128:^ 1100:^ 1074:. 1066:. 1058:. 1050:. 1038:10 1036:. 1032:. 1020:^ 994:. 986:. 976:71 974:. 970:. 952:^ 926:. 918:. 910:. 902:. 894:. 882:46 880:. 876:. 868:; 857:^ 719:. 337:A 318:A 192:A 173:A 75:, 63:. 1306:. 1294:: 1286:: 1260:. 1254:: 1246:: 1238:: 1208:. 1188:: 1180:: 1170:: 1147:. 1122:. 1116:: 1094:. 1062:: 1054:: 1044:: 1014:. 990:: 982:: 946:. 906:: 898:: 888:: 851:. 767:L 745:2 741:L 707:) 704:0 701:, 698:1 692:x 686:N 683:( 663:) 660:1 654:N 651:, 648:x 645:( 625:} 622:1 616:N 613:, 607:, 604:0 601:{ 595:x 571:) 568:1 562:y 556:N 553:, 550:0 547:( 527:) 524:y 521:, 518:1 512:N 509:( 489:} 486:1 480:N 477:, 471:, 468:0 465:{ 459:y 102:N 34:. 20:)

Index

Biham-Middleton-Levine traffic model
Bray–Moss–Libby model
self-organizing
cellular automaton
traffic flow model
Rule 184
phase transitions
self-organization
Ofer Biham
A. Alan Middleton
Dov Levine
steady-state
Raissa D'Souza
Itai Benjamini

topologically
torus
coprime
organize itself






meta-stable
coprime


Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.