Knowledge

Normal space

Source đź“ť

403: 1411:, a product of a normal space and need not to be normal. Also, a subset of a normal space need not be normal (i.e. not every normal Hausdorff space is a completely normal Hausdorff space), since every Tychonoff space is a subset of its Stone–Čech compactification (which is normal Hausdorff). A more explicit example is the 988:
is a topological space where every point has an open neighbourhood that is normal. Every normal space is locally normal, but the converse is not true. A classical example of a completely regular locally normal space that is not normal is the
951:" and "normal Hausdorff space" also turn up in the literature—they simply mean that the space both is normal and satisfies the other condition mentioned. In particular, a normal Hausdorff space is the same thing as a T 1355: 864: 819: 1477:
if given two disjoint closed sets in it, one of which is countable, there are disjoint open sets containing them. Every normal space is pseudonormal, but not vice versa.
766: 721: 644: 624: 600: 580: 560: 676: 1362:
with respect to a map from a certain finite topological space with five points (two open and three closed) to the space with one open and two closed points.
955:
space. Given the historical confusion of the meaning of the terms, verbal descriptions when applicable are helpful, that is, "normal Hausdorff" instead of "T
1415:. The only large class of product spaces of normal spaces known to be normal are the products of compact Hausdorff spaces, since both compactness ( 1789: 1597: 132: 114: 17: 1770: 1693: 1667: 1574: 1039: 414:, here represented by closed disks on opposite sides of the picture, are separated by their respective neighbourhoods 1648: 1137: 603: 941: 246: 1168: 1164:
Every closed subset of a normal space is normal. The continuous and closed image of a normal space is normal.
1334: 824: 779: 1497: 970: 1060:
are perfectly normal Hausdorff. However, there exist non-paracompact manifolds that are not even normal.
1794: 1503: 1480:
Counterexamples to some variations on these statements can be found in the lists above. Specifically,
1654:
Kemoto, Nobuyuki (2004). "Higher Separation Axioms". In K.P. Hart; J. Nagata; J.E. Vaughan (eds.).
1264: 1122: 369: 1257: 940:
may be.) The definitions given here are the ones usually used today. For more on this issue, see
773: 726: 681: 1584: 1416: 1175: 1126: 1075: 1025: 1002: 1256:. In fancier terms, disjoint closed sets are not only separated by neighbourhoods, but also 1057: 985: 8: 1451: 1141: 1068: 899: 891: 473: 1481: 1091: 1474: 1439: 1378: 1185: 1115: 1111: 1087: 1021: 966: 769: 629: 609: 585: 565: 545: 45: 1759: 649: 1766: 1689: 1663: 1644: 1636: 1400: 1107: 344: 292: 270: 52: 31: 1748: 1731: 1721: 1704: 1392:
In fact, any space that satisfies any one of these three conditions must be normal.
1079: 898:. Every perfectly normal space is completely normal, because perfect normality is a 1743: 1716: 1659: 1404: 1359: 1145: 1103: 1014: 308: 60: 40: 1546: 1463: 1412: 1386: 1167:
The main significance of normal spaces lies in the fact that they admit "enough"
1043: 990: 978: 450: 296: 168: 96: 1064: 928:" and derived concepts occasionally have a different meaning. (Nonetheless, "T 1783: 1685: 1677: 1396: 1253: 1197: 1153: 1032: 1010: 948: 485: 396: 355: 150: 1408: 1399:
of normal spaces is not necessarily normal. This fact was first proved by
1053:
Hausdorff spaces are normal, and all paracompact regular spaces are normal;
1171: 1149: 1050: 875: 262: 1547:"Why are these two definitions of a perfectly normal space equivalent?" 1370: 358: 284: 1532:
Engelking, Theorem 1.5.19. This is stated under the assumption of a T
1446:" to "normal completely regular" is the same as what we usually call 1130: 1178:, as expressed by the following theorems valid for any normal space 1455: 1432: 887: 435: 387:
that are also disjoint. More intuitively, this condition says that
258: 78: 1028:) are perfectly normal regular, although not in general Hausdorff; 894:. The equivalence between these three characterizations is called 1005:
are normal Hausdorff spaces, or at least normal regular spaces:
768:. This is a stronger separation property than normality, as by 402: 1506: â€“ Property of topological spaces stronger than normality 1500: â€“ Property of topological spaces stronger than normality 1102:
An important example of a non-normal topology is given by the
1484:
is normal but not regular, while the space of functions from
422:, here represented by larger, but still disjoint, open disks. 1614: 866:, but not precisely separated in general. It turns out that 1426: 886:
is perfectly normal if and only if every closed set is the
1536:
space, but the proof does not make use of that assumption.
492:
is completely normal if and only if every open subset of
1121:
A non-normal space of some relevance to analysis is the
1337: 1094:
is an example of a normal space that is not regular.
827: 782: 729: 684: 652: 632: 612: 588: 568: 548: 606:, in the sense that there is a continuous function 1758: 1705:"On the topological product of paracompact spaces" 1385:. This shows the relationship of normal spaces to 1349: 858: 813: 760: 715: 670: 638: 618: 594: 574: 554: 959:", or "completely normal Hausdorff" instead of "T 1781: 1097: 1423:axiom are preserved under arbitrary products. 1407:. In fact, since there exist spaces which are 772:disjoint closed sets in a normal space can be 527:is Hausdorff; equivalently, every subspace of 484:is completely normal if and only if every two 977:are discussed elsewhere; they are related to 996: 1562: 488:can be separated by neighbourhoods. Also, 1702: 1287:, then there exists a continuous function 1204:, then there exists a continuous function 1747: 1720: 924:Note that the terms "normal space" and "T 921:, is a perfectly normal Hausdorff space. 1427:Relationships to other separation axioms 1078:is completely normal, and every regular 932:" always means the same as "completely T 562:in which every two disjoint closed sets 401: 311:and their further strengthenings define 1756: 1676: 1620: 1580: 1568: 1488:to itself is Tychonoff but not normal. 1403:. An example of this phenomenon is the 1350:{\displaystyle \emptyset \rightarrow X} 14: 1782: 1653: 1071:are hereditarily normal and Hausdorff. 496:is normal with the subspace topology. 445:that is normal; this is equivalent to 1729: 1248:. In fact, we can take the values of 1049:Generalizing the above examples, all 480:is a normal space. It turns out that 1732:"Paracompactness and product spaces" 874:is normal and every closed set is a 859:{\displaystyle F\subseteq f^{-1}(1)} 814:{\displaystyle E\subseteq f^{-1}(0)} 870:is perfectly normal if and only if 307:. These conditions are examples of 24: 1643:, Heldermann Verlag Berlin, 1989. 1473:A topological space is said to be 1338: 1090:are normal (even if not regular). 313:completely normal Hausdorff spaces 25: 1806: 1466:. These are what we usually call 1138:topology of pointwise convergence 1017:) are perfectly normal Hausdorff; 604:precisely separated by a function 325:perfectly normal Hausdorff spaces 1790:Properties of topological spaces 1656:Encyclopedia of General Topology 942:History of the separation axioms 1765:. Reading, MA: Addison-Wesley. 1749:10.1090/S0002-9904-1948-09118-2 1722:10.1090/S0002-9904-1947-08858-3 1559:Engelking, Theorem 2.1.6, p. 68 1442:. Thus, anything from "normal R 1156:metric spaces is never normal. 1140:. More generally, a theorem of 1590: 1553: 1539: 1526: 1517: 1341: 1279:is a continuous function from 853: 847: 808: 802: 749: 743: 704: 698: 665: 653: 338: 13: 1: 1630: 1159: 1098:Examples of non-normal spaces 30:For normal vector space, see 1510: 1035:Hausdorff spaces are normal; 936:", whatever the meaning of T 7: 1598:"separation axioms in nLab" 1498:Collectionwise normal space 1491: 1040:Stone–Čech compactification 1001:Most spaces encountered in 761:{\displaystyle f^{-1}(1)=F} 716:{\displaystyle f^{-1}(0)=E} 397:separated by neighbourhoods 10: 1811: 1504:Monotonically normal space 1252:to be entirely within the 515:, is a completely normal T 29: 1757:Willard, Stephen (1970). 1703:Sorgenfrey, R.H. (1947). 1454:, we see that all normal 1381:precisely subordinate to 997:Examples of normal spaces 468:, is a topological space 464:hereditarily normal space 242: 222: 202: 184: 167: 149: 131: 113: 95: 77: 59: 51: 39: 27:Type of topological space 1265:Tietze extension theorem 1123:topological vector space 261:and related branches of 1258:separated by a function 1026:pseudometrisable spaces 774:separated by a function 542:is a topological space 458:completely normal space 18:Completely normal space 1351: 1271:is a closed subset of 1076:second-countable space 860: 815: 762: 717: 672: 640: 620: 596: 576: 556: 540:perfectly normal space 423: 145:(completely Hausdorff) 1736:Bull. Amer. Math. Soc 1730:Stone, A. H. (1948). 1709:Bull. Amer. Math. Soc 1523:Willard, Exercise 15C 1438:, then it is in fact 1431:If a normal space is 1352: 1058:topological manifolds 1003:mathematical analysis 896:Vedenissoff's theorem 861: 816: 763: 718: 673: 641: 621: 597: 577: 557: 523:, which implies that 405: 283:: every two disjoint 1452:Kolmogorov quotients 1369:is a locally finite 1335: 1263:More generally, the 1136:to itself, with the 1069:totally ordered sets 1046:is normal Hausdorff; 986:locally normal space 825: 780: 727: 682: 650: 630: 610: 586: 566: 546: 1417:Tychonoff's theorem 1142:Arthur Harold Stone 1114:, which is used in 1088:fully normal spaces 1038:In particular, the 1022:pseudometric spaces 967:Fully normal spaces 947:Terms like "normal 900:hereditary property 892:continuous function 163:(regular Hausdorff) 1637:Engelking, Ryszard 1440:completely regular 1379:partition of unity 1377:, then there is a 1373:of a normal space 1347: 1303:in the sense that 1200:closed subsets of 1116:algebraic geometry 1112:spectrum of a ring 856: 811: 776:, in the sense of 758: 713: 668: 636: 616: 592: 572: 552: 424: 293:open neighborhoods 216:(completely normal 198:(normal Hausdorff) 46:topological spaces 1795:Separation axioms 1772:978-0-486-43479-7 1695:978-0-13-181629-9 1678:Munkres, James R. 1669:978-0-444-50355-8 1401:Robert Sorgenfrey 1212:to the real line 1108:algebraic variety 1015:metrizable spaces 639:{\displaystyle X} 619:{\displaystyle f} 595:{\displaystyle F} 575:{\displaystyle E} 555:{\displaystyle X} 449:being normal and 345:topological space 309:separation axioms 299:is also called a 271:topological space 255: 254: 236:(perfectly normal 41:Separation axioms 32:normal (geometry) 16:(Redirected from 1802: 1776: 1764: 1761:General Topology 1753: 1751: 1726: 1724: 1699: 1684:(2nd ed.). 1673: 1660:Elsevier Science 1641:General Topology 1624: 1618: 1612: 1611: 1609: 1608: 1594: 1588: 1578: 1572: 1566: 1560: 1557: 1551: 1550: 1543: 1537: 1530: 1524: 1521: 1482:SierpiĹ„ski space 1468:normal Hausdorff 1405:Sorgenfrey plane 1360:lifting property 1356: 1354: 1353: 1348: 1150:uncountably many 1144:states that the 1104:Zariski topology 1092:SierpiĹ„ski space 1065:order topologies 1056:All paracompact 882:. Equivalently, 865: 863: 862: 857: 846: 845: 820: 818: 817: 812: 801: 800: 767: 765: 764: 759: 742: 741: 722: 720: 719: 714: 697: 696: 677: 675: 674: 671:{\displaystyle } 669: 646:to the interval 645: 643: 642: 637: 625: 623: 622: 617: 601: 599: 598: 593: 581: 579: 578: 573: 561: 559: 558: 553: 472:such that every 466: 465: 406:The closed sets 238: Hausdorff) 233: 228: 218: Hausdorff) 213: 208: 195: 190: 175: 174: 160: 155: 142: 137: 122: 121: 106: 101: 88: 83: 70: 65: 37: 36: 21: 1810: 1809: 1805: 1804: 1803: 1801: 1800: 1799: 1780: 1779: 1773: 1742:(10): 977–982. 1696: 1670: 1633: 1628: 1627: 1619: 1615: 1606: 1604: 1596: 1595: 1591: 1579: 1575: 1567: 1563: 1558: 1554: 1545: 1544: 1540: 1535: 1531: 1527: 1522: 1518: 1513: 1494: 1459: 1445: 1436: 1429: 1422: 1413:Tychonoff plank 1387:paracompactness 1336: 1333: 1332: 1186:Urysohn's lemma 1162: 1100: 1044:Tychonoff space 1024:(and hence all 1013:(and hence all 999: 991:Nemytskii plane 979:paracompactness 974: 962: 958: 954: 939: 935: 931: 927: 918: 910: 879: 838: 834: 826: 823: 822: 793: 789: 781: 778: 777: 770:Urysohn's lemma 734: 730: 728: 725: 724: 689: 685: 683: 680: 679: 651: 648: 647: 631: 628: 627: 611: 608: 607: 587: 584: 583: 567: 564: 563: 547: 544: 543: 534: 518: 512: 504: 463: 462: 439: 431: 341: 332: 320: 304: 297:Hausdorff space 281: 276:that satisfies 251: 237: 231: 229: 226: 217: 211: 209: 206: 193: 191: 188: 176: 172: 171: 158: 156: 153: 140: 138: 135: 123: 119: 117: 104: 102: 99: 86: 84: 81: 68: 66: 63: 43: 35: 28: 23: 22: 15: 12: 11: 5: 1808: 1798: 1797: 1792: 1778: 1777: 1771: 1754: 1727: 1715:(6): 631–632. 1700: 1694: 1674: 1668: 1651: 1632: 1629: 1626: 1625: 1613: 1589: 1573: 1561: 1552: 1538: 1533: 1525: 1515: 1514: 1512: 1509: 1508: 1507: 1501: 1493: 1490: 1457: 1448:normal regular 1443: 1434: 1428: 1425: 1420: 1346: 1343: 1340: 1240:) = 1 for all 1224:) = 0 for all 1161: 1158: 1099: 1096: 1084: 1083: 1080:Lindelöf space 1074:Every regular 1072: 1061: 1054: 1047: 1036: 1029: 1018: 998: 995: 972: 960: 956: 952: 937: 933: 929: 925: 916: 908: 877: 855: 852: 849: 844: 841: 837: 833: 830: 810: 807: 804: 799: 796: 792: 788: 785: 757: 754: 751: 748: 745: 740: 737: 733: 712: 709: 706: 703: 700: 695: 692: 688: 667: 664: 661: 658: 655: 635: 615: 591: 571: 551: 532: 516: 510: 502: 486:separated sets 437: 429: 370:neighbourhoods 354:if, given any 340: 337: 330: 318: 302: 291:have disjoint 279: 253: 252: 250: 249: 243: 240: 239: 234: 225: 220: 219: 214: 205: 200: 199: 196: 187: 182: 181: 178: 170: 165: 164: 161: 152: 147: 146: 143: 134: 129: 128: 125: 116: 111: 110: 107: 98: 93: 92: 89: 80: 75: 74: 71: 62: 57: 56: 55:classification 49: 48: 26: 9: 6: 4: 3: 2: 1807: 1796: 1793: 1791: 1788: 1787: 1785: 1774: 1768: 1763: 1762: 1755: 1750: 1745: 1741: 1737: 1733: 1728: 1723: 1718: 1714: 1710: 1706: 1701: 1697: 1691: 1687: 1686:Prentice-Hall 1683: 1679: 1675: 1671: 1665: 1661: 1658:. Amsterdam: 1657: 1652: 1650: 1649:3-88538-006-4 1646: 1642: 1638: 1635: 1634: 1623:, Section 17. 1622: 1617: 1603: 1599: 1593: 1586: 1582: 1577: 1571:, p. 213 1570: 1565: 1556: 1548: 1542: 1529: 1520: 1516: 1505: 1502: 1499: 1496: 1495: 1489: 1487: 1483: 1478: 1476: 1471: 1469: 1465: 1461: 1453: 1449: 1441: 1437: 1424: 1418: 1414: 1410: 1406: 1402: 1398: 1393: 1390: 1388: 1384: 1380: 1376: 1372: 1368: 1363: 1361: 1357: 1344: 1328: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1299:that extends 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1261: 1259: 1255: 1254:unit interval 1251: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1181: 1177: 1173: 1170: 1165: 1157: 1155: 1151: 1147: 1143: 1139: 1135: 1132: 1128: 1124: 1119: 1117: 1113: 1109: 1105: 1095: 1093: 1089: 1081: 1077: 1073: 1070: 1066: 1062: 1059: 1055: 1052: 1048: 1045: 1041: 1037: 1034: 1030: 1027: 1023: 1019: 1016: 1012: 1011:metric spaces 1008: 1007: 1006: 1004: 994: 992: 987: 982: 980: 976: 968: 964: 950: 949:regular space 945: 943: 922: 920: 912: 903: 901: 897: 893: 889: 885: 881: 873: 869: 850: 842: 839: 835: 831: 828: 805: 797: 794: 790: 786: 783: 775: 771: 755: 752: 746: 738: 735: 731: 710: 707: 701: 693: 690: 686: 662: 659: 656: 633: 613: 605: 589: 569: 549: 541: 536: 530: 526: 522: 514: 506: 497: 495: 491: 487: 483: 479: 475: 471: 467: 459: 454: 452: 448: 444: 441: 433: 421: 417: 413: 409: 404: 400: 398: 394: 390: 386: 382: 378: 374: 371: 367: 363: 360: 357: 353: 349: 346: 336: 334: 326: 322: 314: 310: 306: 298: 294: 290: 286: 282: 275: 272: 268: 264: 260: 248: 245: 244: 241: 235: 230: 221: 215: 210: 201: 197: 192: 183: 179: 177: 166: 162: 157: 148: 144: 139: 130: 126: 124: 112: 108: 103: 94: 90: 85: 76: 72: 67: 58: 54: 50: 47: 42: 38: 33: 19: 1760: 1739: 1735: 1712: 1708: 1681: 1655: 1640: 1621:Willard 1970 1616: 1605:. Retrieved 1601: 1592: 1581:Willard 1970 1576: 1569:Munkres 2000 1564: 1555: 1541: 1528: 1519: 1485: 1479: 1475:pseudonormal 1472: 1467: 1447: 1430: 1394: 1391: 1382: 1374: 1366: 1364: 1331: 1329: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1262: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1201: 1193: 1189: 1184: 1179: 1166: 1163: 1133: 1120: 1101: 1085: 1000: 983: 965: 946: 923: 914: 906: 904: 895: 883: 871: 867: 539: 537: 528: 524: 520: 509:completely T 508: 500: 498: 493: 489: 481: 477: 469: 461: 457: 455: 446: 442: 427: 425: 419: 415: 411: 407: 392: 388: 384: 380: 376: 372: 368:, there are 365: 361: 352:normal space 351: 347: 342: 328: 324: 316: 312: 300: 288: 277: 273: 267:normal space 266: 256: 223: 203: 185: 133:completely T 73:(Kolmogorov) 1602:ncatlab.org 1583:, pp.  1419:) and the T 1051:paracompact 915:perfectly T 531:must be a T 359:closed sets 339:Definitions 295:. A normal 285:closed sets 263:mathematics 180:(Tychonoff) 109:(Hausdorff) 1784:Categories 1631:References 1607:2021-10-12 1371:open cover 1319:) for all 1216:such that 1169:continuous 1160:Properties 1110:or on the 1086:Also, all 1082:is normal. 678:such that 53:Kolmogorov 1511:Citations 1464:Tychonoff 1450:. Taking 1342:→ 1339:∅ 1176:functions 1131:real line 1129:from the 1127:functions 840:− 832:⊆ 795:− 787:⊆ 736:− 691:− 451:Hausdorff 127:(Urysohn) 91:(FrĂ©chet) 1682:Topology 1680:(2000). 1492:See also 1470:spaces. 1358:has the 1330:The map 1198:disjoint 1196:are two 1174:-valued 888:zero set 474:subspace 356:disjoint 259:topology 1585:100–101 1397:product 1154:compact 1146:product 1125:of all 1033:compact 971:fully T 602:can be 535:space. 395:can be 278:Axiom T 247:History 173:3½ 1769:  1692:  1666:  1647:  1460:spaces 1409:Dowker 1106:on an 975:spaces 519:space 333:spaces 323:, and 321:spaces 232:  212:  194:  159:  141:  120:½ 105:  87:  69:  1267:: If 1208:from 1188:: If 1042:of a 919:space 913:, or 911:space 890:of a 626:from 513:space 507:, or 505:space 460:, or 440:space 434:is a 432:space 350:is a 327:, or 315:, or 305:space 269:is a 1767:ISBN 1690:ISBN 1664:ISBN 1645:ISBN 1462:are 1311:) = 1275:and 1232:and 1192:and 1172:real 1152:non- 1063:All 1031:All 1020:All 1009:All 969:and 821:and 723:and 582:and 418:and 410:and 391:and 379:and 364:and 265:, a 1744:doi 1717:doi 1365:If 1323:in 1283:to 1244:in 1228:in 1148:of 1067:on 963:". 880:set 476:of 383:of 375:of 287:of 257:In 44:in 1786:: 1740:54 1738:. 1734:. 1713:53 1711:. 1707:. 1688:. 1662:. 1639:, 1600:. 1395:A 1389:. 1327:. 1295:→ 1291:: 1260:. 1182:. 1118:. 993:. 984:A 981:. 944:. 905:A 902:. 538:A 499:A 456:A 453:. 426:A 399:. 343:A 335:. 1775:. 1752:. 1746:: 1725:. 1719:: 1698:. 1672:. 1610:. 1587:. 1549:. 1534:1 1486:R 1458:1 1456:T 1444:0 1435:0 1433:R 1421:2 1383:U 1375:X 1367:U 1345:X 1325:A 1321:x 1317:x 1315:( 1313:f 1309:x 1307:( 1305:F 1301:f 1297:R 1293:X 1289:F 1285:R 1281:A 1277:f 1273:X 1269:A 1250:f 1246:B 1242:x 1238:x 1236:( 1234:f 1230:A 1226:x 1222:x 1220:( 1218:f 1214:R 1210:X 1206:f 1202:X 1194:B 1190:A 1180:X 1134:R 973:4 961:5 957:4 953:4 938:4 934:4 930:5 926:4 917:4 909:6 907:T 884:X 878:δ 876:G 872:X 868:X 854:) 851:1 848:( 843:1 836:f 829:F 809:) 806:0 803:( 798:1 791:f 784:E 756:F 753:= 750:) 747:1 744:( 739:1 732:f 711:E 708:= 705:) 702:0 699:( 694:1 687:f 666:] 663:1 660:, 657:0 654:[ 634:X 614:f 590:F 570:E 550:X 533:4 529:X 525:X 521:X 517:1 511:4 503:5 501:T 494:X 490:X 482:X 478:X 470:X 447:X 443:X 438:1 436:T 430:4 428:T 420:V 416:U 412:F 408:E 393:F 389:E 385:F 381:V 377:E 373:U 366:F 362:E 348:X 331:6 329:T 319:5 317:T 303:4 301:T 289:X 280:4 274:X 227:6 224:T 207:5 204:T 189:4 186:T 169:T 154:3 151:T 136:2 118:2 115:T 100:2 97:T 82:1 79:T 64:0 61:T 34:. 20:)

Index

Completely normal space
normal (geometry)
Separation axioms
topological spaces
Kolmogorov
T0
T1
T2
T2½
completely T2
T3
T
T4
T5
T6
History
topology
mathematics
topological space
closed sets
open neighborhoods
Hausdorff space
separation axioms
topological space
disjoint
closed sets
neighbourhoods
separated by neighbourhoods

T1 space

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑