Knowledge

Euclidean shortest path

Source 📝

516: 573: 20: 145: 83:
in the general case, but there exist efficient approximation algorithms that run in polynomial time based on the idea of finding a suitable sample of points on the obstacle edges and performing a visibility graph calculation using these sample points.
91:, the problem is to compute a shortest path that never leaves the surface and connects s with t. This is a generalization of the problem from 2-dimension but it is much easier than the 3-dimensional problem. 103:, i.e., one can go through an obstacle, but it incurs an extra cost to go through an obstacle. The standard problem is the special case where the obstacles have infinite weight. This is termed as the 105: 325:
Kapoor, S.; Maheshwari, S. N.; Mitchell, Joseph S. B. (1997), "An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane",
59:
needed to perform such calculations. These algorithms are based on two different principles, either performing a shortest path algorithm such as
288:
Kapoor, S.; Maheshwari, S. N. (1988), "Efficient algorithms for Euclidean shortest path and visibility problems with polygonal obstacles",
87:
There are many results on computing shortest paths which stays on a polyhedral surface. Given two points s and t, say on the surface of a
162:
Aleksandrov, Lyudmil; Maheshwari, Anil; Sack, Joerg (2005), "Determining approximate shortest paths in weighted polyhedral surfaces",
614: 557: 419: 55:
in a model of computation allowing addition and comparisons of real numbers, despite theoretical difficulties involving the
327: 289: 215: 307: 233: 204: 638: 633: 643: 56: 43:, and two points, find the shortest path between the points that does not intersect any of the obstacles. 607: 193:
Chiang, Yi-Jen; Mitchell, Joseph S. B. (1999), "Two-point Euclidean shortest path queries in the plane",
355: 214:
Choi, Joonsoo; Sellen, Jürgen; Yap, Chee-Keng (1994), "Approximate Euclidean shortest path in 3-space",
550: 257: 500: 271: 648: 588: 531: 124: 60: 600: 351: 266: 32: 19: 470: 118: 543: 434: 8: 374: 466: 454: 430: 313: 239: 181: 164: 194: 415: 303: 229: 200: 88: 458: 446: 407: 386: 336: 317: 295: 276: 221: 173: 64: 185: 403: 243: 71:
method) propagating a wavefront from one of the points until it meets the other.
52: 40: 584: 527: 411: 280: 627: 523: 377:(1984), "Euclidean shortest paths in the presence of rectilinear barriers", 177: 390: 370: 359: 252: 255:(1999), "An optimal algorithm for Euclidean shortest paths in the plane", 225: 299: 515: 450: 341: 36: 148:", Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci., 1987, pp. 49-60. 496: 580: 80: 23:
Example of a shortest path in a three-dimensional Euclidean space
196:
Proc. 10th ACM-SIAM Symposium on Discrete Algorithms (SODA 1999)
572: 435:"Computing the external geodesic diameter of a simple polygon" 356:"Approximating shortest paths on weighted polyhedral surfaces" 99:
There are variations of this problem, where the obstacles are
16:
Problem of computing shortest paths around geometric obstacles
146:
New lower bound techniques for robot motion planning problems
400:
Euclidean Shortest Paths: Exact or Approximate Algorithms
199:, Association for Computing Machinery, pp. 215–224, 161: 67:
derived from the obstacles or (in an approach called the
324: 471:"Computing geodesic properties inside a simple polygon" 349: 217:Proc. 10th ACM Symposium on Computational Geometry 291:Proc. 4th ACM Symposium on Computational Geometry 625: 287: 79:In three (and higher) dimensions the problem is 51:In two dimensions, the problem can be solved in 428: 250: 192: 608: 551: 213: 369: 615: 601: 558: 544: 465: 340: 270: 499:of Euclidean Shortest Path algorithm in 397: 18: 626: 328:Discrete & Computational Geometry 567: 510: 398:Li, Fajie; Klette, Reinhard (2011), 74: 13: 350:Lanthier, Mark; Maheshwari, Anil; 121:, in a graph of edges and vertices 14: 660: 490: 478:Revue d'Intelligence Artificielle 46: 571: 514: 138: 1: 155: 587:. You can help Knowledge by 530:. You can help Knowledge by 7: 112: 94: 10: 665: 566: 509: 144:J. Canny and J. H. Reif, " 412:10.1007/978-1-4471-2256-2 281:10.1137/S0097539795289604 258:SIAM Journal on Computing 501:Digital Geometric Kernel 131: 31:problem is a problem in 178:10.1145/1044731.1044733 125:Any-angle path planning 106:weighted region problem 29:Euclidean shortest path 639:Computational geometry 526:-related article is a 467:Toussaint, Godfried T. 431:Toussaint, Godfried T. 391:10.1002/net.3230140304 33:computational geometry 24: 226:10.1145/177424.177501 119:Shortest path problem 22: 634:Geometric algorithms 294:, pp. 172–182, 61:Dijkstra's algorithm 644:Combinatorics stubs 300:10.1145/73393.73411 251:Hershberger, John; 109:in the literature. 69:continuous Dijkstra 57:numerical precision 451:10.1007/BF02247961 364:, pp. 527–562 352:Sack, Jörg-Rüdiger 342:10.1007/PL00009323 220:, pp. 41–48, 165:Journal of the ACM 25: 596: 595: 539: 538: 421:978-1-4471-2255-5 127:, in a grid space 89:convex polyhedron 75:Higher dimensions 35:: given a set of 656: 617: 610: 603: 581:geometry-related 575: 568: 560: 553: 546: 518: 511: 485: 475: 461: 424: 393: 375:Preparata, F. P. 365: 345: 344: 320: 283: 274: 265:(6): 2215–2256, 246: 209: 188: 149: 142: 65:visibility graph 664: 663: 659: 658: 657: 655: 654: 653: 624: 623: 622: 621: 565: 564: 507: 493: 473: 429:Samuel, David; 422: 404:Springer-Verlag 310: 236: 207: 158: 153: 152: 143: 139: 134: 115: 97: 77: 53:polynomial time 49: 41:Euclidean space 39:obstacles in a 17: 12: 11: 5: 662: 652: 651: 649:Geometry stubs 646: 641: 636: 620: 619: 612: 605: 597: 594: 593: 576: 563: 562: 555: 548: 540: 537: 536: 519: 505: 504: 497:Implementation 492: 491:External links 489: 488: 487: 463: 426: 420: 395: 385:(3): 393–410, 367: 347: 335:(4): 377–383, 322: 308: 285: 272:10.1.1.47.2037 248: 234: 211: 205: 190: 157: 154: 151: 150: 136: 135: 133: 130: 129: 128: 122: 114: 111: 96: 93: 76: 73: 48: 47:Two dimensions 45: 15: 9: 6: 4: 3: 2: 661: 650: 647: 645: 642: 640: 637: 635: 632: 631: 629: 618: 613: 611: 606: 604: 599: 598: 592: 590: 586: 583:article is a 582: 577: 574: 570: 569: 561: 556: 554: 549: 547: 542: 541: 535: 533: 529: 525: 524:combinatorics 520: 517: 513: 512: 508: 502: 498: 495: 494: 483: 479: 472: 468: 464: 460: 456: 452: 448: 444: 440: 436: 432: 427: 423: 417: 413: 409: 405: 401: 396: 392: 388: 384: 380: 376: 372: 368: 363: 362: 357: 353: 348: 343: 338: 334: 330: 329: 323: 319: 315: 311: 309:0-89791-270-5 305: 301: 297: 293: 292: 286: 282: 278: 273: 268: 264: 260: 259: 254: 253:Suri, Subhash 249: 245: 241: 237: 235:0-89791-648-4 231: 227: 223: 219: 218: 212: 208: 206:9780898714340 202: 198: 197: 191: 187: 183: 179: 175: 171: 167: 166: 160: 159: 147: 141: 137: 126: 123: 120: 117: 116: 110: 108: 107: 102: 92: 90: 85: 82: 72: 70: 66: 62: 58: 54: 44: 42: 38: 34: 30: 21: 589:expanding it 578: 532:expanding it 521: 506: 481: 477: 442: 438: 399: 382: 378: 361:Algorithmica 360: 332: 326: 290: 262: 256: 216: 195: 169: 163: 140: 104: 100: 98: 86: 78: 68: 50: 28: 26: 445:(1): 1–19, 628:Categories 371:Lee, D. T. 156:References 37:polyhedral 484:(2): 9–42 439:Computing 267:CiteSeerX 172:: 25–53, 503:software 469:(1989), 459:31450333 433:(1990), 379:Networks 354:(2001), 113:See also 101:weighted 95:Variants 318:9599057 81:NP-hard 457:  418:  316:  306:  269:  242:  232:  203:  186:697658 184:  579:This 522:This 474:(PDF) 455:S2CID 314:S2CID 244:69747 240:S2CID 182:S2CID 132:Notes 63:on a 585:stub 528:stub 416:ISBN 304:ISBN 230:ISBN 201:ISBN 27:The 447:doi 408:doi 387:doi 337:doi 296:doi 277:doi 222:doi 174:doi 630:: 480:, 476:, 453:, 443:44 441:, 437:, 414:, 406:, 402:, 383:14 381:, 373:; 358:, 333:18 331:, 312:, 302:, 275:, 263:28 261:, 238:, 228:, 180:, 170:52 168:, 616:e 609:t 602:v 591:. 559:e 552:t 545:v 534:. 486:. 482:3 462:. 449:: 425:. 410:: 394:. 389:: 366:. 346:. 339:: 321:. 298:: 284:. 279:: 247:. 224:: 210:. 189:. 176::

Index


computational geometry
polyhedral
Euclidean space
polynomial time
numerical precision
Dijkstra's algorithm
visibility graph
NP-hard
convex polyhedron
weighted region problem
Shortest path problem
Any-angle path planning
New lower bound techniques for robot motion planning problems
Journal of the ACM
doi
10.1145/1044731.1044733
S2CID
697658
Proc. 10th ACM-SIAM Symposium on Discrete Algorithms (SODA 1999)
ISBN
9780898714340
Proc. 10th ACM Symposium on Computational Geometry
doi
10.1145/177424.177501
ISBN
0-89791-648-4
S2CID
69747
Suri, Subhash

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.