Knowledge

Confluence (abstract rewriting)

Source 📝

1038: 1030: 28: 62: 643: 530:
This proof starts from the given group axioms A1–A3, and establishes five propositions R4, R6, R10, R11, and R12, each of them using some earlier ones, and R12 being the main theorem. Some of the proofs require non-obvious, or even creative, steps, like applying axiom A2 in reverse, thereby rewriting
68:
The usual rules of elementary arithmetic form an abstract rewriting system. For example, the expression (11 + 9) × (2 + 4) can be evaluated starting either at the left or at the right parentheses; however, in both cases the same result is eventually obtained. If every arithmetic expression evaluates
1365:
it is confluent. Because of this equivalence, a fair bit of variation in definitions is encountered in the literature. For instance, in "Terese" the Church–Rosser property and confluence are defined to be synonymous and identical to the definition of confluence presented here; Church–Rosser as
1374:
The definition of local confluence differs from that of global confluence in that only elements reached from a given element in a single rewriting step are considered. By considering one element reached in a single step and another element reached by an arbitrary sequence, we arrive at the
69:
to the same result regardless of reduction strategy, the arithmetic rewriting system is said to be ground-confluent. Arithmetic rewriting systems may be confluent or only ground-confluent depending on details of the rewriting system.
1354:; that is the normal form of an object is unique if it exists, but it may well not exist. In lambda calculus for instance, the expression (λx.xx)(λx.xx) does not have a normal form because there exists an infinite sequence of 617:
The success of that method does not depend on a certain sophisticated order in which to apply rewrite rules, as confluence ensures that any sequence of rule applications will eventually lead to the same result (while the
1291: 49:
systems, describing which terms in such a system can be rewritten in more than one way, to yield the same result. This article describes the properties in the most abstract setting of an
1321: 951: 1668: 626:, not a tinge of creativity is required to perform proofs of term equality; that task hence becomes amenable to computer programs. Modern approaches handle more general 1347:.) In a rewriting system with the Church–Rosser property the word problem may be reduced to the search for a common successor. In a Church–Rosser system, an object has 1477:
A semi-confluent element need not be confluent, but a semi-confluent rewriting system is necessarily confluent, and a confluent system is trivially semi-confluent.
622:
property ensures that any sequence will eventually reach an end at all). Therefore, if a confluent and terminating term rewriting system can be provided for some
658:
in zero or more rewrite steps (denoted by the asterisk). In order for the rewrite relation to be confluent, both reducts must in turn reduce to some common
1485:
Strong confluence is another variation on local confluence that allows us to conclude that a rewriting system is globally confluent. An element
1181:. Since a sequence of reduction sequences is again a reduction sequence (or, equivalently, since forming the reflexive-transitive closure is 1671:, with its propositions consistently numbered. Using it, a proof of e.g. R6 consists in applying R11 and R12 in any order to the term ( 17: 1230:
A rewriting system may be locally confluent without being (globally) confluent. Examples are shown in figures 1 and 2. However,
1173:, introduced as a notation for reduction sequences, may be viewed as a rewriting system in its own right, whose relation is the 539:
was to avoid the need for such steps, which are difficult to find by an inexperienced human, let alone by a computer program .
1908: 1741: 1664: 1601: 811:
of →. Using the example from the previous paragraph, we have (11+9)×(2+4) → 20×(2+4) and 20×(2+4) → 20×6, so (11+9)×(2+4)
1343:
has this property; hence the name of the property. (The fact that lambda calculus has this property is also known as the
1257: 1731: 1577:
A confluent element need not be strongly confluent, but a strongly confluent rewriting system is necessarily confluent.
1234:
states that if a locally confluent rewriting system has no infinite reduction sequences (in which case it is said to be
1174: 808: 1880: 1769: 1366:
defined here remains unnamed, but is given as an equivalent property; this departure from other texts is deliberate.
1631: 1351: 1296: 1037: 1898: 1828: 928: 1029: 1667:
can be used to compute such a system from a given set of equations. Such a system e.g. for groups is shown
1962: 670:
in which nodes represent expressions and edges represent rewrites. So, for example, if the expression
543: 1608: 1344: 50: 77: 1797:
Alonzo Church and J. Barkley Rosser. Some properties of conversion. Trans. AMS, 39:472-482, 1936
27: 1626: 1041:
Figure 2: Infinite non-cyclic, locally-confluent, but not globally confluent rewrite system
552:, a straightforward method exists to prove equality between two expressions (also known as 8: 1621: 1591: 1182: 73: 1760:
N. Dershowitz and J.-P. Jouannaud (1990). "Rewrite Systems". In Jan van Leeuwen (ed.).
570:, apply equalities from left to right as long as possible, eventually obtaining a term 535:⋅ a" in the first step of R6's proof. One of the historical motivations to develop the 1935: 1904: 1876: 1824: 1765: 1764:. Handbook of Theoretical Computer Science. Vol. B. Elsevier. pp. 243–320. 1737: 1336: 1231: 961:
is confluent, we say that → is confluent. This property is also sometimes called the
623: 1005:. The single-reduction variant is strictly stronger than the multi-reduction one. 965:, after the shape of the diagram shown on the right. Some authors reserve the term 1701: 1595: 969:
for a variant of the diagram with single reductions everywhere; that is, whenever
1868: 1340: 548: 1875:. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press. 728:. Intuitively, this means that the corresponding graph has a directed edge from 61: 1938: 1362: 667: 1355: 1033:
Figure 1: Cyclic, locally-confluent, but not globally confluent rewrite system
37:
is inspired from geography, where it means the meeting of two bodies of water.
1956: 1894: 1332: 72:
A second, more abstract example is obtained from the following proof of each
1890: 554: 1155:
in one step. In analogy with this, confluence is sometimes referred to as
1018: 1139:
is locally confluent, then → is called locally confluent, or having the
1587: 33: 1943: 46: 1720:, p. 134: axiom and proposition names follow the original text 1759: 1755: 1753: 634:
rewriting systems; the latter are a special case of the former.
614:
that can be proven equal at all can be done so by that method.
1750: 1574:
is strongly confluent, we say that → is strongly confluent.
825:
With this established, confluence can be defined as follows.
642: 598:
are proven equal. More importantly, if they disagree, then
1837: 1800: 1594:
is a confluent rewrite system provided one works with a
1361:
A rewriting system possesses the Church–Rosser property
788:, indicating the existence of a reduction sequence from 1779: 1730:
Robinson, Alan J. A.; Voronkov, Andrei (5 July 2001).
1474:
is semi-confluent, we say that → is semi-confluent.
1299: 1260: 1021:
is confluent, that is, every term without variables.
931: 1849: 1823:. Boca Raton: Chapman & Hall/CRC. p. 184. 1286:{\displaystyle x{\stackrel {*}{\leftrightarrow }}y} 1933: 1315: 1285: 945: 1954: 1729: 1580: 1216:. It follows that → is confluent if and only if 1917: 1717: 1604:follows from confluence of the braid relations. 1918:Bläsius, K. H.; Bürckert, H.-J., eds. (1992). 1699: 1736:. Gulf Professional Publishing. p. 560. 712:). This is represented using arrow notation; 1889: 1843: 1806: 1654:to emphasize their left-to-right orientation 1143:. This is different from confluence in that 1607:β-reduction of λ-terms is confluent by the 739:If there is a path between two graph nodes 1316:{\displaystyle x{\mathbin {\downarrow }}y} 1250:A rewriting system is said to possess the 637: 1375:intermediate concept of semi-confluence: 1245: 946:{\displaystyle b\mathbin {\downarrow } c} 666:A rewriting system can be expressed as a 1702:"Rewrite systems for integer arithmetic" 1036: 1028: 641: 606:cannot be equal. That is, any two terms 26: 1700:Walters, H.R.; Zantema, H. (Oct 1994). 14: 1955: 1866: 1855: 1818: 1785: 1358:(λx.xx)(λx.xx) → (λx.xx)(λx.xx) → ... 56: 1934: 41:In computer science and mathematics, 1480: 1008: 1024: 24: 1369: 1242:), then it is globally confluent. 60: 25: 1974: 1927: 1665:Knuth–Bendix completion algorithm 1679:; no other rules are applicable. 1632:Normal form (abstract rewriting) 582:in a similar way. If both terms 1812: 1733:Handbook of Automated Reasoning 1903:. Cambridge University Press. 1791: 1723: 1711: 1693: 1657: 1644: 1305: 1268: 936: 13: 1: 1686: 1581:Examples of confluent systems 1175:reflexive-transitive closure 809:reflexive-transitive closure 7: 1900:Term Rewriting and All That 1762:Formal Models and Semantics 1718:Bläsius & Bürckert 1992 1615: 1141:weak Church–Rosser property 1013:A term rewriting system is 10: 1979: 1922:. Oldenbourg. p. 291. 1871:; de Vrijer, Roel (2003). 628:abstract rewriting systems 511:by R11(r)     51:abstract rewriting system 1844:Baader & Nipkow 1998 1807:Baader & Nipkow 1998 1637: 537:theory of term rewriting 227:by A3(r)     1867:"Terese"; Bezem, Marc; 1675:)⋅1 to obtain the term 751:. So, for instance, if 638:General case and theory 1873:Term rewriting systems 1819:Cooper, S. B. (2004). 1776:Here: p.268, Fig.2a+b. 1317: 1287: 1252:Church–Rosser property 1246:Church–Rosser property 1227:is locally confluent. 1042: 1034: 947: 674:can be rewritten into 663: 590:literally agree, then 76:element equalling the 65: 38: 18:Church–Rosser property 1707:. Utrecht University. 1627:Critical pair (logic) 1609:Church–Rosser theorem 1345:Church–Rosser theorem 1318: 1288: 1151:must be reduced from 1040: 1032: 985:, there must exist a 948: 645: 544:term rewriting system 64: 30: 1821:Computability theory 1339:proved in 1936 that 1297: 1258: 1240:strongly normalizing 929: 771:, then we can write 1622:Convergence (logic) 1602:Matsumoto's theorem 678:, then we say that 484: 426: 348: 273: 186: 85: 57:Motivating examples 1936:Weisstein, Eric W. 1495:strongly confluent 1313: 1283: 1043: 1035: 943: 749:reduction sequence 747:, then it forms a 664: 471: 413: 327: 260: 165: 83: 66: 39: 1963:Rewriting systems 1920:Deduktionssysteme 1910:978-0-521-77920-3 1788:, pp. 10–11. 1743:978-0-444-82949-8 1481:Strong confluence 1337:J. Barkley Rosser 1277: 1157:global confluence 1055:locally confluent 1009:Ground confluence 883:, there exists a 837:if for all pairs 646:In this diagram, 624:equational theory 546:is confluent and 528: 527: 469: 468: 411: 410: 325: 324: 258: 257: 163: 162: 45:is a property of 16:(Redirected from 1970: 1949: 1948: 1923: 1914: 1886: 1869:Klop, Jan Willem 1859: 1853: 1847: 1841: 1835: 1834: 1816: 1810: 1804: 1798: 1795: 1789: 1783: 1777: 1775: 1757: 1748: 1747: 1727: 1721: 1715: 1709: 1708: 1706: 1697: 1680: 1661: 1655: 1648: 1546: 1545: 1544: 1541: 1462: 1461: 1460: 1457: 1445: 1444: 1443: 1440: 1420: 1419: 1418: 1415: 1323:for all objects 1322: 1320: 1319: 1314: 1309: 1308: 1292: 1290: 1289: 1284: 1279: 1278: 1276: 1271: 1266: 1226: 1225: 1224: 1221: 1215: 1214: 1213: 1210: 1204: 1203: 1202: 1201: 1200: 1199: 1196: 1190: 1172: 1171: 1170: 1167: 1127: 1126: 1125: 1122: 1110: 1109: 1108: 1105: 1059:weakly confluent 1025:Local confluence 1015:ground confluent 967:diamond property 963:diamond property 952: 950: 949: 944: 939: 921: 920: 919: 916: 904: 903: 902: 899: 879: 878: 877: 874: 862: 861: 860: 857: 821: 820: 819: 816: 806: 805: 804: 801: 784: 783: 782: 779: 690:(alternatively, 661: 657: 653: 650:reduces to both 649: 566:: Starting with 485: 470: 427: 412: 349: 326: 274: 259: 187: 164: 86: 82: 80:of its inverse: 21: 1978: 1977: 1973: 1972: 1971: 1969: 1968: 1967: 1953: 1952: 1930: 1911: 1883: 1863: 1862: 1854: 1850: 1842: 1838: 1831: 1817: 1813: 1805: 1801: 1796: 1792: 1784: 1780: 1772: 1758: 1751: 1744: 1728: 1724: 1716: 1712: 1704: 1698: 1694: 1689: 1684: 1683: 1662: 1658: 1649: 1645: 1640: 1618: 1583: 1542: 1539: 1538: 1537: 1483: 1458: 1455: 1454: 1453: 1441: 1438: 1437: 1436: 1416: 1413: 1412: 1411: 1372: 1370:Semi-confluence 1341:lambda calculus 1304: 1303: 1298: 1295: 1294: 1272: 1267: 1265: 1264: 1259: 1256: 1255: 1254:if and only if 1248: 1222: 1219: 1218: 1217: 1211: 1208: 1207: 1206: 1197: 1194: 1193: 1192: 1191: 1188: 1187: 1186: 1168: 1165: 1164: 1163: 1123: 1120: 1119: 1118: 1106: 1103: 1102: 1101: 1027: 1011: 935: 930: 927: 926: 917: 914: 913: 912: 900: 897: 896: 895: 875: 872: 871: 870: 858: 855: 854: 853: 817: 814: 813: 812: 802: 799: 798: 797: 780: 777: 776: 775: 720:indicates that 659: 655: 651: 647: 640: 59: 23: 22: 15: 12: 11: 5: 1976: 1966: 1965: 1951: 1950: 1929: 1928:External links 1926: 1925: 1924: 1915: 1909: 1895:Nipkow, Tobias 1887: 1881: 1861: 1860: 1848: 1836: 1829: 1811: 1799: 1790: 1778: 1770: 1749: 1742: 1722: 1710: 1691: 1690: 1688: 1685: 1682: 1681: 1656: 1642: 1641: 1639: 1636: 1635: 1634: 1629: 1624: 1617: 1614: 1613: 1612: 1605: 1599: 1582: 1579: 1493:is said to be 1482: 1479: 1385:semi-confluent 1383:is said to be 1371: 1368: 1363:if and only if 1312: 1307: 1302: 1282: 1275: 1270: 1263: 1247: 1244: 1232:Newman's lemma 1053:is said to be 1026: 1023: 1010: 1007: 942: 938: 934: 668:directed graph 639: 636: 574:. Obtain from 526: 525: 522: 517: 513: 512: 509: 502: 498: 497: 495: 488: 467: 466: 463: 458: 454: 453: 450: 443: 439: 438: 436: 430: 409: 408: 405: 396: 392: 391: 388: 369: 365: 364: 362: 352: 323: 322: 319: 314: 310: 309: 306: 291: 287: 286: 284: 277: 256: 255: 252: 247: 243: 242: 239: 233: 229: 228: 225: 211: 207: 206: 204: 190: 161: 160: 145: 131: 124: 123: 120: 111: 105: 104: 98: 92: 58: 55: 9: 6: 4: 3: 2: 1975: 1964: 1961: 1960: 1958: 1946: 1945: 1940: 1937: 1932: 1931: 1921: 1916: 1912: 1906: 1902: 1901: 1896: 1892: 1891:Baader, Franz 1888: 1884: 1882:0-521-39115-6 1878: 1874: 1870: 1865: 1864: 1858:, p. 11. 1857: 1852: 1846:, p. 11. 1845: 1840: 1832: 1826: 1822: 1815: 1808: 1803: 1794: 1787: 1782: 1773: 1771:0-444-88074-7 1767: 1763: 1756: 1754: 1745: 1739: 1735: 1734: 1726: 1719: 1714: 1703: 1696: 1692: 1678: 1674: 1670: 1666: 1660: 1653: 1652:rewrite rules 1647: 1643: 1633: 1630: 1628: 1625: 1623: 1620: 1619: 1610: 1606: 1603: 1600: 1597: 1596:Gröbner basis 1593: 1589: 1586:Reduction of 1585: 1584: 1578: 1575: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1536: 1532: 1528: 1525:there exists 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1488: 1478: 1475: 1473: 1469: 1465: 1452: 1448: 1435: 1431: 1427: 1424:there exists 1423: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1367: 1364: 1359: 1357: 1353: 1350: 1346: 1342: 1338: 1334: 1333:Alonzo Church 1330: 1326: 1310: 1300: 1280: 1273: 1261: 1253: 1243: 1241: 1237: 1233: 1228: 1184: 1180: 1176: 1162:The relation 1160: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1117: 1113: 1100: 1096: 1092: 1089:there exists 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1061:) if for all 1060: 1056: 1052: 1048: 1039: 1031: 1022: 1020: 1016: 1006: 1004: 1000: 996: 992: 988: 984: 980: 976: 972: 968: 964: 960: 956: 940: 932: 924: 911: 907: 894: 890: 886: 882: 869: 865: 852: 848: 844: 840: 836: 832: 828: 823: 810: 795: 791: 787: 774: 770: 766: 762: 758: 754: 750: 746: 742: 737: 735: 731: 727: 723: 719: 715: 711: 707: 703: 699: 696: 693: 689: 685: 681: 677: 673: 669: 644: 635: 633: 629: 625: 621: 615: 613: 609: 605: 601: 597: 593: 589: 585: 581: 577: 573: 569: 565: 561: 557: 556: 551: 550: 545: 540: 538: 534: 523: 521: 518: 515: 514: 510: 507: 503: 500: 499: 496: 493: 489: 487: 486: 483: 479: 475: 464: 462: 459: 456: 455: 451: 448: 444: 441: 440: 437: 434: 431: 429: 428: 425: 421: 417: 406: 404: 400: 397: 394: 393: 389: 386: 382: 378: 374: 370: 367: 366: 363: 361: 357: 353: 351: 350: 347: 343: 339: 335: 331: 320: 318: 315: 312: 311: 307: 304: 300: 296: 292: 289: 288: 285: 282: 278: 276: 275: 272: 268: 264: 253: 251: 248: 245: 244: 240: 238: 234: 231: 230: 226: 224: 220: 216: 212: 209: 208: 205: 202: 198: 194: 191: 189: 188: 185: 181: 177: 173: 169: 158: 154: 150: 146: 144: 140: 136: 132: 130:    129: 126: 125: 121: 119: 115: 112: 110: 107: 106: 103: 99: 97: 93: 91: 88: 87: 84:Group axioms 81: 79: 75: 70: 63: 54: 52: 48: 44: 36: 35: 29: 19: 1942: 1919: 1899: 1872: 1851: 1839: 1820: 1814: 1809:, p. 9. 1802: 1793: 1781: 1761: 1732: 1725: 1713: 1695: 1676: 1672: 1659: 1651: 1650:then called 1646: 1576: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1484: 1476: 1471: 1467: 1463: 1450: 1446: 1433: 1429: 1425: 1421: 1408: 1404: 1400: 1396: 1392: 1388: 1384: 1380: 1376: 1373: 1360: 1356:β-reductions 1348: 1328: 1324: 1251: 1249: 1239: 1235: 1229: 1178: 1161: 1156: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1115: 1111: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1050: 1046: 1044: 1014: 1012: 1002: 998: 994: 990: 986: 982: 978: 974: 970: 966: 962: 958: 954: 953:). If every 922: 909: 905: 892: 888: 884: 880: 867: 863: 850: 846: 842: 838: 834: 830: 826: 824: 796:. Formally, 793: 789: 785: 772: 768: 764: 760: 756: 752: 748: 744: 740: 738: 733: 729: 725: 721: 717: 713: 709: 705: 701: 697: 694: 691: 687: 683: 679: 675: 671: 665: 631: 630:rather than 627: 619: 616: 611: 607: 603: 599: 595: 591: 587: 583: 579: 575: 571: 567: 563: 559: 553: 547: 541: 536: 532: 529: 519: 505: 491: 481: 477: 473: 460: 446: 432: 423: 419: 415: 402: 398: 384: 380: 376: 372: 359: 355: 345: 341: 337: 333: 329: 316: 302: 298: 294: 280: 270: 266: 262: 249: 236: 222: 218: 214: 200: 196: 192: 183: 179: 175: 171: 167: 156: 152: 148: 142: 138: 134: 127: 117: 113: 108: 101: 95: 89: 71: 67: 42: 40: 32: 1939:"Confluent" 1856:Terese 2003 1786:Terese 2003 1588:polynomials 1566:; if every 1550:and either 1497:if for all 1466:; if every 1387:if for all 1352:normal form 1349:at most one 1236:terminating 1131:. If every 1045:An element 1019:ground term 724:reduces to 620:termination 549:terminating 1830:1584882379 1687:References 1590:modulo an 1183:idempotent 989:such that 849:such that 833:is deemed 695:reduces to 452:by R10(r) 43:confluence 34:confluence 1944:MathWorld 1306:↓ 1274:∗ 1269:↔ 1017:if every 937:↓ 925:(denoted 835:confluent 706:expansion 472:Proof of 414:Proof of 390:by R4(r) 328:Proof of 308:by A2(r) 261:Proof of 166:Proof of 47:rewriting 31:The name 1957:Category 1897:(1998). 1616:See also 1293:implies 763:→ ... → 531:"1" to " 269:) ⋅ 1 = 807:is the 578:a term 78:inverse 1907:  1879:  1827:  1768:  1740:  822:20×6. 704:is an 684:reduct 524:by R6 465:by R6 422:⋅ 1 = 407:by R4 321:by R4 254:by A1 241:by A2 1705:(PDF) 1638:Notes 1592:ideal 1533:with 1509:with 1432:with 1399:with 1097:with 1073:with 891:with 700:, or 682:is a 555:terms 542:If a 508:) ⋅ 1 449:) ⋅ 1 375:) ⋅ ( 297:) ⋅ ( 283:) ⋅ 1 74:group 1905:ISBN 1877:ISBN 1825:ISBN 1766:ISBN 1738:ISBN 1669:here 1663:The 1517:and 1449:and 1407:and 1335:and 1147:and 1114:and 1081:and 1057:(or 997:and 977:and 908:and 866:and 743:and 632:term 610:and 602:and 594:and 586:and 562:and 480:) = 358:) ⋅ 336:) ⋅ 235:1 ⋅ 221:) ⋅ 182:) = 141:) ⋅ 122:= 1 94:1 ⋅ 1558:or 1238:or 1185:), 1177:of 1159:. 792:to 761:c′′ 732:to 708:of 686:of 654:or 476:: ( 474:R12 435:⋅ 1 416:R11 379:⋅ ( 332:: ( 330:R10 265:: ( 195:⋅ ( 151:⋅ ( 1959:: 1941:. 1893:; 1752:^ 1570:∈ 1562:= 1554:→ 1529:∈ 1521:→ 1513:→ 1505:∈ 1501:, 1489:∈ 1470:∈ 1428:∈ 1403:→ 1395:∈ 1391:, 1379:∈ 1331:. 1327:, 1205:= 1135:∈ 1093:∈ 1085:→ 1077:→ 1069:∈ 1065:, 1049:∈ 1001:→ 993:→ 981:→ 973:→ 957:∈ 887:∈ 845:∈ 841:, 829:∈ 767:→ 765:d′ 759:→ 757:c′ 755:→ 736:. 716:→ 588:t′ 584:s′ 580:t′ 572:s′ 558:) 418:: 401:⋅ 387:)) 383:⋅ 344:⋅ 340:= 301:⋅ 263:R6 217:⋅ 199:⋅ 174:⋅( 170:: 168:R4 159:) 155:⋅ 147:= 137:⋅ 128:A3 116:⋅ 109:A2 100:= 90:A1 53:. 1947:. 1913:. 1885:. 1833:. 1774:. 1746:. 1677:a 1673:a 1611:. 1598:. 1572:S 1568:a 1564:d 1560:c 1556:d 1552:c 1548:d 1543:→ 1540:∗ 1535:b 1531:S 1527:d 1523:c 1519:a 1515:b 1511:a 1507:S 1503:c 1499:b 1491:S 1487:a 1472:S 1468:a 1464:d 1459:→ 1456:∗ 1451:c 1447:d 1442:→ 1439:∗ 1434:b 1430:S 1426:d 1422:c 1417:→ 1414:∗ 1409:a 1405:b 1401:a 1397:S 1393:c 1389:b 1381:S 1377:a 1329:y 1325:x 1311:y 1301:x 1281:y 1262:x 1223:→ 1220:∗ 1212:→ 1209:∗ 1198:→ 1195:∗ 1189:∗ 1179:→ 1169:→ 1166:∗ 1153:a 1149:c 1145:b 1137:S 1133:a 1129:d 1124:→ 1121:∗ 1116:c 1112:d 1107:→ 1104:∗ 1099:b 1095:S 1091:d 1087:c 1083:a 1079:b 1075:a 1071:S 1067:c 1063:b 1051:S 1047:a 1003:d 999:c 995:d 991:b 987:d 983:c 979:a 975:b 971:a 959:S 955:a 941:c 933:b 923:d 918:→ 915:∗ 910:c 906:d 901:→ 898:∗ 893:b 889:S 885:d 881:c 876:→ 873:∗ 868:a 864:b 859:→ 856:∗ 851:a 847:S 843:c 839:b 831:S 827:a 818:→ 815:∗ 803:→ 800:∗ 794:d 790:c 786:d 781:→ 778:∗ 773:c 769:d 753:c 745:d 741:c 734:b 730:a 726:b 722:a 718:b 714:a 710:b 702:a 698:b 692:a 688:a 680:b 676:b 672:a 662:. 660:d 656:c 652:b 648:a 612:t 608:s 604:t 600:s 596:t 592:s 576:t 568:s 564:t 560:s 533:a 520:a 516:= 506:a 504:( 501:= 494:) 492:a 490:( 482:a 478:a 461:a 457:= 447:a 445:( 442:= 433:a 424:a 420:a 403:b 399:a 395:= 385:b 381:a 377:a 373:a 371:( 368:= 360:b 356:a 354:( 346:b 342:a 338:b 334:a 317:a 313:= 305:) 303:a 299:a 295:a 293:( 290:= 281:a 279:( 271:a 267:a 250:b 246:= 237:b 232:= 223:b 219:a 215:a 213:( 210:= 203:) 201:b 197:a 193:a 184:b 180:b 178:⋅ 176:a 172:a 157:c 153:b 149:a 143:c 139:b 135:a 133:( 118:a 114:a 102:a 96:a 20:)

Index

Church–Rosser property

confluence
rewriting
abstract rewriting system

group
inverse
term rewriting system
terminating
terms
equational theory

directed graph
reflexive-transitive closure
ground term


reflexive-transitive closure
idempotent
Newman's lemma
Alonzo Church
J. Barkley Rosser
lambda calculus
Church–Rosser theorem
normal form
β-reductions
if and only if
polynomials
ideal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.