Knowledge

Cartan–Dieudonné theorem

Source 📝

363: 120:
about the origin (which can be written as the composition of two reflections). Any arbitrary composition of such rotations and reflections can be rewritten as a composition of no more than 2 reflections. Similarly, in three-dimensional Euclidean space, every orthogonal transformation can be described
200: 404: 93:
which preserve the value of the bilinear form between every pair of vectors; in Euclidean space, this corresponds to preserving distances and
304: 17: 397: 195: 423: 339: 273: 238: 205: 433: 327: 78: 390: 378: 331: 190: 296: 90: 44: 21: 162: 63: 52: 428: 74: 117: 86: 89:
is also a symmetric bilinear space). The orthogonal transformations in the space are those
56: 349: 314: 283: 248: 8: 158: 98: 223: 335: 300: 269: 234: 122: 40: 370: 345: 310: 279: 244: 102: 265: 257: 230: 154: 126: 113: 109: 70: 374: 36: 417: 82: 218: 28: 112:
plane, every orthogonal transformation is either a reflection across a
362: 69:
The notion of a symmetric bilinear space is a generalization of
94: 165:
not equal to 2. Then, every element of the orthogonal group
295:. London Mathematical Society Student Texts. Vol. 78. 121:
as a single reflection, a rotation (2 reflections), or an
255: 222: 55:symmetric bilinear space can be described as the 415: 229:. Texts in Applied Mathematics. Vol. 38. 398: 324:Introduction to quadratic forms over fields 405: 391: 97:. These orthogonal transformations form a 129:are added that represent 4 reflections. 290: 217: 416: 125:(3 reflections). In four dimensions, 357: 196:Coordinate rotations and reflections 108:For example, in the two-dimensional 321: 132: 13: 293:Clifford Algebras: An Introduction 225:Geometric Methods and Applications 14: 445: 361: 330:. Vol. 67. Providence, RI: 157:symmetric bilinear space over a 73:whose structure is defined by a 328:Graduate Studies in Mathematics 260:; Lafontaine, Jacques (2004). 101:under composition, called the 1: 332:American Mathematical Society 211: 377:. You can help Knowledge by 177:is a composition of at most 7: 191:Indefinite orthogonal group 184: 81:, so is not necessarily an 10: 450: 356: 297:Cambridge University Press 291:Garling, D. J. H. (2011). 15: 45:orthogonal transformation 43:, establishes that every 424:Theorems in group theory 116:through the origin or a 33:Cartan–Dieudonné theorem 201:Householder reflections 75:symmetric bilinear form 434:Abstract algebra stubs 373:-related article is a 87:pseudo-Euclidean space 16:For other uses, see 322:Lam, T. Y. (2005). 262:Riemannian Geometry 256:Gallot, Sylvestre; 77:(which need not be 22:Dieudonné's theorem 85:– for instance, a 386: 385: 123:improper rotation 79:positive definite 441: 407: 400: 393: 371:abstract algebra 365: 358: 353: 318: 306:978-1-10742219-3 287: 264:. Universitext. 258:Hulin, Dominique 252: 228: 219:Gallier, Jean H. 206:Chasles' theorem 176: 148: 133:Formal statement 127:double rotations 103:orthogonal group 18:Cartan's theorem 449: 448: 444: 443: 442: 440: 439: 438: 414: 413: 412: 411: 342: 307: 276: 266:Springer-Verlag 241: 231:Springer-Verlag 214: 187: 166: 138: 135: 71:Euclidean space 25: 12: 11: 5: 447: 437: 436: 431: 429:Bilinear forms 426: 410: 409: 402: 395: 387: 384: 383: 366: 355: 354: 340: 319: 305: 288: 274: 253: 239: 213: 210: 209: 208: 203: 198: 193: 186: 183: 163:characteristic 155:non-degenerate 153:-dimensional, 134: 131: 41:Jean Dieudonné 35:, named after 9: 6: 4: 3: 2: 446: 435: 432: 430: 427: 425: 422: 421: 419: 408: 403: 401: 396: 394: 389: 388: 382: 380: 376: 372: 367: 364: 360: 359: 351: 347: 343: 341:0-8218-1095-2 337: 333: 329: 325: 320: 316: 312: 308: 302: 298: 294: 289: 285: 281: 277: 275:3-540-20493-8 271: 267: 263: 259: 254: 250: 246: 242: 240:0-387-95044-3 236: 232: 227: 226: 220: 216: 215: 207: 204: 202: 199: 197: 194: 192: 189: 188: 182: 181:reflections. 180: 174: 170: 164: 160: 156: 152: 146: 142: 130: 128: 124: 119: 115: 111: 106: 104: 100: 96: 92: 91:automorphisms 88: 84: 83:inner product 80: 76: 72: 67: 65: 62: 58: 54: 50: 46: 42: 38: 34: 30: 23: 19: 379:expanding it 368: 323: 292: 261: 224: 178: 172: 168: 150: 144: 140: 136: 107: 68: 60: 48: 32: 26: 64:reflections 59:of at most 57:composition 53:dimensional 37:Élie Cartan 29:mathematics 418:Categories 350:1068.11023 315:1235.15025 284:1068.53001 249:1031.53001 212:References 110:Euclidean 221:(2001). 185:See also 118:rotation 348:  338:  313:  303:  282:  272:  247:  237:  149:be an 95:angles 47:in an 31:, the 369:This 161:with 159:field 99:group 375:stub 336:ISBN 301:ISBN 270:ISBN 235:ISBN 137:Let 114:line 39:and 20:and 346:Zbl 311:Zbl 280:Zbl 245:Zbl 27:In 420:: 344:. 334:. 326:. 309:. 299:. 278:. 268:. 243:. 233:. 171:, 167:O( 143:, 105:. 66:. 406:e 399:t 392:v 381:. 352:. 317:. 286:. 251:. 179:n 175:) 173:b 169:V 151:n 147:) 145:b 141:V 139:( 61:n 51:- 49:n 24:.

Index

Cartan's theorem
Dieudonné's theorem
mathematics
Élie Cartan
Jean Dieudonné
orthogonal transformation
dimensional
composition
reflections
Euclidean space
symmetric bilinear form
positive definite
inner product
pseudo-Euclidean space
automorphisms
angles
group
orthogonal group
Euclidean
line
rotation
improper rotation
double rotations
non-degenerate
field
characteristic
Indefinite orthogonal group
Coordinate rotations and reflections
Householder reflections
Chasles' theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.