Knowledge

Electromagnetic vortex intensifier with ferromagnetic particles

Source 📝

17: 245:) are focused on uniform distribution of ferromagnetic particles throughout the working area and have a bipolar inductor. When developing an inductor for these devices, the salient-pole design of liquid steel induction rotators was chosen as an analogue. The choice of salient-pole inductor design was associated mainly with simplified manufacturing technology, ease of operation, repair and cooling. 94:
other, and a constrained collision between the particles and a body. The degree of grinding is 0.5 μm (with an initial size of 20 mm). At present, the electromagnetic devices with a vortex layer with ferromagnetic elements actually exist (D.D. Logvinenko himself designed and produced more than 2000 pieces), their principle is also implemented in some technological lines.
232:
the magnetic induction vector hodograph, which in real devices is an ellipse with eccentricity increasing when approaching the surface of the working chamber. It is advisable to characterize the magnetic properties of the vortex layer by volume-averaged values;a convenient parameter for energy control of the operation of the vortex layer is itspower density.
16: 93:
of processed components. Electromagnetic devices with a vortex layer with ferromagnetic elements accelerate the reactions 1.5-2 times; reduce the consumption of reagents and electricity by 20%. The grinding effect is achieved by the motion of ferromagnetic particles and their free collision with each
262:
Subsequently, the line of these and similar devices was mastered, modified and expanded by other manufacturers and developers. Currently, devices use both salient-pole inductors and inductors with distributed windings, similar to the stators of electric motors; different types of cooling, different
231:
The main parameters that characterize the rotating magnetic field created by a three-phase inductor in the working area of the apparatus in the absence of ferromagnetic particles include: the number of pairs of magnetic poles, the angular speed of their rotation; magnitude and speed of rotation of
248:
In the central part of the working area of these devices, the magnetic field in the absence of ferromagnetic particles is close to uniform: the hodograph of the magnetic induction vector in this area is close to a circle, coinciding with it in the center of the working area of these devices; the
266:
In scientific and technical developments related to issues of electromechanics of devices of the class under consideration, it is sometimes usedcomputer modellinginductor and behavior of ferromagnetic particles. An analytical model of the force effect of a circular rotating magnetic field on a
263:
types of power capacitors are used. If necessary, the device includes power converters of voltage and frequency of the supply network. Methods for monitoring and controlling the operation of the vortex layer and technological lines based on it are also being improved.
46:
Electromagnetic devices with a vortex layer were proposed in 1967 by D.D. Logvinenko and O.P. Shelyakov. The monograph "intensification of technological processes on devices with a vortex layer", written by these authors, showed the effective use of these devices in:
539:
G. A. Polshchikov, P. B. Zhukov. On the movement of a magnetic particle in an apparatus with a vortex layer, (in Russian), “Chemical engineering (republican interdepartmental scientific and technical collection)”, No. 22, -, K.: “Tekhnika”, 1975, pp.
258:
The devices have dual-circuit oil-water cooling, power capacitors to compensate for the reactive power of the inductor and are powered from a 380V, 50 Hz network. Other design features of the devices are described in detail in the monograph.
556:
Polshchikov G.A., Logvinenko D.D., Zhukov P.B., Some issues of calculation and design of devices with a vortex layer,(in Russian), NIIHIMMASH, “Equipment using various methods of process intensification”, issue 71, - M, 1975, p.128 -141, UDC
362: 249:
module of the magnetic induction vector is approximately 0.12 T (in various devices from 0.1 to 0.15 T); the angular speed of its rotation is 314 radians per second, which corresponds to a rotation speed of 3000 rpm.
416:
Oberemok V.M., Nikitenko M.I., 2012: Electromagnetic apparatus with ferromagnetic elements. Intensification of technological processes in industrial wastewater treatment. – Poltava: PUET, 318 p. (in
38:
particles 0.5–5 mm in diameter and 5–60 mm in length, ranging from tens to several thousand pieces (0.05–20 kg), depending on the dimensions of the operating chamber of the intensifier.
428: 524:
Logvinenko DD, Shelyakov OP, Polshchikov GA, Determination of the main parameters of vortex bed apparatus // Chemical and Petroleum Engineering. 1974. Vol. 10. Iss. 1, pp. 15-17,
252:
In a working vortex layer, the modulus of the averaged magnetic induction vector reaches values of 0.2 T and lags behind the external field strength by a certain phase angle.
255:
The specific power of the vortex layer in various modes for these devices ranges from 0.1 to 1.5 kW per cubic decimeter of the working area.
566:
GlobeCore Transformer Oil Purification Equipment, Bitumen Equipment (American English) (October 16, 2017). Access date: September 22, 2023
470: 620:"Force effect of a circular rotating magnetic field of a cylindrical electric inductor on a ferromagnetic particle in process reactors" 267:
magnetic particle in devices with an external electric inductor with a different number of magnetic poles is considered in the work.
378:"Construction of the electromagnetic mill with the grinding system, classification of crushed minerals and the control system" 662: 657: 578:
Ogonowski, S. On-Line Optimization of Energy Consumption in Electromagnetic Mill Installation. Energies 2021, 14, 2380,
382:
17th IFAC Symposium on Control, Optimization and Automation in Mining, Mineral and Metal Processing MMM 2016 Vienna
30:) consists of an operating chamber (pipeline) with a diameter of 60–330 mm, located inside an inductor with a 462: 420: 692: 73:
Following this research, these intensifiers found their application in many researches and developments.
451: 672: 324: 360:, "Apparatus for intermixing materials in a reaction vessel containing ferromagnetic particles" 481: 682: 677: 667: 31: 687: 128: 443: 8: 132: 318: 316: 504: 399: 339: 313: 102:
Examples of industrial applications of these devices for intensifying processes are:
82: 619: 636: 631: 389: 122: 86: 489: 471:"Improving the Efficiency of Drilling Fluid Preparation with Vortex Layer Devices" 306: 394: 377: 192: 97: 89:
and dispersion, acoustic and electromagnetic treatment, high local pressure and
429:"Decontamination of oily wastewater using electromagnetic vortex layer devices" 180: 165: 109:
preparation of multicomponent suspensions with vulcanizing and gelling agents (
35: 376:
Wołosiewicz-Głąb, Marta; Ogonowski, Szymon; Foszcz, Dariusz (September 2016).
223:, etc. Also, it can be used for decontamination of agricultural animal waste. 651: 508: 403: 343: 220: 325:"Laboratory studies of an electromagnetic mill inductor with a power source" 286: 284: 282: 280: 76: 357: 90: 293:
Intensification of technological processes on devices with a vortex layer
277: 369: 114: 579: 525: 208: 490:"Badania mikronizacji węgla kamiennego w młynie elektromagnetycznym" 41: 236: 176: 172: 350: 590:АВС (Russian). www.apparat-nn.ru.Access date: September 22, 2023. 216: 204: 156: 152: 375: 226: 200: 148: 136: 110: 24:
Electromagnetic vortex intensifier with ferromagnetic particles
452:"Improving efficiency of electroplating wastewater treatment" 212: 118: 98:
Industrial application of electromagnetic vortex intensifiers
69:
changes in the physical and chemical properties of substances
196: 188: 144: 140: 299: 487: 77:
Physical processes in electromagnetic vortex intensifiers
488:
Micorek, T.; Rejdak, M.; Robak, J.; Różycki, G. (2016).
410: 187:
Electromagnetic vortex intensifier grinds and regrinds
307:"Process intensifier AVS-100. Electromagnetic Mill" 290: 618:Polshchikov, Henrikh; Zhukov, Pavlo (2023-12-14). 617: 60:grinding and dispersion of solids in liquid media 42:History of electromagnetic vortex intensification 649: 332:Econtexhmod. An International Quarterly Journal 81:Intensification of technological processes and 295:(in Russian). Kiev: Technika. pp. 144 p. 240: 34:. The operating chamber contains cylindrical 227:Issues of electromechanics and device design 121:sponge production; Obtaining suspensions of 291:Logvinenko, D.D.; Shelyakov, O.P. (1976). 117:, soot, kaolin, sodium silicofluoride) in 635: 393: 125:used as matting agent for chemical fibers 28:vortex layer device, electromagnetic mill 624:Technology Audit and Production Reserves 235:Devices AVS-100, АVS-150, etc. (Russian 650: 574: 572: 552: 550: 548: 546: 535: 533: 520: 518: 322: 66:implementation of chemical reactions 57:dry grinding of solids (micro-resin) 468: 449: 426: 162:production of greases and emulsions 13: 569: 543: 530: 515: 15: 14: 704: 159:compounds, and other contaminants 611: 602: 593: 584: 560: 63:activation of substance surface 637:10.15587/2706-5448.2023.293005 427:May, Frank (October 1, 2017). 32:rotating electromagnetic field 1: 497:Piece Przemysłowe & Kotły 450:May, Frank (April 28, 2018). 270: 106:preparation of food emulsions 85:is achieved due to intensive 469:May, Frank (23 April 2018). 395:10.1016/j.ifacol.2016.10.098 7: 663:Electrochemical engineering 51:mixing of liquids and gases 10: 709: 658:Electromagnetic components 241: 54:mixing of loose materials 456:www.watertechonline.com 155:, other heavy metals, 20: 475:Trenchless Technology 433:INDUSTRIAL WATERWORLD 131:from acids, alkalis, 19: 175:in water emulsions, 129:wastewater treatment 133:hexavalent chromium 693:Chemical reactions 323:Styła, S. (2017). 83:chemical reactions 21: 700: 673:Fluid technology 642: 641: 639: 630:(1(74)): 34–40. 615: 609: 606: 600: 597: 591: 588: 582: 576: 567: 564: 558: 554: 541: 537: 528: 522: 513: 512: 494: 485: 479: 478: 466: 460: 459: 447: 441: 440: 424: 418: 414: 408: 407: 397: 373: 367: 366: 365: 361: 354: 348: 347: 329: 320: 311: 310: 303: 297: 296: 288: 244: 243: 203:sand, technical 123:titanium dioxide 708: 707: 703: 702: 701: 699: 698: 697: 648: 647: 646: 645: 616: 612: 607: 603: 598: 594: 589: 585: 577: 570: 565: 561: 555: 544: 538: 531: 523: 516: 492: 486: 482: 467: 463: 448: 444: 425: 421: 415: 411: 374: 370: 363: 356: 355: 351: 327: 321: 314: 305: 304: 300: 289: 278: 273: 229: 171:preparation of 100: 79: 44: 12: 11: 5: 706: 696: 695: 690: 685: 683:Drilling fluid 680: 678:Ferromagnetism 675: 670: 668:Fluid dynamics 665: 660: 644: 643: 610: 601: 592: 583: 568: 559: 542: 529: 514: 480: 461: 442: 419: 409: 368: 349: 338:(2): 109–114. 312: 298: 275: 274: 272: 269: 228: 225: 221:fluoroplastics 185: 184: 169: 166:drilling fluid 163: 160: 126: 107: 99: 96: 78: 75: 71: 70: 67: 64: 61: 58: 55: 52: 43: 40: 9: 6: 4: 3: 2: 705: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 655: 653: 638: 633: 629: 625: 621: 614: 605: 596: 587: 580: 575: 573: 563: 553: 551: 549: 547: 536: 534: 526: 521: 519: 510: 506: 502: 499:(in Polish). 498: 491: 484: 476: 472: 465: 457: 453: 446: 438: 434: 430: 423: 413: 405: 401: 396: 391: 387: 383: 379: 372: 359: 353: 345: 341: 337: 333: 326: 319: 317: 308: 302: 294: 287: 285: 283: 281: 276: 268: 264: 260: 256: 253: 250: 246: 238: 233: 224: 222: 218: 214: 210: 206: 202: 198: 194: 190: 183:, latex, etc. 182: 178: 174: 170: 167: 164: 161: 158: 154: 150: 146: 142: 138: 134: 130: 127: 124: 120: 116: 112: 108: 105: 104: 103: 95: 92: 88: 84: 74: 68: 65: 62: 59: 56: 53: 50: 49: 48: 39: 37: 36:ferromagnetic 33: 29: 25: 18: 688:Electrolysis 627: 623: 613: 604: 595: 586: 562: 557:621.929:537. 500: 496: 483: 474: 464: 455: 445: 436: 432: 422: 412: 385: 381: 371: 352: 335: 331: 301: 292: 265: 261: 257: 254: 251: 247: 234: 230: 195:-containing 186: 101: 91:electrolysis 80: 72: 45: 27: 23: 22: 417:Ukrainian). 388:(20): 256. 168:preparation 135:compounds, 652:Categories 358:US 3869251 271:References 217:wood flour 115:zinc oxide 509:2082-9833 503:: 27–33. 404:2405-8963 344:2084-5715 239:acronym: 209:cellulose 237:Cyrillic 205:diamonds 177:silicone 173:kerosene 193:alumina 157:cyanide 153:cadmium 540:71-80. 507:  402:  364:  342:  201:quartz 181:rubber 149:copper 137:nickel 111:sulfur 87:mixing 493:(PDF) 328:(PDF) 213:chalk 119:latex 505:ISSN 439:(5). 400:ISSN 340:ISSN 197:slag 189:coal 145:zinc 141:iron 632:doi 390:doi 242:АВС 654:: 626:. 622:. 571:^ 545:^ 532:^ 517:^ 495:. 473:. 454:. 437:17 435:. 431:. 398:. 386:49 384:. 380:. 334:. 330:. 315:^ 279:^ 219:, 215:, 211:, 207:, 199:, 191:, 179:, 151:, 147:, 143:, 139:, 113:, 640:. 634:: 628:6 608:. 599:. 581:. 527:. 511:. 501:4 477:. 458:. 406:. 392:: 346:. 336:6 309:. 26:(

Index


rotating electromagnetic field
ferromagnetic
chemical reactions
mixing
electrolysis
sulfur
zinc oxide
latex
titanium dioxide
wastewater treatment
hexavalent chromium
nickel
iron
zinc
copper
cadmium
cyanide
drilling fluid
kerosene
silicone
rubber
coal
alumina
slag
quartz
diamonds
cellulose
chalk
wood flour

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.