Knowledge

Lift coefficient

Source 📝

725: 379:. The choice of the reference surface should be specified since it is arbitrary. For example, for cylindric profiles (the 3D extrusion of an airfoil in the spanwise direction), the first axis generating the surface is always in the spanwise direction. In aerodynamics and thin airfoil theory, the second axis is commonly in the chordwise direction: 251: 941:
with a gradient known as the lift slope. For a thin airfoil of any shape the lift slope is π/90 ≃ 0.11 per degree. At higher angles a maximum point is reached, after which the lift coefficient reduces. The angle at which maximum lift coefficient occurs is the
949:
The stall angle for a given profile is also increasing with increasing values of the Reynolds number, at higher speeds indeed the flow tends to stay attached to the profile for longer delaying the stall condition. For this reason sometimes
703: 497: 617: 861: 777:
The section lift coefficient is based on two-dimensional flow over a wing of infinite span and non-varying cross-section so the lift is independent of spanwise effects and is defined in terms of
136: 423: 926:, calculated numerically or determined from wind tunnel tests on a finite-length test piece, with end-plates designed to ameliorate the three-dimensional effects. Plots of 764: 546: 802: 353: 910: 885: 377: 322: 301: 276: 972:, i.e. asymmetrical, convex from above, there is still a small but positive lift coefficient with angles of attack less than zero. That is, the angle at which 954:
testing performed at lower Reynolds numbers than the simulated real life condition can sometimes give conservative feedback overestimating the profiles stall.
628: 1208: 434: 557: 912:
is chosen. Note this is directly analogous to the drag coefficient since the chord can be interpreted as the "area per unit span".
979:= 0 is negative. On such airfoils at zero angle of attack the pressures on the upper surface are lower than on the lower surface. 810: 246:{\displaystyle C_{\mathrm {L} }\equiv {\frac {L}{q\,S}}={\frac {L}{{\frac {1}{2}}\rho u^{2}\,S}}={\frac {2L}{\rho u^{2}S}}} 17: 1172: 1127: 937:, but the particular numbers will vary. They show an almost linear increase in lift coefficient with increasing 887:
is the reference length that should always be specified: in aerodynamics and airfoil theory usually the airfoil
766:. It is common to show, for a particular airfoil section, the relationship between section lift coefficient and 502:
While in marine dynamics and for thick airfoils, the second axis is sometimes taken in the thickness direction:
1203: 385: 732:
Lift coefficient may also be used as a characteristic of a particular shape (or cross-section) of an
1008: 742: 508: 780: 998: 70: 50: 728:
A typical curve showing section lift coefficient versus angle of attack for a cambered airfoil
1198: 969: 337: 8: 923: 894: 869: 709: 361: 306: 285: 260: 74: 1182: 988: 1168: 1123: 946:
angle of the airfoil, which is approximately 10 to 15 degrees on a typical airfoil.
993: 888: 771: 325: 112: 770:. It is also useful to show the relationship between section lift coefficient and 1003: 938: 767: 698:{\displaystyle C_{\mathrm {L} ,\,mar}\equiv {\frac {c}{t}}C_{\mathrm {L} ,\,aer}} 108: 91: 87: 1013: 943: 66: 31: 27:
Dimensionless quantity relating lift to fluid density and velocity over an area
1192: 1049: 62: 1160: 279: 58: 54: 951: 891:
is chosen, while in marine dynamics and for struts usually the thickness
713: 95: 356: 804:, the lift force per unit span of the wing. The definition becomes 492:{\displaystyle C_{\mathrm {L} ,\,aer}\equiv {\frac {L}{q\,c\,s}},} 934: 733: 622:
The ratio between these two coefficients is the thickness ratio:
612:{\displaystyle C_{\mathrm {L} ,\,mar}\equiv {\frac {L}{q\,t\,s}}} 332: 724: 329: 933:
versus angle of attack show the same general shape for all
1036:. New York: John Wiley & Sons. Sections 4.15 & 5.4. 111:
foil section, with the reference area replaced by the foil
1145:
Low-Speed Aerodynamics: From Wing Theory to Panel Methods
856:{\displaystyle c_{\text{l}}={\frac {L^{\prime }}{q\,c}},} 69:
and an associated reference area. A lifting body is a
897: 872: 813: 783: 745: 631: 560: 511: 437: 388: 364: 340: 309: 288: 263: 139: 1177:
Abbott, Ira H., and Doenhoff, Albert E. von (1959):
708:The lift coefficient can be approximated using the 904: 879: 855: 796: 758: 697: 611: 540: 491: 417: 371: 347: 316: 295: 270: 245: 1122:. Cambridge, MA: Bentley Publishers. p. 93. 1190: 107:refers to the dynamic lift characteristics of a 957:Symmetric airfoils necessarily have plots of c 1091:Abbott, Ira H., and Von Doenhoff, Albert E.: 1142: 961:versus angle of attack symmetric about the 719: 716:test of a complete aircraft configuration. 712:, numerically calculated or measured in a 1147:. Cambridge University Press. p. 525. 922:can be calculated approximately using the 73:or a complete foil-bearing body such as a 901: 876: 843: 683: 645: 602: 598: 574: 534: 479: 475: 451: 411: 368: 344: 313: 292: 267: 203: 164: 1209:Dimensionless numbers of fluid mechanics 1045: 1043: 968:axis, but for any airfoil with positive 736:. In this application it is called the 723: 14: 1191: 1031: 551:resulting in a different coefficient: 1167:. Pitman Publishing Limited, London, 1040: 1025: 1117: 24: 834: 789: 676: 638: 567: 444: 418:{\displaystyle S_{aer}\equiv c\,s} 146: 25: 1220: 303:is the relevant surface area and 1052:, and Doenhoff, Albert E. von: 98:. The section lift coefficient 1136: 1111: 1098: 1085: 1072: 1059: 118: 13: 1: 1154: 915:For a given angle of attack, 90:of the body to the flow, its 1143:Katz, J; Plotkin, A (2001). 759:{\displaystyle c_{\text{l}}} 541:{\displaystyle S_{mar}=t\,s} 428:resulting in a coefficient: 7: 982: 797:{\displaystyle L^{\prime }} 10: 1225: 1019: 1009:Circulation control wing 738:section lift coefficient 720:Section lift coefficient 328:, in turn linked to the 1185:New York, # 486-60586-8 1179:Theory of Wing Sections 1093:Theory of Wing Sections 1054:Theory of Wing Sections 348:{\displaystyle \rho \,} 1032:Clancy, L. J. (1975). 999:Foil (fluid mechanics) 906: 881: 857: 798: 760: 729: 699: 613: 542: 493: 419: 373: 349: 318: 297: 272: 247: 51:dimensionless quantity 1120:Race Car Aerodynamics 907: 882: 858: 799: 761: 727: 700: 614: 543: 494: 420: 374: 350: 319: 298: 273: 248: 123:The lift coefficient 86:is a function of the 65:around the body, the 1204:Aircraft wing design 895: 870: 811: 781: 743: 629: 558: 509: 435: 386: 362: 338: 307: 286: 261: 137: 924:thin airfoil theory 905:{\displaystyle t\,} 880:{\displaystyle c\,} 710:lifting-line theory 372:{\displaystyle u\,} 317:{\displaystyle q\,} 296:{\displaystyle S\,} 271:{\displaystyle L\,} 75:fixed-wing aircraft 18:Coefficient of lift 1183:Dover Publications 989:Lift-to-drag ratio 902: 877: 853: 794: 756: 730: 695: 609: 538: 489: 415: 369: 345: 314: 293: 268: 243: 1118:Katz, J. (2004). 848: 821: 753: 668: 607: 484: 241: 208: 188: 169: 53:that relates the 16:(Redirected from 1216: 1149: 1148: 1140: 1134: 1133: 1115: 1109: 1102: 1096: 1089: 1083: 1076: 1070: 1063: 1057: 1047: 1038: 1037: 1029: 994:Drag coefficient 911: 909: 908: 903: 886: 884: 883: 878: 862: 860: 859: 854: 849: 847: 838: 837: 828: 823: 822: 819: 803: 801: 800: 795: 793: 792: 772:drag coefficient 765: 763: 762: 757: 755: 754: 751: 704: 702: 701: 696: 694: 693: 679: 669: 661: 656: 655: 641: 618: 616: 615: 610: 608: 606: 590: 585: 584: 570: 547: 545: 544: 539: 527: 526: 498: 496: 495: 490: 485: 483: 467: 462: 461: 447: 424: 422: 421: 416: 404: 403: 378: 376: 375: 370: 354: 352: 351: 346: 326:dynamic pressure 323: 321: 320: 315: 302: 300: 299: 294: 277: 275: 274: 269: 252: 250: 249: 244: 242: 240: 236: 235: 222: 214: 209: 207: 202: 201: 189: 181: 175: 170: 168: 156: 151: 150: 149: 106: 85: 48: 36:lift coefficient 21: 1224: 1223: 1219: 1218: 1217: 1215: 1214: 1213: 1189: 1188: 1157: 1152: 1141: 1137: 1130: 1116: 1112: 1104:Clancy, L. J.: 1103: 1099: 1090: 1086: 1078:Clancy, L. J.: 1077: 1073: 1065:Clancy, L. J.: 1064: 1060: 1048: 1041: 1030: 1026: 1022: 1004:Pitching moment 985: 978: 967: 960: 939:angle of attack 932: 921: 896: 893: 892: 871: 868: 867: 839: 833: 829: 827: 818: 814: 812: 809: 808: 788: 784: 782: 779: 778: 768:angle of attack 750: 746: 744: 741: 740: 722: 675: 674: 670: 660: 637: 636: 632: 630: 627: 626: 594: 589: 566: 565: 561: 559: 556: 555: 516: 512: 510: 507: 506: 471: 466: 443: 442: 438: 436: 433: 432: 393: 389: 387: 384: 383: 363: 360: 359: 339: 336: 335: 308: 305: 304: 287: 284: 283: 262: 259: 258: 231: 227: 223: 215: 213: 197: 193: 180: 179: 174: 160: 155: 145: 144: 140: 138: 135: 134: 129: 121: 109:two-dimensional 105: 99: 92:Reynolds number 84: 78: 57:generated by a 46: 39: 28: 23: 22: 15: 12: 11: 5: 1222: 1212: 1211: 1206: 1201: 1187: 1186: 1175: 1156: 1153: 1151: 1150: 1135: 1128: 1110: 1097: 1084: 1082:. Section 8.11 1071: 1069:. Section 4.15 1058: 1050:Abbott, Ira H. 1039: 1023: 1021: 1018: 1017: 1016: 1014:Zero lift axis 1011: 1006: 1001: 996: 991: 984: 981: 976: 965: 958: 930: 919: 900: 875: 864: 863: 852: 846: 842: 836: 832: 826: 817: 791: 787: 749: 721: 718: 706: 705: 692: 689: 686: 682: 678: 673: 667: 664: 659: 654: 651: 648: 644: 640: 635: 620: 619: 605: 601: 597: 593: 588: 583: 580: 577: 573: 569: 564: 549: 548: 537: 533: 530: 525: 522: 519: 515: 500: 499: 488: 482: 478: 474: 470: 465: 460: 457: 454: 450: 446: 441: 426: 425: 414: 410: 407: 402: 399: 396: 392: 367: 343: 312: 291: 266: 255: 254: 239: 234: 230: 226: 221: 218: 212: 206: 200: 196: 192: 187: 184: 178: 173: 167: 163: 159: 154: 148: 143: 130:is defined by 127: 120: 117: 103: 82: 67:fluid velocity 44: 32:fluid dynamics 26: 9: 6: 4: 3: 2: 1221: 1210: 1207: 1205: 1202: 1200: 1197: 1196: 1194: 1184: 1180: 1176: 1174: 1173:0-273-01120-0 1170: 1166: 1162: 1159: 1158: 1146: 1139: 1131: 1129:0-8376-0142-8 1125: 1121: 1114: 1108:. Section 8.2 1107: 1101: 1095:. Appendix IV 1094: 1088: 1081: 1075: 1068: 1062: 1056:. Section 1.2 1055: 1051: 1046: 1044: 1035: 1028: 1024: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 990: 987: 986: 980: 975: 971: 964: 955: 953: 947: 945: 940: 936: 929: 925: 918: 913: 898: 890: 873: 850: 844: 840: 830: 824: 815: 807: 806: 805: 785: 775: 773: 769: 747: 739: 735: 726: 717: 715: 711: 690: 687: 684: 680: 671: 665: 662: 657: 652: 649: 646: 642: 633: 625: 624: 623: 603: 599: 595: 591: 586: 581: 578: 575: 571: 562: 554: 553: 552: 535: 531: 528: 523: 520: 517: 513: 505: 504: 503: 486: 480: 476: 472: 468: 463: 458: 455: 452: 448: 439: 431: 430: 429: 412: 408: 405: 400: 397: 394: 390: 382: 381: 380: 365: 358: 355:, and to the 341: 334: 331: 327: 324:is the fluid 310: 289: 281: 264: 237: 232: 228: 224: 219: 216: 210: 204: 198: 194: 190: 185: 182: 176: 171: 165: 161: 157: 152: 141: 133: 132: 131: 126: 116: 114: 110: 102: 97: 93: 89: 81: 76: 72: 68: 64: 63:fluid density 60: 56: 52: 47: 43: 37: 33: 19: 1199:Aerodynamics 1178: 1165:Aerodynamics 1164: 1161:L. J. Clancy 1144: 1138: 1119: 1113: 1106:Aerodynamics 1105: 1100: 1092: 1087: 1080:Aerodynamics 1079: 1074: 1067:Aerodynamics 1066: 1061: 1053: 1034:Aerodynamics 1033: 1027: 973: 962: 956: 948: 927: 916: 914: 865: 776: 737: 731: 707: 621: 550: 501: 427: 256: 124: 122: 100: 79: 59:lifting body 41: 40: 35: 29: 952:wind tunnel 714:wind tunnel 119:Definitions 96:Mach number 1193:Categories 1155:References 357:flow speed 280:lift force 835:′ 790:′ 658:≡ 587:≡ 464:≡ 406:≡ 342:ρ 225:ρ 191:ρ 153:≡ 1163:(1975): 983:See also 935:airfoils 94:and its 734:airfoil 333:density 278:is the 257:where 61:to the 49:) is a 1171:  1126:  970:camber 866:where 34:, the 1020:Notes 944:stall 889:chord 330:fluid 113:chord 88:angle 1169:ISBN 1124:ISBN 71:foil 55:lift 30:In 1195:: 1181:, 1042:^ 774:. 282:, 115:. 77:. 1132:. 977:l 974:c 966:l 963:c 959:l 931:l 928:c 920:l 917:c 899:t 874:c 851:, 845:c 841:q 831:L 825:= 820:l 816:c 786:L 752:l 748:c 691:r 688:e 685:a 681:, 677:L 672:C 666:t 663:c 653:r 650:a 647:m 643:, 639:L 634:C 604:s 600:t 596:q 592:L 582:r 579:a 576:m 572:, 568:L 563:C 536:s 532:t 529:= 524:r 521:a 518:m 514:S 487:, 481:s 477:c 473:q 469:L 459:r 456:e 453:a 449:, 445:L 440:C 413:s 409:c 401:r 398:e 395:a 391:S 366:u 311:q 290:S 265:L 253:, 238:S 233:2 229:u 220:L 217:2 211:= 205:S 199:2 195:u 186:2 183:1 177:L 172:= 166:S 162:q 158:L 147:L 142:C 128:L 125:C 104:l 101:c 83:L 80:C 45:L 42:C 38:( 20:)

Index

Coefficient of lift
fluid dynamics
dimensionless quantity
lift
lifting body
fluid density
fluid velocity
foil
fixed-wing aircraft
angle
Reynolds number
Mach number
two-dimensional
chord
lift force
dynamic pressure
fluid
density
flow speed
lifting-line theory
wind tunnel

airfoil
angle of attack
drag coefficient
chord
thin airfoil theory
airfoils
angle of attack
stall

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.