Knowledge

Gaussian curvature

Source 📝

1165: 209: 40: 2136: 1720: 2866: 724: 4127: 20: 3419: 2493: 2131:{\displaystyle K={\frac {{\begin{vmatrix}-{\frac {1}{2}}E_{vv}+F_{uv}-{\frac {1}{2}}G_{uu}&{\frac {1}{2}}E_{u}&F_{u}-{\frac {1}{2}}E_{v}\\F_{v}-{\frac {1}{2}}G_{u}&E&F\\{\frac {1}{2}}G_{v}&F&G\end{vmatrix}}-{\begin{vmatrix}0&{\frac {1}{2}}E_{v}&{\frac {1}{2}}G_{u}\\{\frac {1}{2}}E_{v}&E&F\\{\frac {1}{2}}G_{u}&F&G\end{vmatrix}}}{\left(EG-F^{2}\right)^{2}}}} 3183: 2861:{\displaystyle K=-{\frac {\begin{vmatrix}H(F)&\nabla F^{\mathsf {T}}\\\nabla F&0\end{vmatrix}}{|\nabla F|^{4}}}=-{\frac {\begin{vmatrix}F_{xx}&F_{xy}&F_{xz}&F_{x}\\F_{xy}&F_{yy}&F_{yz}&F_{y}\\F_{xz}&F_{yz}&F_{zz}&F_{z}\\F_{x}&F_{y}&F_{z}&0\\\end{vmatrix}}{|\nabla F|^{4}}}} 2290: 332:. At such points, the surface will be saddle shaped. Because one principal curvature is negative, one is positive, and the normal curvature varies continuously if you rotate a plane orthogonal to the surface around the normal to the surface in two directions, the normal curvatures will be zero giving the 1552:
There are many other possible bounded surfaces with constant Gaussian curvature. Whilst the sphere is rigid and can not be bent using an isometry, if a small region removed, or even a cut along a small segment, then the resulting surface can be bent. Such bending preserves Gaussian curvature so any
593: 3414:{\displaystyle K=-{\frac {1}{E}}\left({\frac {\partial }{\partial u}}\Gamma _{12}^{2}-{\frac {\partial }{\partial v}}\Gamma _{11}^{2}+\Gamma _{12}^{1}\Gamma _{11}^{2}-\Gamma _{11}^{1}\Gamma _{12}^{2}+\Gamma _{12}^{2}\Gamma _{12}^{2}-\Gamma _{11}^{2}\Gamma _{22}^{2}\right)} 2157: 1701: 2446: 309:, then the Gaussian curvature is positive and the surface is said to have an elliptic point. At such points, the surface will be dome like, locally lying on one side of its tangent plane. All sectional curvatures will have the same sign. 468: 457:(being the product of the eigenvalues of the Hessian). (Recall that the Hessian is the 2×2 matrix of second derivatives.) This definition allows one immediately to grasp the distinction between a cup/cap versus a saddle point. 1513: 1154: 3170: 3060: 841: 1035:
and a flat plane has constant curvature 0, these two surfaces are not isometric, not even locally. Thus any planar representation of even a small part of a sphere must distort the distances. Therefore, no
872:(Latin: "remarkable theorem") states that Gaussian curvature of a surface can be determined from the measurements of length on the surface itself. In fact, it can be found given the full knowledge of the 2954: 1367: 359:
Most surfaces will contain regions of positive Gaussian curvature (elliptical points) and regions of negative Gaussian curvature separated by a curve of points with zero Gaussian curvature called a
694: 1183:
are locally isometric. A consequence of Minding's theorem is that any surface whose curvature is identically zero can be constructed by bending some plane region. Such surfaces are called
1591: 132: 2316: 2285:{\displaystyle K=-{\frac {1}{2{\sqrt {EG}}}}\left({\frac {\partial }{\partial u}}{\frac {G_{u}}{\sqrt {EG}}}+{\frac {\partial }{\partial v}}{\frac {E_{v}}{\sqrt {EG}}}\right).} 1411: 1543: 3077: 1545:
either have a boundary or a singular point. do Carmo also gives three different examples of surface with constant negative Gaussian curvature, one of which is
241:. For most points on most “smooth” surfaces, different normal sections will have different curvatures; the maximum and minimum values of these are called the 2971: 766: 158:
everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a
588:{\displaystyle K={\frac {{\bigl \langle }(\nabla _{2}\nabla _{1}-\nabla _{1}\nabla _{2})\mathbf {e} _{1},\mathbf {e} _{2}{\bigr \rangle }}{\det g}},} 2902: 1064: 4037: 429:
at the point. They measure how the surface bends by different amounts in different directions from that point. We represent the surface by the
1228: 908:
certainly depends on the way in which the surface is located in space, the end result, the Gaussian curvature itself, is determined by the
645: 1416: 4163: 1516: 3691: 1277: 91: 3760: 3741: 3571: 3816: 4030: 3863: 1168:
Two surfaces which both have constant positive Gaussian curvature but with either an open boundary or singular points.
3951: 3888: 3712: 3607: 3543: 3513: 3488: 935: 1266:
has constant negative Gaussian curvature except at its boundary circle, where the gaussian curvature is not defined.
177:, depending only on distances that are measured “within” or along the surface, not on the way it is isometrically 3838: 445:
vanishes (this can always be attained by a suitable rigid motion). Then the Gaussian curvature of the surface at
3794: 4173: 4158: 920: 1216:. If a sphere is deformed, it does not remain a sphere, proving that a sphere is rigid. A standard proof uses 4178: 4131: 4023: 3787: 727:
The sum of the angles of a triangle on a surface of negative curvature is less than that of a plane triangle.
4112: 3918: 3782: 3529: 3777: 3430: 4153: 4102: 3858: 1372: 1058:
and provides an important link between local geometric properties and global topological properties.
430: 3651: 894:
can be so expressed. The "remarkable", and surprising, feature of this theorem is that although the
3981: 3956: 3878: 3450: 1696:{\displaystyle K={\frac {\det(\mathrm {I\!I} )}{\det(\mathrm {I} )}}={\frac {LN-M^{2}}{EG-F^{2}}}.} 1164: 1049: 844: 1244:
of constant negative Gaussian curvature. In fact, the conclusion also holds for surfaces of class
43:
Some points on the torus have positive, some have negative, and some have zero Gaussian curvature.
3928: 3809: 3623: 2441:{\displaystyle K={\frac {F_{xx}\cdot F_{yy}-F_{xy}^{2}}{\left(1+F_{x}^{2}+F_{y}^{2}\right)^{2}}}} 1573: 1037: 931: 916: 885: 751:, while the sum of the angles of a triangle on a surface of negative curvature will be less than 398: 225: 3933: 3923: 3646: 2142: 1577: 873: 712: 390:
and patches of spheres have this geometry, but there exist other examples as well, such as the
382:
When a surface has a constant positive Gaussian curvature, then the geometry of the surface is
3533: 1021:
tube is zero, the same as for the "unrolled" tube (which is flat). On the other hand, since a
4057: 3830: 1522: 927: 48: 4046: 1553:
such bending of a sphere with a region removed will also have constant Gaussian curvature.
1055: 616: 191: 952:
given by the first fundamental form. Suppose that the image of the embedding is a surface
328:, then the Gaussian curvature is negative and the surface is said to have a hyperbolic or 8: 3971: 3943: 3898: 3455: 3435: 3176: 1184: 1018: 708: 402: 372: 242: 67: 28: 39: 3853: 3802: 3596: 3591: 3477: 1714: 1217: 877: 418: 383: 376: 223:
that is at right angles to the surface; planes containing the normal vector are called
63: 208: 4168: 4077: 4072: 3756: 3737: 3708: 3603: 3567: 3539: 3509: 3484: 1271: 1195: 1174: 949: 863: 747:. The sum of the angles of a triangle on a surface of positive curvature will exceed 740: 220: 196: 183: 4092: 3966: 3868: 3656: 2896: 909: 732: 391: 355:, the Gaussian curvature is zero and the surface is said to have a parabolic point. 333: 237: 4087: 3961: 3873: 3824: 2964: 1221: 756: 229:. The intersection of a normal plane and the surface will form a curve called a 4107: 4097: 4067: 3994: 3989: 3908: 3660: 3440: 2477: 1188: 967: 701: 450: 426: 360: 231: 212: 4147: 3913: 3587: 3070: 2959: 624: 912:
of the surface without any further reference to the ambient space: it is an
289:
The sign of the Gaussian curvature can be used to characterise the surface.
3637:
Goldman, R. (2005). "Curvature formulas for implicit curves and surfaces".
1546: 1263: 1224:
points of extreme principal curvature have non-positive Gaussian curvature.
1149:{\displaystyle \int _{M}K\,dA+\int _{\partial M}k_{g}\,ds=2\pi \chi (M),\,} 329: 1717:) gives Gaussian curvature solely in terms of the first fundamental form: 1270:
There are other surfaces which have constant positive Gaussian curvature.
3999: 3165:{\displaystyle K=\lim _{r\to 0^{+}}12{\frac {\pi r^{2}-A(r)}{\pi r^{4}}}} 1569: 1054:
The Gauss–Bonnet theorem relates the total curvature of a surface to its
881: 422: 159: 24: 3561: 397:
When a surface has a constant negative Gaussian curvature, then it is a
4015: 1519:). These surfaces all have constant Gaussian curvature of 1, but, for 735:
of the Gaussian curvature over some region of a surface is called the
723: 4062: 3848: 3826: 3445: 3055:{\displaystyle K=\lim _{r\to 0^{+}}3{\frac {2\pi r-C(r)}{\pi r^{3}}}} 939: 913: 178: 174: 19: 3535:
Modern Differential Geometry of Curves and Surfaces with Mathematica
1508:{\textstyle \psi (v)=\int _{0}^{v}{\sqrt {1-C^{2}\sin ^{2}v'}}\ dv'} 371:
When a surface has a constant zero Gaussian curvature, then it is a
4004: 3734:
Introduction to Tensor Analysis and the Calculus of Moving Surfaces
2469:, the Gaussian curvature can be expressed in terms of the gradient 3586: 1179:(1839) states that all surfaces with the same constant curvature 836:{\displaystyle \sum _{i=1}^{3}\theta _{i}=\pi +\iint _{T}K\,dA.} 1213: 1200:(1900) answered Minding's question. The only regular (of class 1022: 387: 32: 3566:(2nd ed.). Mineola, NY: Dover Publications. p. 171. 23:
From left to right: a surface of negative Gaussian curvature (
2870:
For a surface with metric conformal to the Euclidean one, so
163: 3624:"General investigations of curved surfaces of 1827 and 1825" 1232:(1901) states that there exists no complete analytic (class 66:
in three-dimensional space at a point is the product of the
3065: 2949:{\displaystyle K=-{\frac {1}{2e^{\sigma }}}\Delta \sigma .} 919:. In particular, the Gaussian curvature is invariant under 3064:
Gaussian curvature is the limiting difference between the
2958:
Gaussian curvature is the limiting difference between the
1362:{\displaystyle (\phi (v)\cos(u),\phi (v)\sin(u),\psi (v))} 1007:
The Gaussian curvature of an embedded smooth surface in
215:
with normal planes in directions of principal curvatures
3532:(1997). "28.4 Hilbert's Lemma and Liebmann's Theorem". 930:, a "surface", viewed abstractly, is a two-dimensional 2605: 2512: 1963: 1738: 1419: 1191:
with constant positive curvature is necessarily rigid.
3676:
A Comprehensive Introduction to Differential Geometry
3186: 3080: 2974: 2905: 2496: 2319: 2160: 1723: 1594: 1525: 1375: 1280: 1067: 876:
and expressed via the first fundamental form and its
769: 689:{\displaystyle K(\mathbf {p} )=\det S(\mathbf {p} ),} 648: 471: 94: 743:equals the deviation of the sum of its angles from 408: 293:If both principal curvatures are of the same sign: 3595: 3506:Differential Geometry: Curves, Surfaces, Manifolds 3476: 3413: 3164: 3054: 2948: 2860: 2440: 2284: 2130: 1695: 1537: 1507: 1405: 1361: 1148: 835: 688: 587: 312:If the principal curvatures have different signs: 126: 3687: 3685: 1614: 1159: 437:, of two variables, in such a way that the point 31:), and a surface of positive Gaussian curvature ( 4145: 3088: 2982: 1624: 1604: 1187:. Minding also raised the question of whether a 666: 573: 16:Product of the principal curvatures of a surface 2294:For a surface described as graph of a function 1517:incomplete Elliptic integral of the second kind 707:A useful formula for the Gaussian curvature is 267:is the product of the two principal curvatures 181:in Euclidean space. This is the content of the 3682: 1212:with constant positive Gaussian curvature are 755:. On a surface of zero curvature, such as the 441:is a critical point, that is, the gradient of 4031: 3810: 3538:(2nd ed.). CRC Press. pp. 652–654. 3174:Gaussian curvature may be expressed with the 880:of first and second order. Equivalently, the 566: 483: 3563:Differential geometry of curves and surfaces 339:If one of the principal curvatures is zero: 3705:Lectures on Classical Differential Geometry 4038: 4024: 3817: 3803: 3626:. The Princeton university library. 1902. 642:, the Gaussian curvature is also given by 460: 3678:. Vol. 3. Boston: Publish or Perish. 3650: 1145: 1114: 1081: 1017:For example, the Gaussian curvature of a 1013:is invariant under the local isometries. 934:. To connect this point of view with the 823: 366: 219:At any point on a surface, we can find a 127:{\displaystyle K=\kappa _{1}\kappa _{2}.} 27:), a surface of zero Gaussian curvature ( 4045: 3731: 3474: 1163: 722: 207: 38: 18: 3750: 3636: 1556: 1043: 898:of the Gaussian curvature of a surface 235:and the curvature of this curve is the 4146: 3702: 3673: 3602:(2nd ed.). Chelsea. p. 228. 3503: 2538: 203: 4019: 3798: 3560:Carmo, Manfredo PerdigĂŁo do (2016) . 3559: 1568:can be expressed as the ratio of the 850: 3528: 3431:Earth's Gaussian radius of curvature 855: 2891:, the Gauss curvature is given by ( 2450:For an implicitly defined surface, 1562:Gaussian curvature of a surface in 759:, the angles will sum to precisely 401:and the geometry of the surface is 375:and the geometry of the surface is 13: 3864:Radius of curvature (applications) 3392: 3377: 3359: 3344: 3326: 3311: 3293: 3278: 3260: 3250: 3246: 3227: 3217: 3213: 2937: 2837: 2572: 2548: 2529: 2243: 2239: 2203: 2199: 1631: 1615: 1611: 1096: 718: 525: 515: 502: 492: 190:Gaussian curvature is named after 14: 4190: 4164:Differential geometry of surfaces 3952:Curvature of Riemannian manifolds 3770: 3753:General Relativity the Essentials 3508:. American Mathematical Society. 1274:considers surfaces of revolution 4126: 4125: 1406:{\displaystyle \phi (v)=C\cos v} 1029:has constant positive curvature 676: 656: 554: 539: 409:Relation to principal curvatures 134:For example, a sphere of radius 3696: 3692:Bertrand–Diquet–Puiseux theorem 3639:Computer Aided Geometric Design 999:is an isometry onto its image. 3755:. Cambridge University Press. 3707:. Courier Dover Publications. 3667: 3630: 3616: 3580: 3553: 3522: 3497: 3483:. Cambridge University Press. 3468: 3141: 3135: 3095: 3031: 3025: 2989: 2845: 2833: 2580: 2568: 2524: 2518: 1635: 1627: 1619: 1607: 1429: 1423: 1385: 1379: 1356: 1353: 1347: 1338: 1332: 1323: 1317: 1308: 1302: 1293: 1287: 1281: 1160:Surfaces of constant curvature 1139: 1133: 938:, such an abstract surface is 680: 672: 660: 652: 534: 488: 1: 3461: 923:deformations of the surface. 843:A more general result is the 711:in terms of the Laplacian in 3598:Geometry and the Imagination 936:classical theory of surfaces 433:as the graph of a function, 7: 3783:Encyclopedia of Mathematics 3424: 2968:and a circle in the plane: 1003:is then stated as follows: 739:. The total curvature of a 10: 4195: 3661:10.1016/j.cagd.2005.06.005 2154:), Gaussian curvature is: 1047: 861: 449:is the determinant of the 4121: 4113:Gauss's law for magnetism 4053: 3980: 3942: 3887: 3837: 3504:KĂŒhnel, Wolfgang (2006). 3479:Geometric Differentiation 3074:and a disk in the plane: 2313:, Gaussian curvature is: 431:implicit function theorem 392:lemon / American football 169:Gaussian curvature is an 3982:Curvature of connections 3957:Riemann curvature tensor 3879:Total absolute curvature 3725: 3475:Porteous, I. R. (1994). 3451:Riemann curvature tensor 983:between open regions of 636:on a regular surface in 4103:Gauss's law for gravity 3929:Second fundamental form 3919:Gauss–Codazzi equations 3751:Rovelli, Carlo (2021). 1538:{\displaystyle C\neq 1} 1038:cartographic projection 932:differentiable manifold 886:second fundamental form 461:Alternative definitions 399:pseudospherical surface 138:has Gaussian curvature 3934:Third fundamental form 3924:First fundamental form 3889:Differential geometry 3859:Frenet–Serret formulas 3839:Differential geometry 3415: 3166: 3056: 2950: 2862: 2442: 2286: 2132: 1697: 1539: 1509: 1407: 1363: 1256:, but breaks down for 1169: 1150: 874:first fundamental form 837: 790: 728: 713:isothermal coordinates 690: 589: 417:at a given point of a 367:Relation to geometries 216: 128: 88:, at the given point: 44: 36: 4174:Differential topology 4159:Differential geometry 4058:Gauss composition law 3831:differential geometry 3732:Grinfeld, P. (2014). 3703:Struik, Dirk (1988). 3416: 3167: 3057: 2951: 2863: 2443: 2287: 2133: 1698: 1540: 1510: 1408: 1364: 1238:) regular surface in 1206:) closed surfaces in 1167: 1151: 989:whose restriction to 948:and endowed with the 928:differential geometry 838: 770: 726: 691: 590: 211: 129: 49:differential geometry 42: 22: 4179:Carl Friedrich Gauss 4047:Carl Friedrich Gauss 3899:Principal curvatures 3778:"Gaussian curvature" 3592:Cohn-Vossen, Stephan 3184: 3078: 2972: 2903: 2494: 2317: 2158: 1721: 1592: 1557:Alternative formulas 1523: 1417: 1373: 1278: 1185:developable surfaces 1065: 1056:Euler characteristic 1050:Gauss–Bonnet theorem 1044:Gauss–Bonnet theorem 845:Gauss–Bonnet theorem 767: 709:Liouville's equation 646: 617:covariant derivative 469: 465:It is also given by 415:principal curvatures 243:principal curvatures 194:, who published the 192:Carl Friedrich Gauss 92: 68:principal curvatures 3972:Sectional curvature 3944:Riemannian geometry 3825:Various notions of 3674:Spivak, M. (1975). 3576:– via zbMATH. 3456:Principal curvature 3436:Sectional curvature 3405: 3390: 3372: 3357: 3339: 3324: 3306: 3291: 3273: 3240: 3177:Christoffel symbols 2424: 2406: 2378: 1449: 878:partial derivatives 403:hyperbolic geometry 373:developable surface 204:Informal definition 162:or the inside of a 4083:Gaussian curvature 3904:Gaussian curvature 3854:Torsion of a curve 3411: 3391: 3376: 3358: 3343: 3325: 3310: 3292: 3277: 3259: 3226: 3162: 3109: 3052: 3003: 2946: 2858: 2826: 2561: 2438: 2410: 2392: 2361: 2282: 2128: 2083: 1949: 1715:Francesco Brioschi 1693: 1580:fundamental forms 1535: 1505: 1435: 1403: 1359: 1170: 1146: 851:Important theorems 833: 729: 686: 585: 384:spherical geometry 377:Euclidean geometry 265:Gaussian curvature 217: 124: 53:Gaussian curvature 45: 37: 4154:Curvature tensors 4141: 4140: 4078:Gaussian brackets 4013: 4012: 3762:978-1-009-01369-7 3743:978-1-4614-7866-9 3573:978-0-486-80699-0 3257: 3224: 3204: 3160: 3087: 3050: 2981: 2935: 2856: 2591: 2436: 2272: 2271: 2250: 2232: 2231: 2210: 2190: 2187: 2126: 2059: 2025: 2001: 1979: 1925: 1891: 1854: 1819: 1794: 1752: 1688: 1639: 1493: 1489: 1272:Manfredo do Carmo 1229:Hilbert's theorem 1001:Theorema egregium 950:Riemannian metric 870:Theorema egregium 864:Theorema egregium 857:Theorema egregium 741:geodesic triangle 580: 334:asymptotic curves 197:Theorema egregium 184:Theorema egregium 4186: 4129: 4128: 4093:Gaussian surface 4040: 4033: 4026: 4017: 4016: 3967:Scalar curvature 3869:Affine curvature 3819: 3812: 3805: 3796: 3795: 3791: 3766: 3747: 3719: 3718: 3700: 3694: 3689: 3680: 3679: 3671: 3665: 3664: 3654: 3634: 3628: 3627: 3620: 3614: 3613: 3601: 3584: 3578: 3577: 3557: 3551: 3549: 3526: 3520: 3519: 3501: 3495: 3494: 3482: 3472: 3420: 3418: 3417: 3412: 3410: 3406: 3404: 3399: 3389: 3384: 3371: 3366: 3356: 3351: 3338: 3333: 3323: 3318: 3305: 3300: 3290: 3285: 3272: 3267: 3258: 3256: 3245: 3239: 3234: 3225: 3223: 3212: 3205: 3197: 3171: 3169: 3168: 3163: 3161: 3159: 3158: 3157: 3144: 3128: 3127: 3114: 3108: 3107: 3106: 3061: 3059: 3058: 3053: 3051: 3049: 3048: 3047: 3034: 3008: 3002: 3001: 3000: 2955: 2953: 2952: 2947: 2936: 2934: 2933: 2932: 2916: 2897:Laplace operator 2895:being the usual 2894: 2890: 2876: 2867: 2865: 2864: 2859: 2857: 2855: 2854: 2853: 2848: 2836: 2830: 2818: 2817: 2806: 2805: 2794: 2793: 2780: 2779: 2768: 2767: 2753: 2752: 2738: 2737: 2721: 2720: 2709: 2708: 2694: 2693: 2679: 2678: 2662: 2661: 2650: 2649: 2635: 2634: 2620: 2619: 2600: 2592: 2590: 2589: 2588: 2583: 2571: 2565: 2543: 2542: 2541: 2507: 2489: 2475: 2468: 2447: 2445: 2444: 2439: 2437: 2435: 2434: 2429: 2425: 2423: 2418: 2405: 2400: 2379: 2377: 2372: 2357: 2356: 2341: 2340: 2327: 2312: 2291: 2289: 2288: 2283: 2278: 2274: 2273: 2264: 2263: 2262: 2253: 2251: 2249: 2238: 2233: 2224: 2223: 2222: 2213: 2211: 2209: 2198: 2191: 2189: 2188: 2180: 2171: 2153: 2137: 2135: 2134: 2129: 2127: 2125: 2124: 2119: 2115: 2114: 2113: 2089: 2088: 2087: 2070: 2069: 2060: 2052: 2036: 2035: 2026: 2018: 2012: 2011: 2002: 1994: 1990: 1989: 1980: 1972: 1954: 1953: 1936: 1935: 1926: 1918: 1902: 1901: 1892: 1884: 1879: 1878: 1865: 1864: 1855: 1847: 1842: 1841: 1830: 1829: 1820: 1812: 1808: 1807: 1795: 1787: 1782: 1781: 1766: 1765: 1753: 1745: 1731: 1711: 1710: 1709:Brioschi formula 1702: 1700: 1699: 1694: 1689: 1687: 1686: 1685: 1666: 1665: 1664: 1645: 1640: 1638: 1634: 1622: 1618: 1602: 1587: 1583: 1567: 1544: 1542: 1541: 1536: 1514: 1512: 1511: 1506: 1504: 1491: 1490: 1488: 1477: 1476: 1467: 1466: 1451: 1448: 1443: 1412: 1410: 1409: 1404: 1368: 1366: 1365: 1360: 1261: 1255: 1249: 1243: 1237: 1211: 1205: 1182: 1155: 1153: 1152: 1147: 1113: 1112: 1103: 1102: 1077: 1076: 1034: 1028: 1012: 998: 988: 982: 961: 955: 947: 926:In contemporary 910:intrinsic metric 907: 901: 893: 888:of a surface in 842: 840: 839: 834: 819: 818: 800: 799: 789: 784: 762: 754: 750: 746: 733:surface integral 699: 695: 693: 692: 687: 679: 659: 641: 635: 622: 614: 594: 592: 591: 586: 581: 579: 571: 570: 569: 563: 562: 557: 548: 547: 542: 533: 532: 523: 522: 510: 509: 500: 499: 487: 486: 479: 456: 448: 444: 440: 436: 354: 327: 308: 285: 262: 253: 238:normal curvature 157: 156: 154: 153: 148: 145: 137: 133: 131: 130: 125: 120: 119: 110: 109: 87: 78: 61: 4194: 4193: 4189: 4188: 4187: 4185: 4184: 4183: 4144: 4143: 4142: 4137: 4117: 4088:Gaussian period 4049: 4044: 4014: 4009: 3976: 3962:Ricci curvature 3938: 3890: 3883: 3874:Total curvature 3840: 3833: 3823: 3776: 3773: 3763: 3744: 3728: 3723: 3722: 3715: 3701: 3697: 3690: 3683: 3672: 3668: 3652:10.1.1.413.3008 3635: 3631: 3622: 3621: 3617: 3610: 3585: 3581: 3574: 3558: 3554: 3546: 3527: 3523: 3516: 3502: 3498: 3491: 3473: 3469: 3464: 3427: 3400: 3395: 3385: 3380: 3367: 3362: 3352: 3347: 3334: 3329: 3319: 3314: 3301: 3296: 3286: 3281: 3268: 3263: 3249: 3244: 3235: 3230: 3216: 3211: 3210: 3206: 3196: 3185: 3182: 3181: 3153: 3149: 3145: 3123: 3119: 3115: 3113: 3102: 3098: 3091: 3079: 3076: 3075: 3043: 3039: 3035: 3009: 3007: 2996: 2992: 2985: 2973: 2970: 2969: 2965:geodesic circle 2928: 2924: 2920: 2915: 2904: 2901: 2900: 2892: 2878: 2871: 2849: 2844: 2843: 2832: 2831: 2825: 2824: 2819: 2813: 2809: 2807: 2801: 2797: 2795: 2789: 2785: 2782: 2781: 2775: 2771: 2769: 2760: 2756: 2754: 2745: 2741: 2739: 2730: 2726: 2723: 2722: 2716: 2712: 2710: 2701: 2697: 2695: 2686: 2682: 2680: 2671: 2667: 2664: 2663: 2657: 2653: 2651: 2642: 2638: 2636: 2627: 2623: 2621: 2612: 2608: 2601: 2599: 2584: 2579: 2578: 2567: 2566: 2560: 2559: 2554: 2545: 2544: 2537: 2536: 2532: 2527: 2508: 2506: 2495: 2492: 2491: 2480: 2470: 2451: 2430: 2419: 2414: 2401: 2396: 2385: 2381: 2380: 2373: 2365: 2349: 2345: 2333: 2329: 2328: 2326: 2318: 2315: 2314: 2295: 2258: 2254: 2252: 2242: 2237: 2218: 2214: 2212: 2202: 2197: 2196: 2192: 2179: 2175: 2170: 2159: 2156: 2155: 2148: 2145:parametrization 2120: 2109: 2105: 2095: 2091: 2090: 2082: 2081: 2076: 2071: 2065: 2061: 2051: 2048: 2047: 2042: 2037: 2031: 2027: 2017: 2014: 2013: 2007: 2003: 1993: 1991: 1985: 1981: 1971: 1969: 1959: 1958: 1948: 1947: 1942: 1937: 1931: 1927: 1917: 1914: 1913: 1908: 1903: 1897: 1893: 1883: 1874: 1870: 1867: 1866: 1860: 1856: 1846: 1837: 1833: 1831: 1825: 1821: 1811: 1809: 1800: 1796: 1786: 1774: 1770: 1758: 1754: 1744: 1734: 1733: 1732: 1730: 1722: 1719: 1718: 1708: 1707: 1681: 1677: 1667: 1660: 1656: 1646: 1644: 1630: 1623: 1610: 1603: 1601: 1593: 1590: 1589: 1585: 1581: 1563: 1559: 1524: 1521: 1520: 1497: 1481: 1472: 1468: 1462: 1458: 1450: 1444: 1439: 1418: 1415: 1414: 1374: 1371: 1370: 1279: 1276: 1275: 1262:-surfaces. The 1257: 1251: 1245: 1239: 1233: 1218:Hilbert's lemma 1207: 1201: 1180: 1162: 1108: 1104: 1095: 1091: 1072: 1068: 1066: 1063: 1062: 1052: 1046: 1030: 1026: 1015: 1008: 990: 984: 970: 957: 953: 943: 903: 899: 889: 866: 860: 853: 814: 810: 795: 791: 785: 774: 768: 765: 764: 760: 757:Euclidean plane 752: 748: 744: 737:total curvature 721: 719:Total curvature 697: 675: 655: 647: 644: 643: 637: 631: 620: 613: 612: 602: 596: 572: 565: 564: 558: 553: 552: 543: 538: 537: 528: 524: 518: 514: 505: 501: 495: 491: 482: 481: 480: 478: 470: 467: 466: 463: 454: 446: 442: 438: 434: 411: 369: 352: 346: 340: 336:for that point. 325: 319: 313: 306: 300: 294: 284: 278: 268: 261: 255: 252: 246: 206: 149: 146: 143: 142: 140: 139: 135: 115: 111: 105: 101: 93: 90: 89: 86: 80: 77: 71: 59: 57:Gauss curvature 17: 12: 11: 5: 4192: 4182: 4181: 4176: 4171: 4166: 4161: 4156: 4139: 4138: 4136: 4135: 4122: 4119: 4118: 4116: 4115: 4110: 4105: 4100: 4098:Gaussian units 4095: 4090: 4085: 4080: 4075: 4073:Gauss's method 4070: 4068:Gauss notation 4065: 4060: 4054: 4051: 4050: 4043: 4042: 4035: 4028: 4020: 4011: 4010: 4008: 4007: 4002: 3997: 3995:Torsion tensor 3992: 3990:Curvature form 3986: 3984: 3978: 3977: 3975: 3974: 3969: 3964: 3959: 3954: 3948: 3946: 3940: 3939: 3937: 3936: 3931: 3926: 3921: 3916: 3911: 3909:Mean curvature 3906: 3901: 3895: 3893: 3885: 3884: 3882: 3881: 3876: 3871: 3866: 3861: 3856: 3851: 3845: 3843: 3835: 3834: 3822: 3821: 3814: 3807: 3799: 3793: 3792: 3772: 3771:External links 3769: 3768: 3767: 3761: 3748: 3742: 3727: 3724: 3721: 3720: 3713: 3695: 3681: 3666: 3645:(7): 632–658. 3629: 3615: 3608: 3588:Hilbert, David 3579: 3572: 3552: 3544: 3521: 3514: 3496: 3489: 3466: 3465: 3463: 3460: 3459: 3458: 3453: 3448: 3443: 3441:Mean curvature 3438: 3433: 3426: 3423: 3422: 3421: 3409: 3403: 3398: 3394: 3388: 3383: 3379: 3375: 3370: 3365: 3361: 3355: 3350: 3346: 3342: 3337: 3332: 3328: 3322: 3317: 3313: 3309: 3304: 3299: 3295: 3289: 3284: 3280: 3276: 3271: 3266: 3262: 3255: 3252: 3248: 3243: 3238: 3233: 3229: 3222: 3219: 3215: 3209: 3203: 3200: 3195: 3192: 3189: 3172: 3156: 3152: 3148: 3143: 3140: 3137: 3134: 3131: 3126: 3122: 3118: 3112: 3105: 3101: 3097: 3094: 3090: 3086: 3083: 3062: 3046: 3042: 3038: 3033: 3030: 3027: 3024: 3021: 3018: 3015: 3012: 3006: 2999: 2995: 2991: 2988: 2984: 2980: 2977: 2956: 2945: 2942: 2939: 2931: 2927: 2923: 2919: 2914: 2911: 2908: 2868: 2852: 2847: 2842: 2839: 2835: 2829: 2823: 2820: 2816: 2812: 2808: 2804: 2800: 2796: 2792: 2788: 2784: 2783: 2778: 2774: 2770: 2766: 2763: 2759: 2755: 2751: 2748: 2744: 2740: 2736: 2733: 2729: 2725: 2724: 2719: 2715: 2711: 2707: 2704: 2700: 2696: 2692: 2689: 2685: 2681: 2677: 2674: 2670: 2666: 2665: 2660: 2656: 2652: 2648: 2645: 2641: 2637: 2633: 2630: 2626: 2622: 2618: 2615: 2611: 2607: 2606: 2604: 2598: 2595: 2587: 2582: 2577: 2574: 2570: 2564: 2558: 2555: 2553: 2550: 2547: 2546: 2540: 2535: 2531: 2528: 2526: 2523: 2520: 2517: 2514: 2513: 2511: 2505: 2502: 2499: 2478:Hessian matrix 2448: 2433: 2428: 2422: 2417: 2413: 2409: 2404: 2399: 2395: 2391: 2388: 2384: 2376: 2371: 2368: 2364: 2360: 2355: 2352: 2348: 2344: 2339: 2336: 2332: 2325: 2322: 2292: 2281: 2277: 2270: 2267: 2261: 2257: 2248: 2245: 2241: 2236: 2230: 2227: 2221: 2217: 2208: 2205: 2201: 2195: 2186: 2183: 2178: 2174: 2169: 2166: 2163: 2138: 2123: 2118: 2112: 2108: 2104: 2101: 2098: 2094: 2086: 2080: 2077: 2075: 2072: 2068: 2064: 2058: 2055: 2050: 2049: 2046: 2043: 2041: 2038: 2034: 2030: 2024: 2021: 2016: 2015: 2010: 2006: 2000: 1997: 1992: 1988: 1984: 1978: 1975: 1970: 1968: 1965: 1964: 1962: 1957: 1952: 1946: 1943: 1941: 1938: 1934: 1930: 1924: 1921: 1916: 1915: 1912: 1909: 1907: 1904: 1900: 1896: 1890: 1887: 1882: 1877: 1873: 1869: 1868: 1863: 1859: 1853: 1850: 1845: 1840: 1836: 1832: 1828: 1824: 1818: 1815: 1810: 1806: 1803: 1799: 1793: 1790: 1785: 1780: 1777: 1773: 1769: 1764: 1761: 1757: 1751: 1748: 1743: 1740: 1739: 1737: 1729: 1726: 1703: 1692: 1684: 1680: 1676: 1673: 1670: 1663: 1659: 1655: 1652: 1649: 1643: 1637: 1633: 1629: 1626: 1621: 1617: 1613: 1609: 1606: 1600: 1597: 1558: 1555: 1534: 1531: 1528: 1503: 1500: 1496: 1487: 1484: 1480: 1475: 1471: 1465: 1461: 1457: 1454: 1447: 1442: 1438: 1434: 1431: 1428: 1425: 1422: 1402: 1399: 1396: 1393: 1390: 1387: 1384: 1381: 1378: 1358: 1355: 1352: 1349: 1346: 1343: 1340: 1337: 1334: 1331: 1328: 1325: 1322: 1319: 1316: 1313: 1310: 1307: 1304: 1301: 1298: 1295: 1292: 1289: 1286: 1283: 1268: 1267: 1225: 1192: 1189:closed surface 1161: 1158: 1157: 1156: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1120: 1117: 1111: 1107: 1101: 1098: 1094: 1090: 1087: 1084: 1080: 1075: 1071: 1048:Main article: 1045: 1042: 1005: 968:diffeomorphism 964:local isometry 862:Main article: 859: 854: 852: 849: 832: 829: 826: 822: 817: 813: 809: 806: 803: 798: 794: 788: 783: 780: 777: 773: 720: 717: 702:shape operator 685: 682: 678: 674: 671: 668: 665: 662: 658: 654: 651: 608: 604: 598: 584: 578: 575: 568: 561: 556: 551: 546: 541: 536: 531: 527: 521: 517: 513: 508: 504: 498: 494: 490: 485: 477: 474: 462: 459: 451:Hessian matrix 427:shape operator 410: 407: 368: 365: 361:parabolic line 357: 356: 350: 344: 337: 323: 317: 310: 304: 298: 282: 276: 259: 250: 232:normal section 213:Saddle surface 205: 202: 123: 118: 114: 108: 104: 100: 97: 84: 75: 15: 9: 6: 4: 3: 2: 4191: 4180: 4177: 4175: 4172: 4170: 4167: 4165: 4162: 4160: 4157: 4155: 4152: 4151: 4149: 4134: 4133: 4124: 4123: 4120: 4114: 4111: 4109: 4106: 4104: 4101: 4099: 4096: 4094: 4091: 4089: 4086: 4084: 4081: 4079: 4076: 4074: 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4055: 4052: 4048: 4041: 4036: 4034: 4029: 4027: 4022: 4021: 4018: 4006: 4003: 4001: 3998: 3996: 3993: 3991: 3988: 3987: 3985: 3983: 3979: 3973: 3970: 3968: 3965: 3963: 3960: 3958: 3955: 3953: 3950: 3949: 3947: 3945: 3941: 3935: 3932: 3930: 3927: 3925: 3922: 3920: 3917: 3915: 3914:Darboux frame 3912: 3910: 3907: 3905: 3902: 3900: 3897: 3896: 3894: 3892: 3886: 3880: 3877: 3875: 3872: 3870: 3867: 3865: 3862: 3860: 3857: 3855: 3852: 3850: 3847: 3846: 3844: 3842: 3836: 3832: 3828: 3820: 3815: 3813: 3808: 3806: 3801: 3800: 3797: 3789: 3785: 3784: 3779: 3775: 3774: 3764: 3758: 3754: 3749: 3745: 3739: 3735: 3730: 3729: 3716: 3714:0-486-65609-8 3710: 3706: 3699: 3693: 3688: 3686: 3677: 3670: 3662: 3658: 3653: 3648: 3644: 3640: 3633: 3625: 3619: 3611: 3609:0-8284-1087-9 3605: 3600: 3599: 3593: 3589: 3583: 3575: 3569: 3565: 3564: 3556: 3547: 3545:9780849371646 3541: 3537: 3536: 3531: 3525: 3517: 3515:0-8218-3988-8 3511: 3507: 3500: 3492: 3490:0-521-39063-X 3486: 3481: 3480: 3471: 3467: 3457: 3454: 3452: 3449: 3447: 3444: 3442: 3439: 3437: 3434: 3432: 3429: 3428: 3407: 3401: 3396: 3386: 3381: 3373: 3368: 3363: 3353: 3348: 3340: 3335: 3330: 3320: 3315: 3307: 3302: 3297: 3287: 3282: 3274: 3269: 3264: 3253: 3241: 3236: 3231: 3220: 3207: 3201: 3198: 3193: 3190: 3187: 3179: 3178: 3173: 3154: 3150: 3146: 3138: 3132: 3129: 3124: 3120: 3116: 3110: 3103: 3099: 3092: 3084: 3081: 3073: 3072: 3071:geodesic disk 3067: 3063: 3044: 3040: 3036: 3028: 3022: 3019: 3016: 3013: 3010: 3004: 2997: 2993: 2986: 2978: 2975: 2967: 2966: 2961: 2960:circumference 2957: 2943: 2940: 2929: 2925: 2921: 2917: 2912: 2909: 2906: 2898: 2889: 2885: 2881: 2874: 2869: 2850: 2840: 2827: 2821: 2814: 2810: 2802: 2798: 2790: 2786: 2776: 2772: 2764: 2761: 2757: 2749: 2746: 2742: 2734: 2731: 2727: 2717: 2713: 2705: 2702: 2698: 2690: 2687: 2683: 2675: 2672: 2668: 2658: 2654: 2646: 2643: 2639: 2631: 2628: 2624: 2616: 2613: 2609: 2602: 2596: 2593: 2585: 2575: 2562: 2556: 2551: 2533: 2521: 2515: 2509: 2503: 2500: 2497: 2487: 2483: 2479: 2474: 2466: 2462: 2458: 2454: 2449: 2431: 2426: 2420: 2415: 2411: 2407: 2402: 2397: 2393: 2389: 2386: 2382: 2374: 2369: 2366: 2362: 2358: 2353: 2350: 2346: 2342: 2337: 2334: 2330: 2323: 2320: 2310: 2306: 2302: 2298: 2293: 2279: 2275: 2268: 2265: 2259: 2255: 2246: 2234: 2228: 2225: 2219: 2215: 2206: 2193: 2184: 2181: 2176: 2172: 2167: 2164: 2161: 2151: 2146: 2144: 2139: 2121: 2116: 2110: 2106: 2102: 2099: 2096: 2092: 2084: 2078: 2073: 2066: 2062: 2056: 2053: 2044: 2039: 2032: 2028: 2022: 2019: 2008: 2004: 1998: 1995: 1986: 1982: 1976: 1973: 1966: 1960: 1955: 1950: 1944: 1939: 1932: 1928: 1922: 1919: 1910: 1905: 1898: 1894: 1888: 1885: 1880: 1875: 1871: 1861: 1857: 1851: 1848: 1843: 1838: 1834: 1826: 1822: 1816: 1813: 1804: 1801: 1797: 1791: 1788: 1783: 1778: 1775: 1771: 1767: 1762: 1759: 1755: 1749: 1746: 1741: 1735: 1727: 1724: 1716: 1712: 1704: 1690: 1682: 1678: 1674: 1671: 1668: 1661: 1657: 1653: 1650: 1647: 1641: 1598: 1595: 1579: 1575: 1571: 1566: 1561: 1560: 1554: 1550: 1548: 1532: 1529: 1526: 1518: 1501: 1498: 1494: 1485: 1482: 1478: 1473: 1469: 1463: 1459: 1455: 1452: 1445: 1440: 1436: 1432: 1426: 1420: 1400: 1397: 1394: 1391: 1388: 1382: 1376: 1350: 1344: 1341: 1335: 1329: 1326: 1320: 1314: 1311: 1305: 1299: 1296: 1290: 1284: 1273: 1265: 1260: 1254: 1248: 1242: 1236: 1231: 1230: 1226: 1223: 1219: 1215: 1210: 1204: 1199: 1197: 1193: 1190: 1186: 1178: 1176: 1172: 1171: 1166: 1142: 1136: 1130: 1127: 1124: 1121: 1118: 1115: 1109: 1105: 1099: 1092: 1088: 1085: 1082: 1078: 1073: 1069: 1061: 1060: 1059: 1057: 1051: 1041: 1039: 1033: 1024: 1020: 1014: 1011: 1004: 1002: 997: 993: 987: 981: 977: 973: 969: 965: 960: 951: 946: 941: 937: 933: 929: 924: 922: 918: 915: 911: 906: 897: 892: 887: 883: 879: 875: 871: 865: 858: 848: 846: 830: 827: 824: 820: 815: 811: 807: 804: 801: 796: 792: 786: 781: 778: 775: 771: 758: 742: 738: 734: 725: 716: 714: 710: 705: 703: 683: 669: 663: 649: 640: 634: 628: 626: 625:metric tensor 618: 611: 607: 601: 582: 576: 559: 549: 544: 529: 519: 511: 506: 496: 475: 472: 458: 452: 432: 428: 424: 420: 416: 406: 404: 400: 395: 393: 389: 385: 380: 378: 374: 364: 362: 349: 343: 338: 335: 331: 322: 316: 311: 303: 297: 292: 291: 290: 287: 281: 275: 271: 266: 258: 249: 245:, call these 244: 240: 239: 234: 233: 228: 227: 226:normal planes 222: 221:normal vector 214: 210: 201: 199: 198: 193: 188: 186: 185: 180: 176: 172: 167: 165: 161: 152: 121: 116: 112: 106: 102: 98: 95: 83: 74: 69: 65: 58: 54: 50: 41: 34: 30: 26: 21: 4130: 4082: 3903: 3781: 3752: 3736:. Springer. 3733: 3704: 3698: 3675: 3669: 3642: 3638: 3632: 3618: 3597: 3582: 3562: 3555: 3534: 3530:Gray, Alfred 3524: 3505: 3499: 3478: 3470: 3175: 3069: 2963: 2887: 2883: 2879: 2872: 2485: 2481: 2472: 2464: 2460: 2456: 2452: 2308: 2304: 2300: 2296: 2149: 2141: 1706: 1570:determinants 1564: 1551: 1547:pseudosphere 1269: 1264:pseudosphere 1258: 1252: 1250:immersed in 1246: 1240: 1234: 1227: 1208: 1202: 1194: 1173: 1053: 1040:is perfect. 1031: 1016: 1009: 1006: 1000: 995: 991: 985: 979: 975: 971: 963: 958: 944: 925: 904: 895: 890: 869: 867: 856: 736: 730: 706: 638: 632: 629: 609: 605: 599: 464: 414: 412: 396: 381: 370: 358: 347: 341: 330:saddle point 320: 314: 301: 295: 288: 279: 273: 269: 264: 256: 247: 236: 230: 224: 218: 195: 189: 182: 170: 168: 150: 81: 72: 62:of a smooth 56: 52: 46: 4108:Gauss's law 4000:Cocurvature 3891:of surfaces 3829:defined in 1019:cylindrical 882:determinant 630:At a point 423:eigenvalues 173:measure of 160:hyperboloid 25:hyperboloid 4148:Categories 3462:References 2143:orthogonal 1198:'s theorem 1177:'s theorem 1025:of radius 896:definition 4063:Gauss map 3849:Curvature 3841:of curves 3827:curvature 3788:EMS Press 3647:CiteSeerX 3446:Gauss map 3393:Γ 3378:Γ 3374:− 3360:Γ 3345:Γ 3327:Γ 3312:Γ 3308:− 3294:Γ 3279:Γ 3261:Γ 3251:∂ 3247:∂ 3242:− 3228:Γ 3218:∂ 3214:∂ 3194:− 3147:π 3130:− 3117:π 3096:→ 3037:π 3020:− 3014:π 2990:→ 2941:σ 2938:Δ 2930:σ 2913:− 2838:∇ 2597:− 2573:∇ 2549:∇ 2530:∇ 2504:− 2359:− 2343:⋅ 2244:∂ 2240:∂ 2204:∂ 2200:∂ 2168:− 2103:− 1956:− 1881:− 1844:− 1784:− 1742:− 1675:− 1654:− 1530:≠ 1479:⁡ 1456:− 1437:∫ 1421:ψ 1398:⁡ 1377:ϕ 1345:ψ 1330:⁡ 1315:ϕ 1300:⁡ 1285:ϕ 1222:umbilical 1220:that non- 1131:χ 1128:π 1097:∂ 1093:∫ 1070:∫ 921:isometric 917:invariant 914:intrinsic 812:∬ 805:π 793:θ 772:∑ 763:radians. 526:∇ 516:∇ 512:− 503:∇ 493:∇ 200:in 1827. 175:curvature 171:intrinsic 113:κ 103:κ 4169:Surfaces 4132:Category 4005:Holonomy 3594:(1952). 3425:See also 1502:′ 1486:′ 1196:Liebmann 974: : 940:embedded 868:Gauss's 567:⟩ 484:⟨ 421:are the 413:The two 179:embedded 29:cylinder 3790:, 2001 2140:For an 1713:(after 1572:of the 1214:spheres 1175:Minding 884:of the 700:is the 623:is the 615:is the 425:of the 419:surface 388:Spheres 155:⁠ 141:⁠ 64:surface 3759:  3740:  3711:  3649:  3606:  3570:  3542:  3512:  3487:  1574:second 1492:  1413:, and 1369:where 1023:sphere 696:where 595:where 326:< 0 307:> 0 263:. The 51:, the 33:sphere 3726:Books 3068:of a 2962:of a 2467:) = 0 1578:first 966:is a 942:into 164:torus 3757:ISBN 3738:ISBN 3709:ISBN 3604:ISBN 3568:ISBN 3540:ISBN 3510:ISBN 3485:ISBN 3066:area 2877:and 2476:and 1705:The 1584:and 1576:and 1515:(an 962:. A 731:The 619:and 79:and 3657:doi 3089:lim 2983:lim 2899:): 2875:= 0 2152:= 0 1625:det 1605:det 1549:. 1470:sin 1395:cos 1327:sin 1297:cos 956:in 902:in 667:det 603:= ∇ 574:det 453:of 353:= 0 55:or 47:In 4150:: 3786:, 3780:, 3684:^ 3655:. 3643:22 3641:. 3590:; 3397:22 3382:11 3364:12 3349:12 3331:12 3316:11 3298:11 3283:12 3265:11 3232:12 3180:: 3111:12 2886:= 2882:= 2490:: 2299:= 1588:: 1582:II 994:∩ 978:→ 847:. 715:. 704:. 627:. 405:. 394:. 386:. 379:. 363:. 286:. 272:= 254:, 187:. 166:. 70:, 35:). 4039:e 4032:t 4025:v 3818:e 3811:t 3804:v 3765:. 3746:. 3717:. 3663:. 3659:: 3612:. 3550:. 3548:. 3518:. 3493:. 3408:) 3402:2 3387:2 3369:2 3354:2 3341:+ 3336:2 3321:1 3303:2 3288:1 3275:+ 3270:2 3254:v 3237:2 3221:u 3208:( 3202:E 3199:1 3191:= 3188:K 3155:4 3151:r 3142:) 3139:r 3136:( 3133:A 3125:2 3121:r 3104:+ 3100:0 3093:r 3085:= 3082:K 3045:3 3041:r 3032:) 3029:r 3026:( 3023:C 3017:r 3011:2 3005:3 2998:+ 2994:0 2987:r 2979:= 2976:K 2944:. 2926:e 2922:2 2918:1 2910:= 2907:K 2893:Δ 2888:e 2884:G 2880:E 2873:F 2851:4 2846:| 2841:F 2834:| 2828:| 2822:0 2815:z 2811:F 2803:y 2799:F 2791:x 2787:F 2777:z 2773:F 2765:z 2762:z 2758:F 2750:z 2747:y 2743:F 2735:z 2732:x 2728:F 2718:y 2714:F 2706:z 2703:y 2699:F 2691:y 2688:y 2684:F 2676:y 2673:x 2669:F 2659:x 2655:F 2647:z 2644:x 2640:F 2632:y 2629:x 2625:F 2617:x 2614:x 2610:F 2603:| 2594:= 2586:4 2581:| 2576:F 2569:| 2563:| 2557:0 2552:F 2539:T 2534:F 2525:) 2522:F 2519:( 2516:H 2510:| 2501:= 2498:K 2488:) 2486:F 2484:( 2482:H 2473:F 2471:∇ 2465:z 2463:, 2461:y 2459:, 2457:x 2455:( 2453:F 2432:2 2427:) 2421:2 2416:y 2412:F 2408:+ 2403:2 2398:x 2394:F 2390:+ 2387:1 2383:( 2375:2 2370:y 2367:x 2363:F 2354:y 2351:y 2347:F 2338:x 2335:x 2331:F 2324:= 2321:K 2311:) 2309:y 2307:, 2305:x 2303:( 2301:F 2297:z 2280:. 2276:) 2269:G 2266:E 2260:v 2256:E 2247:v 2235:+ 2229:G 2226:E 2220:u 2216:G 2207:u 2194:( 2185:G 2182:E 2177:2 2173:1 2165:= 2162:K 2150:F 2147:( 2122:2 2117:) 2111:2 2107:F 2100:G 2097:E 2093:( 2085:| 2079:G 2074:F 2067:u 2063:G 2057:2 2054:1 2045:F 2040:E 2033:v 2029:E 2023:2 2020:1 2009:u 2005:G 1999:2 1996:1 1987:v 1983:E 1977:2 1974:1 1967:0 1961:| 1951:| 1945:G 1940:F 1933:v 1929:G 1923:2 1920:1 1911:F 1906:E 1899:u 1895:G 1889:2 1886:1 1876:v 1872:F 1862:v 1858:E 1852:2 1849:1 1839:u 1835:F 1827:u 1823:E 1817:2 1814:1 1805:u 1802:u 1798:G 1792:2 1789:1 1779:v 1776:u 1772:F 1768:+ 1763:v 1760:v 1756:E 1750:2 1747:1 1736:| 1728:= 1725:K 1691:. 1683:2 1679:F 1672:G 1669:E 1662:2 1658:M 1651:N 1648:L 1642:= 1636:) 1632:I 1628:( 1620:) 1616:I 1612:I 1608:( 1599:= 1596:K 1586:I 1565:R 1533:1 1527:C 1499:v 1495:d 1483:v 1474:2 1464:2 1460:C 1453:1 1446:v 1441:0 1433:= 1430:) 1427:v 1424:( 1401:v 1392:C 1389:= 1386:) 1383:v 1380:( 1357:) 1354:) 1351:v 1348:( 1342:, 1339:) 1336:u 1333:( 1324:) 1321:v 1318:( 1312:, 1309:) 1306:u 1303:( 1294:) 1291:v 1288:( 1282:( 1259:C 1253:R 1247:C 1241:R 1235:C 1209:R 1203:C 1181:K 1143:, 1140:) 1137:M 1134:( 1125:2 1122:= 1119:s 1116:d 1110:g 1106:k 1100:M 1089:+ 1086:A 1083:d 1079:K 1074:M 1032:R 1027:R 1010:R 996:U 992:S 986:R 980:V 976:U 972:f 959:R 954:S 945:R 905:R 900:S 891:R 831:. 828:A 825:d 821:K 816:T 808:+ 802:= 797:i 787:3 782:1 779:= 776:i 761:π 753:π 749:π 745:π 698:S 684:, 681:) 677:p 673:( 670:S 664:= 661:) 657:p 653:( 650:K 639:R 633:p 621:g 610:i 606:e 600:i 597:∇ 583:, 577:g 560:2 555:e 550:, 545:1 540:e 535:) 530:2 520:1 507:1 497:2 489:( 476:= 473:K 455:f 447:p 443:f 439:p 435:f 351:2 348:Îș 345:1 342:Îș 324:2 321:Îș 318:1 315:Îș 305:2 302:Îș 299:1 296:Îș 283:2 280:Îș 277:1 274:Îș 270:Κ 260:2 257:Îș 251:1 248:Îș 151:r 147:/ 144:1 136:r 122:. 117:2 107:1 99:= 96:K 85:2 82:Îș 76:1 73:Îș 60:Κ

Index


hyperboloid
cylinder
sphere

differential geometry
surface
principal curvatures
hyperboloid
torus
curvature
embedded
Theorema egregium
Carl Friedrich Gauss
Theorema egregium

Saddle surface
normal vector
normal planes
normal section
normal curvature
principal curvatures
saddle point
asymptotic curves
parabolic line
developable surface
Euclidean geometry
spherical geometry
Spheres
lemon / American football

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑