Knowledge

Bit slicing

Source 📝

47: 805: 147: 633:-bit) CPU, while 3-bit, or any CPU with higher odd number of bits, hasn't been manufactured and sold in volume). Four 4-bit ALU chips could be used to build a 16-bit ALU. It would take eight chips to build a 32-bit word ALU. The designer could add as many slices as required to manipulate longer word lengths. 945:
Combining components to produce bit-slice products allowed engineers and students to create more powerful and complex computers at a more reasonable cost, using off-the-shelf components that could be custom-configured. The complexities of creating a new computer architecture were greatly reduced when
915:
Prior to the mid-1970s and late 1980s there was some debate over how much bus width was necessary in a given computer system to make it function. Silicon chip technology and parts were much more expensive than today. Using multiple simpler, and thus less expensive, ALUs was seen as a way to increase
1603:
voltage of 2.5 mV Another 8-bit parallel ALU has been designed and fabricated with target processing frequency of 30 GHz To achieve comparable performance to CMOS parallel microprocessors operating at 2–3 GHz, 4-bit bit-slice processing should be performed with a clock frequency of
87:, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Knowledge. 59: 1594:
4-bit bit-slice arithmetic logic unit (ALU) for 32-bit rapid single-flux-quantum microprocessors was demonstrated. The proposed ALU covers all of the ALU operations for the MIPS32 instruction set. It consists of 3481
628:
For example, two 4-bit ALU chips could be arranged side by side, with control lines between them, to form an 8-bit ALU (result need not be power of two, e.g. three 1-bit units can make a 3-bit ALU, thus 3-bit (or
1558:
Tang, Guang-Ming; Takata, Kensuke; Tanaka, Masamitsu; Fujimaki, Akira; Takagi, Kazuyoshi; Takagi, Naofumi (January 2016) . "4-bit Bit-Slice Arithmetic Logic Unit for 32-bit RSFQ Microprocessors".
712:, a 16-bit processor based on the IMP chipset, e.g. four RALU chips with one each IMP16A/521D and IMP16A/522D CROM chips (additional optional CROM chips could provide instruction set additionis) 519: 990:
In more recent times, the term bit slicing was reused by Matthew Kwan to refer to the technique of using a general-purpose CPU to implement multiple parallel simple
1599:
with an area of 3.09 × 1.66 mm. It achieved the target frequency of 50 GHz and a latency of 524 ps for a 32-bit operation, at the designed
684:
IMP family, consisting primarily of the IMP-00A/520 RALU (also known as MM5750) and various masked ROM microcode and control chips (CROMs, also known as MM5751)
1434: 1690: 1464: 168: 161: 1651: 1096: 90:
Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.
827: 778: 774: 1604:
several tens of gigahertz. Several bit-serial arithmetic circuits have been successfully demonstrated with high-speed clocks of above 50 GHz
909: 1560: 872: 512: 641: 1315: 762: 758: 752: 748: 505: 452: 1404: 863: 835: 702: 692: 688: 458: 875: 670: 539:
from modules of processors of smaller bit width, for the purpose of increasing the word length; in theory to make an arbitrary
441: 430: 1621: 419: 1374: 211: 183: 1145: 98: 1634: 1037:"4-bit bit-slice arithmetic logic unit (ALU) for 32-bit rapid single-flux-quantum microprocessors was demonstrated". 230: 111:
Content in this edit is translated from the existing Russian Knowledge article at ]; see its history for attribution.
1426: 1685: 1223: 492: 190: 1485: 832: 487: 482: 644:
would be used to execute logic to provide data and control signals to regulate function of the component ALUs.
1534: 1075: 795:
RP-16, a 16-bit processor consisting of seven integrated circuits, using four RALU chips and three CROM chips.
965:
transistors. This allowed much higher clock rates, where speed was needed – for example, for
197: 1456: 1680: 901: 556: 472: 409: 251: 1655: 1104: 954: 822: 179: 1215: 396: 391: 386: 1661: 966: 741: 735: 406: 1288: 818:
AL1 (1969, considered to be the first microprocessor used in a commercial product, now discontinued)
1695: 1014: 953:
The main advantage was that bit slicing made it economically possible in smaller processors to use
106: 1046: 897: 768: 622: 544: 157: 27: 1660: – a bitslicing primer presenting a pedagogical bitsliced implementation of the 999: 696: 681: 469: 1214:]. Sammlung Göschen (in German). Vol. 2050 (4th reworked ed.). Berlin, Germany: 555:. The grouped processing components would then have the capability to process the chosen full 970: 610: 567: 536: 127: 977:, the combination of flexibility and speed, before discrete CPUs were able to deliver that. 1569: 1030: 938:
At the time 16-bit processors were common but expensive, and 8-bit processors, such as the
935:
4-bit ALU chips to implement the needed word width while using modern integrated circuits.
371: 8: 1396: 726: 618: 204: 1573: 1596: 1585: 1173: 815: 730: 614: 447: 436: 1630: 1219: 1034: 896:
Bit slicing, although not called that at the time, was also used in computers before
705:, an 8-bit processor based on the IMP chipset, using two RALU chips and one CROM chip 356: 351: 346: 102: 1589: 657:
family (1974, now discontinued), e.g. Intel 3002 with Intel 3001, second-sourced by
1577: 1264: 1026: 932: 880: 787: 607: 571: 341: 336: 331: 326: 321: 316: 311: 301: 296: 291: 286: 281: 276: 120: 991: 603: 599: 595: 591: 381: 271: 266: 261: 1366: 1208:
Digitale Rechenautomaten – Eine Einführung in die Struktur von Computerhardware
637: 563: 1581: 994:
using general logic instructions to perform single-instruction multiple-data (
904:, or very-large-scale integration circuits). The first bit-sliced machine was 1674: 1206:
Klar, Rainer (1989) . "5.2 Der Mikroprozessor, ein Universal-Rechenautomat".
927:
series mainframes (one of the oldest series, originating in the 1950s) has a
804: 1665: 1212:
Digital Computers – An Introduction into the structure of computer hardware
868: 575: 920:
microprocessors were being discussed at the time, few were in production.
1491:. Delran, NJ, USA: Datapro Research Corporation. January 1983. 70C-877-12 1066:
Benadjila, Ryad; Guo, Jian; Lomné, Victor; Peyrin, Thomas (2014-03-21) .
924: 20: 1338: 1509: 974: 958: 654: 306: 109:
to the source of your translation. A model attribution edit summary is
1152: 1006: 667: 658: 548: 425: 35: 1240: 1121: 729:
5700/6700 family (1974) e.g. MMI 5701 / MMI 6701, second-sourced by
146: 1067: 860: 840: 792: 783: 662: 1025:
To simplify the circuit structure and reduce the hardware cost of
1600: 1395:
Kurth, Rüdiger; Groß, Martin; Hunger, Henry, eds. (2021-09-27) .
905: 854: 552: 84: 1109:
Here's how you would put three 1-bit ALU to create a 3-bit ALU
928: 917: 720: 709: 1068:"Implementing Lightweight Block Ciphers on x86 Architectures" 947: 621:
signals that are internal to the processor in non-bitsliced
995: 962: 931:
architecture, and the 1100/60 introduced in 1979 used nine
562:
Bit slicing more or less died out due to the advent of the
1316:"5701/6701 4-Bit Expandable Bipolar Microcontroller Aug74" 1388: 985: 939: 717: 579: 1557: 942:, were widely used in the nascent home-computer market. 1065: 1013:, which achieved significant gains in performance of 547:(CPU). Each of these component modules processes one 80: 34:
used in computer graphics and image processing, see
946:the details of the ALU were already specified (and 1448: 916:computing power in a cost-effective manner. While 1459:[Applications of the U830C and chipset]. 1672: 1146:"Technology Leadership - Bipolar Microprocessor" 1394: 1020: 910:University of Cambridge Mathematical Laboratory 1561:IEEE Transactions on Applied Superconductivity 1257: 1233: 998:) operations. This technique is also known as 105:accompanying your translation by providing an 71:Click for important translation instructions. 58:expand this article with text translated from 1138: 1059: 513: 1166: 738:(1975) and SBP0401, cascadable up to 16 bits 590:Bit-slice processors (BSPs) usually include 1691:University of Cambridge Computer Laboratory 1535:"A Fast New DES Implementation in Software" 1478: 1418: 1289:"File:MMI 5701-6701 MCU (August, 1974).pdf" 1201: 1199: 1197: 1195: 1193: 723:family (1975), e.g. AM2901, AM2901A, AM2903 30:construction technique. For bit slicing as 16:Method of constructing a computer processor 1360: 1358: 520: 506: 117:{{Translated|ru|Микропроцессорная секция}} 1619: 1551: 1011:A Fast New DES Implementation in Software 231:Learn how and when to remove this message 1486:"Computers Sperry Univac 1100/60 System" 1331: 1308: 1190: 1089: 803: 1457:"Einsatzgebiete des U830C und Chipsatz" 1454: 1364: 1355: 1281: 1114: 891: 1673: 1424: 986:Software use on non-bit-slice hardware 585: 574:and as a software technique, e.g. for 167:Please improve this article by adding 1532: 1502: 1205: 845:(1978/1981), cascadable up to 32 bit 140: 40: 1526: 1005:This was initially in reference to 613:(ALU) and control lines (including 13: 1613: 535:is a technique for constructing a 14: 1707: 1644: 1620:Mick, John; Brick, James (1980). 1265:"5700/6700 - Monolithic Memories" 973: – or, as in the 900:(LSI, the predecessor to today's 647:Known bit-slice microprocessors: 1652:"Untwisted: Bit-sliced TEA time" 1174:"IMP-4 - National Semiconductor" 957:, which switch much faster than 246:Computer architecture bit widths 145: 45: 1623:Bit-Slice Microprocessor Design 1467:from the original on 2019-11-10 1437:from the original on 2016-08-09 1407:from the original on 2021-12-03 1399:[Integrated Circuits]. 1377:from the original on 2018-07-18 1078:from the original on 2017-08-17 898:large-scale integrated circuits 673:family (1977, now discontinued) 566:. Recently it has been used in 115:You may also add the template 1: 1455:Salomon, Peter (2007-06-25). 1241:"6701 - The CPU Shack Museum" 1122:"3002 - The CPU Shack Museum" 1052: 980: 169:secondary or tertiary sources 1021:Bit-sliced quantum computers 559:of a given software design. 7: 1216:Walter de Gruyter & Co. 1097:"How to Create a 1-bit ALU" 1040: 786:M10800 family (1979), e.g. 10: 1712: 1397:"Integrierte Schaltkreise" 695:(1973), second-sourced by 79:Machine translation, like 26:This article is about the 25: 18: 1662:Tiny Encryption Algorithm 1582:10.1109/TASC.2015.2507125 742:Texas Instruments SN74181 736:Texas Instruments SBP0400 60:the corresponding article 1365:Mueller, Dieter (2012). 19:Not to be confused with 1686:Central processing unit 1047:Bit-serial architecture 885:(1979/1982), unreleased 545:central processing unit 126:For more guidance, see 1433:. Nuremberg, Germany. 1427:"Eastern Bloc DEC PDP" 1031:MIPS32 instruction set 1017:by using this method. 1000:SIMD within a register 809: 568:arithmetic logic units 470:Decimal floating-point 156:relies excessively on 1461:Robotrontechnik-Forum 1425:Oppelt, Dirk (2016). 1029:(proposed to run the 971:matrix transformation 823:SN54AS888 / SN74AS888 807: 611:arithmetic logic unit 407:Binary floating-point 128:Knowledge:Translation 99:copyright attribution 1343:The CPU Shack Museum 892:Historical necessity 32:bit plane separation 1681:Digital electronics 1597:Josephson junctions 1574:2016ITAS...2607125T 1533:Biham, Eli (1997). 1074:. Report 2013/445. 955:bipolar transistors 727:Monolithic Memories 586:Operational details 1401:robotrontechnik.de 1072:Cryptology Archive 821:Texas Instruments 816:Four-Phase Systems 810: 757:Texas Instruments 747:Texas Instruments 731:ITT Semiconductors 107:interlanguage link 1539:cs.technion.ac.il 1431:cpu-collection.de 1027:quantum computers 572:quantum computers 551:or "slice" of an 530: 529: 241: 240: 233: 215: 139: 138: 72: 68: 1703: 1659: 1654:. Archived from 1640: 1628: 1607: 1606: 1555: 1549: 1548: 1546: 1545: 1530: 1524: 1523: 1521: 1520: 1506: 1500: 1499: 1497: 1496: 1490: 1482: 1476: 1475: 1473: 1472: 1452: 1446: 1445: 1443: 1442: 1422: 1416: 1415: 1413: 1412: 1392: 1386: 1385: 1383: 1382: 1362: 1353: 1352: 1350: 1349: 1335: 1329: 1328: 1326: 1325: 1320: 1312: 1306: 1305: 1303: 1302: 1293: 1285: 1279: 1278: 1276: 1275: 1261: 1255: 1254: 1252: 1251: 1237: 1231: 1229: 1203: 1188: 1187: 1185: 1184: 1170: 1164: 1163: 1161: 1160: 1150: 1142: 1136: 1135: 1133: 1132: 1118: 1112: 1111: 1103:. Archived from 1093: 1087: 1086: 1084: 1083: 1063: 1033:) a 50 GHz 1009:'s 1997 article 992:virtual machines 933:Motorola MC10800 884: 844: 522: 515: 508: 243: 242: 236: 229: 225: 222: 216: 214: 173: 149: 141: 118: 112: 85:Google Translate 70: 66: 49: 48: 41: 1711: 1710: 1706: 1705: 1704: 1702: 1701: 1700: 1696:Bit-slice chips 1671: 1670: 1650: 1647: 1637: 1629:. McGraw-Hill. 1626: 1616: 1614:Further reading 1611: 1610: 1556: 1552: 1543: 1541: 1531: 1527: 1518: 1516: 1514:darkside.com.au 1508: 1507: 1503: 1494: 1492: 1488: 1484: 1483: 1479: 1470: 1468: 1453: 1449: 1440: 1438: 1423: 1419: 1410: 1408: 1393: 1389: 1380: 1378: 1363: 1356: 1347: 1345: 1337: 1336: 1332: 1323: 1321: 1318: 1314: 1313: 1309: 1300: 1298: 1296:en.wikichip.org 1291: 1287: 1286: 1282: 1273: 1271: 1269:en.wikichip.org 1263: 1262: 1258: 1249: 1247: 1239: 1238: 1234: 1226: 1204: 1191: 1182: 1180: 1178:en.wikichip.org 1172: 1171: 1167: 1158: 1156: 1148: 1144: 1143: 1139: 1130: 1128: 1120: 1119: 1115: 1107:on 2017-05-08. 1095: 1094: 1090: 1081: 1079: 1064: 1060: 1055: 1043: 1035:superconducting 1023: 988: 983: 908:, built at the 894: 878: 838: 588: 526: 497: 464: 401: 366: 237: 226: 220: 217: 174: 172: 166: 162:primary sources 150: 135: 134: 133: 116: 110: 73: 50: 46: 39: 24: 17: 12: 11: 5: 1709: 1699: 1698: 1693: 1688: 1683: 1669: 1668: 1658:on 2013-10-21. 1646: 1645:External links 1643: 1642: 1641: 1635: 1615: 1612: 1609: 1608: 1568:(1): 2507125. 1550: 1525: 1510:"Bitslice DES" 1501: 1477: 1447: 1417: 1387: 1354: 1330: 1307: 1280: 1256: 1232: 1224: 1189: 1165: 1137: 1113: 1101:www.cs.umd.edu 1088: 1057: 1056: 1054: 1051: 1050: 1049: 1042: 1039: 1022: 1019: 987: 984: 982: 979: 912:in 1956–1958. 893: 890: 889: 888: 887: 886: 866: 858: 850:16-bit slice: 848: 847: 846: 830: 828:Fairchild 100K 825: 819: 802: 801: 798: 797: 796: 790: 781: 777:(MACROLOGIC), 775:Fairchild 9400 772: 766: 755: 745: 739: 733: 724: 715: 714: 713: 706: 699: 676: 675: 674: 665: 638:microsequencer 587: 584: 564:microprocessor 528: 527: 525: 524: 517: 510: 502: 499: 498: 496: 495: 490: 485: 479: 476: 475: 466: 465: 463: 462: 456: 450: 445: 439: 434: 428: 423: 416: 413: 412: 403: 402: 400: 399: 394: 389: 384: 378: 375: 374: 368: 367: 365: 364: 359: 354: 349: 344: 339: 334: 329: 324: 319: 314: 309: 304: 299: 294: 289: 284: 279: 274: 269: 264: 258: 255: 254: 248: 247: 239: 238: 153: 151: 144: 137: 136: 132: 131: 124: 113: 91: 88: 77: 74: 55: 54: 53: 51: 44: 15: 9: 6: 4: 3: 2: 1708: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1678: 1676: 1667: 1663: 1657: 1653: 1649: 1648: 1638: 1636:0-07-041781-4 1632: 1625: 1624: 1618: 1617: 1605: 1602: 1598: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1562: 1554: 1540: 1536: 1529: 1515: 1511: 1505: 1487: 1481: 1466: 1463:(in German). 1462: 1458: 1451: 1436: 1432: 1428: 1421: 1406: 1403:(in German). 1402: 1398: 1391: 1376: 1372: 1368: 1367:"The MC10800" 1361: 1359: 1344: 1340: 1334: 1317: 1311: 1297: 1290: 1284: 1270: 1266: 1260: 1246: 1242: 1236: 1227: 1221: 1218:p. 198. 1217: 1213: 1209: 1202: 1200: 1198: 1196: 1194: 1179: 1175: 1169: 1154: 1147: 1141: 1127: 1123: 1117: 1110: 1106: 1102: 1098: 1092: 1077: 1073: 1069: 1062: 1058: 1048: 1045: 1044: 1038: 1036: 1032: 1028: 1018: 1016: 1012: 1008: 1003: 1001: 997: 993: 978: 976: 972: 969:functions or 968: 964: 960: 956: 951: 949: 943: 941: 936: 934: 930: 926: 921: 919: 913: 911: 907: 903: 899: 882: 877: 874: 870: 867: 865: 862: 859: 856: 852: 851: 849: 842: 837: 834: 831: 829: 826: 824: 820: 817: 814: 813: 812: 811: 806: 799: 794: 791: 789: 785: 782: 780: 776: 773: 770: 767: 764: 760: 756: 754: 750: 746: 743: 740: 737: 734: 732: 728: 725: 722: 719: 716: 711: 707: 704: 700: 698: 694: 690: 686: 685: 683: 680: 679: 678:4-bit slice: 677: 672: 669: 666: 664: 660: 656: 653: 652: 651:2-bit slice: 650: 649: 648: 645: 643: 639: 634: 632: 626: 624: 620: 616: 612: 609: 605: 601: 597: 593: 583: 581: 577: 573: 569: 565: 560: 558: 554: 550: 546: 542: 538: 534: 523: 518: 516: 511: 509: 504: 503: 501: 500: 494: 491: 489: 486: 484: 481: 480: 478: 477: 474: 471: 468: 467: 460: 457: 454: 451: 449: 446: 443: 440: 438: 435: 432: 429: 427: 424: 421: 418: 417: 415: 414: 411: 408: 405: 404: 398: 395: 393: 390: 388: 385: 383: 380: 379: 377: 376: 373: 370: 369: 363: 360: 358: 355: 353: 350: 348: 345: 343: 340: 338: 335: 333: 330: 328: 325: 323: 320: 318: 315: 313: 310: 308: 305: 303: 300: 298: 295: 293: 290: 288: 285: 283: 280: 278: 275: 273: 270: 268: 265: 263: 260: 259: 257: 256: 253: 250: 249: 245: 244: 235: 232: 224: 213: 210: 206: 203: 199: 196: 192: 189: 185: 182: –  181: 180:"Bit slicing" 177: 176:Find sources: 170: 164: 163: 159: 154:This article 152: 148: 143: 142: 129: 125: 122: 114: 108: 104: 100: 96: 92: 89: 86: 82: 78: 76: 75: 69: 63: 61: 56:You can help 52: 43: 42: 37: 33: 29: 22: 1666:block cipher 1656:the original 1622: 1593: 1565: 1559: 1553: 1542:. Retrieved 1538: 1528: 1517:. Retrieved 1513: 1504: 1493:. Retrieved 1480: 1469:. Retrieved 1460: 1450: 1439:. Retrieved 1430: 1420: 1409:. Retrieved 1400: 1390: 1379:. Retrieved 1370: 1346:. Retrieved 1342: 1333: 1322:. Retrieved 1310: 1299:. Retrieved 1295: 1283: 1272:. Retrieved 1268: 1259: 1248:. Retrieved 1245:cpushack.com 1244: 1235: 1225:3-11011700-2 1211: 1207: 1181:. Retrieved 1177: 1168: 1157:. Retrieved 1140: 1129:. Retrieved 1126:cpushack.com 1125: 1116: 1108: 1105:the original 1100: 1091: 1080:. Retrieved 1071: 1061: 1024: 1010: 1004: 989: 952: 944: 937: 922: 914: 895: 873:ZFTM Dresden 869:ZFT Robotron 800:8-bit slice: 646: 635: 630: 627: 589: 576:cryptography 561: 540: 532: 531: 361: 227: 221:January 2014 218: 208: 201: 194: 187: 175: 155: 103:edit summary 94: 65: 57: 31: 1592:. 1300106. 1230:(320 pages) 925:UNIVAC 1100 879: [ 839: [ 642:control ROM 570:(ALUs) for 557:word-length 533:Bit slicing 372:Application 362:bit slicing 21:Bit-banding 1675:Categories 1544:2017-11-05 1519:2017-11-05 1495:2021-10-11 1471:2021-12-07 1441:2021-12-07 1411:2021-12-07 1381:2017-11-05 1348:2017-11-05 1339:"SN74S481" 1324:2021-05-24 1301:2017-11-05 1274:2017-11-05 1250:2017-11-05 1183:2017-11-05 1159:2021-10-11 1131:2017-11-05 1082:2019-12-28 1053:References 981:Modern use 975:Xerox Alto 655:Intel 3000 625:designs). 191:newspapers 158:references 67:(May 2017) 62:in Russian 1664:(TEA), a 1153:Signetics 1007:Eli Biham 769:Fairchild 708:National 701:National 687:National 668:Signetics 659:Signetics 549:bit field 537:processor 473:precision 410:precision 121:talk page 36:Bit plane 28:processor 1590:25478156 1465:Archived 1435:Archived 1405:Archived 1375:Archived 1371:6502.org 1076:Archived 1041:See also 1002:(SWAR). 948:debugged 861:Synopsys 793:Raytheon 784:Motorola 763:SN74S482 759:SN74S481 753:SN74S282 749:SN74S281 697:Rockwell 682:National 663:Intersil 619:overflow 97:provide 1601:DC bias 1570:Bibcode 1155:. S2.95 906:EDSAC 2 855:Am29100 788:MC10800 553:operand 205:scholar 119:to the 101:in the 64:. 1633:  1588:  1222:  929:36-bit 918:32-bit 864:49C402 857:family 765:(1976) 744:(1970) 721:Am2900 710:IMP-16 608:16-bit 582:CPUs. 207:  200:  193:  186:  178:  1627:(PDF) 1586:S2CID 1489:(PDF) 1319:(PDF) 1292:(PDF) 1210:[ 1149:(PDF) 883:] 843:] 836:U830C 808:U830C 771:33705 761:with 751:with 703:IMP-8 693:IMP-4 689:GPC/P 615:carry 543:-bit 212:JSTOR 198:books 81:DeepL 1631:ISBN 1220:ISBN 996:SIMD 963:CMOS 959:NMOS 923:The 902:VLSI 876:U840 853:AMD 779:4700 671:8X02 661:and 461:(×8) 455:(×4) 444:(×2) 433:(×1) 422:(×½) 184:news 95:must 93:You 1578:doi 1015:DES 967:DSP 961:or 950:). 940:Z80 833:ZMD 718:AMD 640:or 623:CPU 617:or 606:or 580:x86 578:in 493:128 459:256 453:128 357:512 352:256 347:128 252:Bit 160:to 83:or 1677:: 1584:. 1576:. 1566:26 1564:. 1537:. 1512:. 1429:. 1373:. 1369:. 1357:^ 1341:. 1294:. 1267:. 1243:. 1192:^ 1176:. 1151:. 1124:. 1099:. 1070:. 881:de 841:de 691:/ 636:A 604:8- 602:, 600:4- 598:, 596:2- 594:, 592:1- 488:64 483:32 448:80 442:64 437:40 431:32 426:24 420:16 397:64 392:32 387:16 342:64 337:60 332:48 327:45 322:36 317:32 312:31 307:30 302:28 297:26 292:24 287:18 282:16 277:12 171:. 1639:. 1580:: 1572:: 1547:. 1522:. 1498:. 1474:. 1444:. 1414:. 1384:. 1351:. 1327:. 1304:. 1277:. 1253:. 1228:. 1186:. 1162:. 1134:. 1085:. 871:/ 631:n 541:n 521:e 514:t 507:v 382:8 272:8 267:4 262:1 234:) 228:( 223:) 219:( 209:· 202:· 195:· 188:· 165:. 130:. 123:. 38:. 23:.

Index

Bit-banding
processor
Bit plane
the corresponding article
DeepL
Google Translate
copyright attribution
edit summary
interlanguage link
talk page
Knowledge:Translation

references
primary sources
secondary or tertiary sources
"Bit slicing"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Bit
1
4
8
12
16
18
24

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.