Knowledge

Interior algebra

Source 📝

2923:
Kripke semantics in which sentences of the theory hold. Moving from the field of sets to a Boolean space somewhat obfuscates this connection. By treating fields of sets on pre-orders as a category in its own right this deep connection can be formulated as a category theoretic duality that generalizes Stone representation without topology. R. Goldblatt had shown that with restrictions to appropriate homomorphisms such a duality can be formulated for arbitrary modal algebras and Kripke frames. Naturman showed that in the case of interior algebras this duality applies to more general topomorphisms and can be factored via a category theoretic functor through the duality with topological fields of sets. The latter represent the Lindenbaum–Tarski algebra using sets of points satisfying sentences of the S4 theory in the topological semantics. The pre-order can be obtained as the specialization pre-order of the McKinsey–Tarski topology. The Esakia duality can be recovered via a functor that replaces the field of sets with the Boolean space it generates. Via a functor that instead replaces the pre-order with its corresponding Alexandrov topology, an alternative representation of the interior algebra as a field of sets is obtained where the topology is the Alexandrov bico-reflection of the McKinsey–Tarski topology. The approach of formulating a topological duality for interior algebras using both the Stone topology of the Jónsson–Tarski approach and the Alexandrov topology of the pre-order to form a bi-topological space has been investigated by G. Bezhanishvili, R.Mines, and P.J. Morandi. The McKinsey–Tarski topology of an interior algebra is the intersection of the former two topologies.
679:
applications as it only allows construction of continuous morphisms from continuous maps in the case of bijections. (C. Naturman returned to Sikorski's approach while dropping σ-completeness to produce topomorphisms as defined above. In this terminology, Sikorski's original "continuous homomorphisms"
2890:
Whereas the Jónsson–Tarski generalization of Stone duality applies to Boolean algebras with operators in general, the connection between interior algebras and topology allows for another method of generalizing Stone duality that is unique to interior algebras. An intermediate step in the development
2922:
The pre-order obtained in the Jónsson–Tarski approach corresponds to the accessibility relation in the Kripke semantics for an S4 theory, while the intermediate field of sets corresponds to a representation of the Lindenbaum–Tarski algebra for the theory using the sets of possible worlds in the
638:
producing a dual of a continuous map rather than a generalization. On the one hand σ-completeness is too weak to characterize inverse image maps (completeness is required), on the other hand it is too restrictive for a generalization. (Sikorski remarked on using non-σ-complete homomorphisms but
2583:
can be represented as the open elements of an interior algebra and the latter may be chosen to be an interior algebra generated by its open elements—such interior algebras correspond one-to-one with Heyting algebras (up to isomorphism) being the free Boolean extensions of the latter.
2919:, C. Naturman showed that this approach can be formalized as a category theoretic Stone duality in which the usual Stone duality for Boolean algebras corresponds to the case of interior algebras having redundant interior operator (Boolean interior algebras). 2578:
pseudo-complemented elements of these algebras respectively and thus form Boolean algebras. The clopen elements correspond to the complemented elements and form a common subalgebra of these Boolean algebras as well as of the interior algebra itself. Every
276:
pairs, and are paradigmatic instances of "Boolean algebras with operators." The early literature on this subject (mainly Polish topology) invoked closure operators, but the interior operator formulation eventually became the norm following the work of
344:
if all its elements are open (and hence clopen). Boolean interior algebras can be identified with ordinary Boolean algebras as their interior and closure operators provide no meaningful additional structure. A special case is the class of
2871:. In the case of interior algebras the interior (or closure) operator corresponds to a pre-order on the Boolean space. Homomorphisms between interior algebras correspond to a class of continuous maps between the Boolean spaces known as 557:
Early research often considered mappings between interior algebras that were homomorphisms of the underlying Boolean algebras but that did not necessarily preserve the interior or closure operator. Such mappings were called
2498:
can be considered to be an interior algebra where the interior operator is the universal quantifier and the closure operator is the existential quantifier. The monadic Boolean algebras are then precisely the
2511:. In other words, they are precisely the interior algebras in which every open element is closed or equivalently, in which every closed element is open. Moreover, such interior algebras are precisely the 1715:
of elements of an interior algebra to their filters of neighbourhoods is a neighbourhood function on the underlying Boolean algebra of the interior algebra. Moreover, given a neighbourhood function
1145:
Under this dual isomorphism of categories many natural topological properties correspond to algebraic properties, in particular connectedness properties correspond to irreducibility properties:
1534:
Considering interior algebras to be generalized topological spaces, topomorphisms are then the standard homomorphisms of Boolean algebras with added relations, so that standard results from
2911:
and Tarski showed that by generating a topology equivalent to using only the complexes that correspond to open elements as a basis, a representation of an interior algebra is obtained as a
2623:. The one-to-one correspondence between Heyting algebras and interior algebras generated by their open elements reflects the correspondence between extensions of intuitionistic logic and 1328: 2864: 2915:—a field of sets on a topological space that is closed with respect to taking interiors or closures. By equipping topological fields of sets with appropriate morphisms known as 610:. This is a Boolean homomorphism, preserves unions of sequences and includes the closure of an inverse image in the inverse image of the closure. Sikorski thus defined a 2879:
for short. This generalization of Stone duality to interior algebras based on the Jónsson–Tarski representation was investigated by Leo Esakia and is also known as the
2940: 2554:) can be interpreted in the Kripke semantics using monadic universal and existential quantification, respectively, without reference to an accessibility relation. 1775: 2904: 1846: 1230: 2892: 956:) are the very motivation for the definition of interior algebras. Because of this intimate connection with topology, interior algebras have also been called 260:′))′. Thus the theory of interior algebras may be formulated using the closure operator instead of the interior operator, in which case one considers 671:). This generalizes the forward image map of a continuous map—the image of a closure is contained in the closure of the image. This construction is 272:, ·, +, ′, 0, 1⟩ is again a Boolean algebra and satisfies the above identities for the closure operator. Closure and interior algebras form 2868: 570:
were used in the case where these were preserved, but this terminology is now redundant as the standard definition of a homomorphism in
321:. An interior of an element is always open and the closure of an element is always closed. Interiors of closed elements are called 2674: 2646: 1783:
in this interior algebra. Thus interior algebras are equivalent to Boolean algebras with specified neighbourhood functions.
574:
requires that it preserves all operations.) Applications involving countably complete interior algebras (in which countable
2768:, respectively. Thus every derivative algebra can be regarded as an interior algebra. Moreover, given an interior algebra 1484:
Given an interior algebra its open elements form a generalized topology. Conversely given a generalized topological space
549:.) Every interior algebra homomorphism is a topomorphism, but not every topomorphism is an interior algebra homomorphism. 2607:. The relation between Heyting algebras and interior algebras reflects the relationship between intuitionistic logic and 2526:
In the relationship between preordered sets and interior algebras they correspond to the case where the preorder is an
2071:, and the connection between interior algebras and preorders is deeply related to their connection with modal logic. 3014: 2302:
and Kripke frames. In this regard, interior algebras are particularly interesting because of their connection to
1081: 3092: 2690: 2588: 2539: 1874: 1076:. Every complete topomorphism between two complete atomic interior algebras can be derived in this way. If 2847:
provides a category theoretic duality between Boolean algebras and a class of topological spaces known as
3097: 2678: 2600: 2500: 2124: 2024: 1547: 996: 903: 110: 59: 47: 940: 3107: 2912: 2899:. The Stone topology of the corresponding Boolean space is then generated using the field of sets as a 1246: 349:
interior algebras, which are the single element interior algebras characterized by the identity 0 = 1.
3009: 2698: 304: 3102: 2982: 3063: 2967: 2495: 1355: 1301: 2575: 2567: 1101: 672: 635: 273: 205: 175: 2298:
This construction and representation theorem is a special case of the more general result for
1276:
i.e. its interior and closure operators distribute over arbitrary meets and joins respectively
3028: 2981:
According to footnote 19 in McKinsey and Tarski, 1944, the result had been proved earlier by
2004: 906: 881:. The open, closed, regular open, regular closed and clopen elements of the interior algebra 3112: 2944: 2592: 2527: 1585: 1312: 1751: 8: 3049: 2962: 2604: 2570:
Heyting algebra. The regular open elements and regular closed elements correspond to the
2320: 2001: 1927: 1375: 1257: 579: 575: 363: 79: 55: 32: 28: 2515:
interior algebras. They are also the interior algebras corresponding to the modal logic
1853:
i.e. those neighbourhood lattices whose underlying semilattice forms a Boolean algebra.
2932: 2624: 2512: 676: 252:
If the closure operator is taken as primitive, the interior operator can be defined as
2900: 2616: 2324: 2316: 1535: 1367: 926: 694: 571: 83: 2856: 1981:
true, while the closed elements correspond to those that are only false if they are
1786:
In terms of neighbourhood functions, the open elements are precisely those elements
2947:
of elementary classes of interior algebras with hereditarily undecidable theories.
2936: 2650: 2571: 2064: 1179: 323: 180: 20: 2867:
by equipping Boolean spaces with relations that correspond to the operators via a
2908: 2580: 2563: 2530:, reflecting the fact that such preordered sets provide the Kripke semantics for 2044: 2028: 1285: 1089: 1948:) is an interior algebra. The interior operator in this case corresponds to the 938:
in such an interior algebra giving a representation of an interior algebra as a
893:) are just the open, closed, regular open, regular closed and clopen subsets of 2884: 1862: 1206: 1195: 968: 607: 599: 394: 114: 1370:
of open subsets, motivates an alternative formulation of interior algebras: A
3086: 3023: 2896: 2860: 2848: 2844: 2620: 2535: 2299: 2288: 2040: 2036: 2032: 1961: 1339: 603: 586:) typically made use of countably complete Boolean homomorphisms also called 63: 2048: 1531:. Thus generalized topological spaces are equivalent to interior algebras. 471: 367: 1425:
is closed under arbitrary joins (i.e. if a join of an arbitrary subset of
2852: 2851:. Building on nascent ideas of relational semantics (later formalized by 2839: 2705:
as interior/closure algebras stand to topological interiors/closures and
2051:. The Kripke frames corresponding to interior algebras are precisely the 1949: 1842: 910: 40: 1527:
thereby producing an interior algebra whose open elements are precisely
333: 309: 51: 2263: 2121: 1541: 1155: 1092:
of complete atomic interior algebras and complete topomorphisms then
935: 711: 2035:
on appropriate relational structures. In particular, since they are
1960:). This construction is a special case of a more general result for 680:
are σ-complete topomorphisms between σ-complete interior algebras.)
3045:
Topo-canonical completions of closure algebras and Heyting algebras
2943:(all its subtheories are undecidable) and demonstrated an infinite 2307: 2303: 2279: 2075: 2056: 2052: 1139: 634:). This definition had several difficulties: The construction acts 598:
The earliest generalization of continuity to interior algebras was
455: 299: 278: 36: 3040:, Ph.D. thesis, University of Cape Town Department of Mathematics. 2611:, in which one can interpret theories of intuitionistic logic as 2538:
of quantification (for which monadic Boolean algebras provide an
1121: 1938:/ ~ is the set of equivalence classes under this relation. Then 454:
Topomorphisms are another important, and more general, class of
683: 400:
is a homomorphism between the underlying Boolean algebras of
2448:), and the closed sets are the ones for which every outside 2718:
with derivative operator , we can form an interior algebra
774:
where is the usual topological interior operator. For all
1588:. This leads to another formulation of interior algebras: 478:
is a homomorphism between the Boolean algebras underlying
1977:) correspond to sentences that are only true if they are 1841:
Neighbourhood functions may be defined more generally on
1366:
The modern formulation of topological spaces in terms of
289:
Elements of an interior algebra satisfying the condition
2670:
by using the closure operator as a derivative operator.
1849:. Interior algebras may thus be viewed as precisely the 2965:(1951), "Undecidability of some topological theories," 1779:
will then be precisely the filter of neighbourhoods of
3043:
Bezhanishvili, G., Mines, R. and Morandi, P.J., 2008,
2907:
introduced by Tang Tsao-Chen for Lewis's modal logic,
2840:
Stone duality and representation for interior algebras
486:, that also preserves the open and closed elements of 2985:
in 1939, but remained unpublished and not accessible
1754: 408:, that also preserves interiors and closures. Hence: 1906:
where ~ is the equivalence relation on sentences in
1550:
can be generalized to interior algebras: An element
1398:, ·, +, ′, 0, 1⟩ is a Boolean algebra as usual, and 331:. Elements that are both open and closed are called 618:between two σ-complete interior algebras such that 2881:Esakia duality for S4-algebras (interior algebras) 2534:. This also reflects the relationship between the 1769: 1542:Neighbourhood functions and neighbourhood lattices 2739:, with interior and closure operators defined by 2697:. Hence derivative algebras stand to topological 2440:In other words, the open sets are the ones whose 352: 208:, the closure operator satisfies the identities: 3084: 2677:. From this perspective, they are precisely the 2595:that interior algebras play for the modal logic 2562:The open elements of an interior algebra form a 1956:), while the closure operator corresponds to ◊ ( 651:for interior algebras as a Boolean homomorphism 2681:of derivative algebras satisfying the identity 2645:, the closure operator obeys the axioms of the 2287:giving the above-mentioned representation as a 2185:The corresponding closure operator is given by 825:the corresponding closure operator is given by 3010:Intuitionistic logic and modality via topology 2830:necessarily hold for every derivative algebra 2689:. Derivative algebras provide the appropriate 2664:) with the same underlying Boolean algebra as 2503:of interior algebras satisfying the identity 899:respectively in the usual topological sense. 2733:with the same underlying Boolean algebra as 3073:Closure homomorphisms and interior mappings 3059:On the compactification of closure algebras 2939:. Naturman demonstrated that the theory is 2489: 934:. Moreover, every interior algebra can be 684:Relationships to other areas of mathematics 590:—these preserve countable meets and joins. 284: 2895:, which represents a Boolean algebra as a 2087:, «⟩ we can construct an interior algebra 1124:that is a dual isomorphism of categories. 639:included σ-completeness in his axioms for 2863:and G. Hansoul extended Stone duality to 2131:where the interior operator is given by 1992:, interior algebras are sometimes called 1719:on a Boolean algebra with underlying set 655:between two interior algebras satisfying 327:and closures of open elements are called 31:that encodes the idea of the topological 1820:if and only if there is an open element 1723:, we can define an interior operator by 552: 1746:thereby obtaining an interior algebra. 1554:of an interior algebra is said to be a 1361: 593: 313:and are characterized by the condition 3085: 3005:Ph.D. thesis, University of Amsterdam. 2987:in view of the present war conditions 2634: 2007:, who first proposed the modal logics 1500:we can define an interior operator on 541:(Such morphisms have also been called 362:Interior algebras, by virtue of being 2023:Since interior algebras are (normal) 740:and extend it to an interior algebra 35:of a set. Interior algebras are to 3026:, 1944, "The Algebra of Topology," 2557: 2444:are inaccessible from outside (the 2389:The corresponding closed sets are: 2266:in an interior algebra of the form 1134:) is a homomorphism if and only if 913:to an interior algebra of the form 871:is the smallest closed superset of 13: 2926: 1845:producing the structures known as 1603:to its set of filters, such that: 1595:on a Boolean algebra is a mapping 944:. The properties of the structure 547:closure algebra semi-homomorphisms 14: 3124: 2452:is inaccessible from inside (the 458:between interior algebras. A map 3015:Annals of Pure and Applied Logic 2855:) and a result of R. S. Pierce, 2306:. The construction provides the 2262:. Every interior algebra can be 1329:finitely subdirectly irreducible 449: 357: 178:of the interior operator is the 3003:Varieties of interior algebras, 2865:Boolean algebras with operators 2566:and the closed elements form a 2519:, and so have also been called 1572:. The set of neighbourhoods of 1342:ultra-connected if and only if 971:between two topological spaces 3038:Interior Algebras and Topology 2975: 2956: 2893:Stone's representation theorem 2883:and is closely related to the 2627:extensions of the modal logic 1856: 1851:Boolean neighbourhood lattices 1764: 1758: 1082:category of topological spaces 863:is the largest open subset of 370:. Given two interior algebras 353:Morphisms of interior algebras 340:An interior algebra is called 1: 2995: 2546:where the modal operators □ ( 2039:, they can be represented as 2031:, they can be represented by 1988:Because of their relation to 1372:generalized topological space 643:.) Later J. Schmid defined a 392:interior algebra homomorphism 121:, satisfying the identities: 69: 2018: 1847:neighbourhood (semi)lattices 1805:. In terms of open elements 1439:is closed under finite meets 1260:(Alexandrov) if and only if 962:topological Boolean algebras 614:as a Boolean σ-homomorphism 307:of open elements are called 7: 2712:Given a derivative algebra 2673:Thus interior algebras are 1546:The topological concept of 688: 268:, ·, +, ′, 0, 1, ⟩, where ⟨ 58:. Interior algebras form a 10: 3129: 3077:Fundamenta Mathematicae 41 2639:Given an interior algebra 1865:(set of formal sentences) 1668:if and only if there is a 1429:exists then it will be in 582:always exist, also called 113:and postfix designates a 2913:topological field of sets 1875:Lindenbaum–Tarski algebra 941:topological field of sets 2950: 2941:hereditarily undecidable 2649:, . Hence we can form a 2490:Monadic Boolean algebras 1599:from its underlying set 1481:in the Boolean algebra. 1084:and continuous maps and 568:topological homomorphism 285:Open and closed elements 3064:Fundamenta Mathematicae 2968:Fundamenta Mathematicae 2931:Grzegorczyk proved the 2496:monadic Boolean algebra 2338:) whose open sets are: 2043:on a set with a single 1402:is a unary relation on 1356:subdirectly irreducible 1302:directly indecomposable 645:continuous homomorphism 612:continuous homomorphism 588:Boolean σ-homomorphisms 3036:Naturman, C.A., 1991, 3022:McKinsey, J.C.C. and 2887:for Heyting algebras. 2869:power set construction 1771: 1593:neighbourhood function 337:. 0 and 1 are clopen. 3029:Annals of Mathematics 2905:topological semantics 2540:algebraic description 2254:accessible from some 1967:The open elements of 1772: 1122:contravariant functor 958:topo-Boolean algebras 675:but not suitable for 560:Boolean homomorphisms 553:Boolean homomorphisms 27:is a certain type of 3093:Algebraic structures 2935:of closure algebras 2891:of Stone duality is 2693:for the modal logic 2593:intuitionistic logic 2528:equivalence relation 1928:logically equivalent 1770:{\displaystyle N(x)} 1752: 1479:generalized topology 1362:Generalized topology 909:interior algebra is 594:Continuous morphisms 564:closure homomorphism 543:stable homomorphisms 364:algebraic structures 206:principle of duality 3071:Sikorski R., 1955, 3050:Algebra Universalis 3008:Esakia, L., 2004, " 2983:Stanisław Jaśkowski 2963:Andrzej Grzegorczyk 2873:pseudo-epimorphisms 2691:algebraic semantics 2675:derivative algebras 2647:derivative operator 2635:Derivative algebras 2605:propositional logic 2572:pseudo-complemented 2321:Alexandrov topology 2067:of the modal logic 1869:in the modal logic 1843:(meet)-semilattices 1376:algebraic structure 714:Boolean algebra of 710:⟩ one can form the 649:continuous morphism 80:algebraic structure 56:propositional logic 29:algebraic structure 16:Algebraic structure 3098:Mathematical logic 3057:Schmid, J., 1973, 3001:Blok, W.A., 1976, 2933:first-order theory 2903:. Building on the 2651:derivative algebra 2589:play the same role 2250:is the set of all 2238:inaccessible from 2234:is the set of all 1873:, we can form its 1767: 1442:For every element 1258:finitely generated 677:category theoretic 93:, ·, +, ′, 0, 1, ⟩ 3108:Closure operators 2901:topological basis 2587:Heyting algebras 2325:topological space 2201:| there exists a 1964:and modal logic. 1536:universal algebra 1492:, ·, +, ′, 0, 1, 1386:, ·, +, ′, 0, 1, 1274:operator complete 1102:dually isomorphic 927:topological space 782:it is defined by 695:topological space 602:'s, based on the 572:universal algebra 119:interior operator 3120: 2990: 2979: 2973: 2960: 2825: 2799: 2767: 2753: 2732: 2601:Boolean algebras 2558:Heyting algebras 2435: 2384: 2218: 2172: 2116: 2065:Kripke semantics 2025:Boolean algebras 1837: 1819: 1804: 1778: 1776: 1774: 1773: 1768: 1745: 1706: 1691: 1677: 1667: 1637: 1571: 1526: 1477:is said to be a 1469: 1419: 1138:is a continuous 1119: 1066:for all subsets 1038: 995:we can define a 991: 856: 813: 769: 736: 641:closure algebras 262:closure algebras 181:closure operator 105:, ·, +, ′, 0, 1⟩ 76:interior algebra 48:Boolean algebras 25:interior algebra 21:abstract algebra 3128: 3127: 3123: 3122: 3121: 3119: 3118: 3117: 3103:Boolean algebra 3083: 3082: 2998: 2993: 2980: 2976: 2961: 2957: 2953: 2929: 2927:Metamathematics 2842: 2801: 2775: 2755: 2740: 2719: 2637: 2581:Heyting algebra 2564:Heyting algebra 2560: 2492: 2393: 2342: 2189: 2135: 2125:Boolean algebra 2111:), ∩, ∪, ′, ø, 2091: 2057:Preordered sets 2053:preordered sets 2045:binary relation 2021: 1918:if and only if 1859: 1825: 1806: 1791: 1753: 1750: 1749: 1747: 1724: 1693: 1679: 1669: 1642: 1608: 1563: 1544: 1505: 1451: 1414: 1364: 1315:if and only if 1288:if and only if 1233:if and only if 1231:almost discrete 1209:if and only if 1182:if and only if 1158:if and only if 1105: 1003: 975: 829: 786: 764:), ∩, ∪, ′, ø, 744: 731:), ∩, ∪, ′, ø, 722: 691: 686: 636:contravariantly 596: 555: 533:) is closed in 474:if and only if 452: 360: 355: 287: 111:Boolean algebra 72: 17: 12: 11: 5: 3126: 3116: 3115: 3110: 3105: 3100: 3095: 3081: 3080: 3069: 3055: 3041: 3034: 3020: 3006: 2997: 2994: 2992: 2991: 2974: 2954: 2952: 2949: 2928: 2925: 2885:Esakia duality 2849:Boolean spaces 2841: 2838: 2636: 2633: 2559: 2556: 2491: 2488: 2438: 2437: 2387: 2386: 2323:, producing a 2308:preordered set 2300:modal algebras 2293:preorder field 2280:preordered set 2229: 2228: 2183: 2182: 2118: 2117: 2076:preordered set 2063:) provide the 2041:fields of sets 2037:modal algebras 2033:fields of sets 2020: 2017: 1998:Lewis algebras 1962:modal algebras 1950:modal operator 1904: 1903: 1894:/ ~, ∧, ∨, ¬, 1858: 1855: 1766: 1763: 1760: 1757: 1709: 1708: 1639: 1584:) and forms a 1576:is denoted by 1558:of an element 1548:neighbourhoods 1543: 1540: 1498: 1497: 1472: 1471: 1440: 1434: 1420: 1392: 1391: 1363: 1360: 1359: 1358: 1331: 1313:ultraconnected 1304: 1277: 1249: 1222: 1198: 1171: 1064: 1063: 1040: 1039: 1025:) →  1013:) :  993: 992: 969:continuous map 858: 857: 815: 814: 772: 771: 738: 737: 690: 687: 685: 682: 608:continuous map 595: 592: 554: 551: 539: 538: 515: 451: 448: 447: 446: 428: 395:if and only if 359: 356: 354: 351: 329:regular closed 286: 283: 250: 249: 246: 228: 219: 196:is called the 163:is called the 158: 157: 154: 141: 132: 115:unary operator 107: 106: 95: 94: 71: 68: 64:modal algebras 15: 9: 6: 4: 3: 2: 3125: 3114: 3111: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3090: 3088: 3078: 3074: 3070: 3067: 3065: 3060: 3056: 3053: 3051: 3046: 3042: 3039: 3035: 3032: 3030: 3025: 3024:Alfred Tarski 3021: 3018: 3016: 3011: 3007: 3004: 3000: 2999: 2988: 2984: 2978: 2971: 2969: 2964: 2959: 2955: 2948: 2946: 2942: 2938: 2934: 2924: 2920: 2918: 2914: 2910: 2906: 2902: 2898: 2897:field of sets 2894: 2888: 2886: 2882: 2878: 2874: 2870: 2866: 2862: 2858: 2854: 2850: 2846: 2845:Stone duality 2837: 2835: 2834: 2829: 2824: 2823: 2818: 2817: 2812: 2811: 2806: 2805: 2798: 2797: 2792: 2791: 2786: 2785: 2780: 2779: 2773: 2772: 2766: 2762: 2758: 2751: 2747: 2743: 2738: 2737: 2730: 2729: 2724: 2723: 2717: 2716: 2710: 2708: 2704: 2700: 2696: 2692: 2688: 2684: 2680: 2676: 2671: 2669: 2668: 2663: 2662: 2657: 2656: 2652: 2648: 2644: 2643: 2632: 2630: 2626: 2622: 2618: 2614: 2610: 2606: 2602: 2598: 2594: 2590: 2585: 2582: 2577: 2574:elements and 2573: 2569: 2565: 2555: 2553: 2549: 2545: 2541: 2537: 2536:monadic logic 2533: 2529: 2524: 2522: 2518: 2514: 2510: 2506: 2502: 2497: 2487: 2485: 2484: 2479: 2478: 2473: 2472: 2467: 2466: 2461: 2460: 2456:). Moreover, 2455: 2451: 2447: 2443: 2433: 2429: 2425: 2421: 2417: 2413: 2409: 2405: 2401: 2397: 2392: 2391: 2390: 2382: 2378: 2374: 2370: 2366: 2362: 2358: 2354: 2350: 2346: 2341: 2340: 2339: 2337: 2336: 2331: 2330: 2326: 2322: 2318: 2314: 2313: 2309: 2305: 2301: 2296: 2294: 2290: 2289:field of sets 2286: 2285: 2281: 2277: 2276: 2271: 2270: 2265: 2261: 2257: 2253: 2249: 2245: 2241: 2237: 2233: 2226: 2222: 2216: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2187: 2186: 2180: 2176: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2142: 2138: 2134: 2133: 2132: 2130: 2126: 2123: 2114: 2110: 2106: 2102: 2101: 2096: 2095: 2090: 2089: 2088: 2086: 2082: 2081: 2077: 2072: 2070: 2066: 2062: 2059:(also called 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2026: 2016: 2014: 2010: 2006: 2003: 1999: 1995: 1991: 1986: 1984: 1980: 1976: 1972: 1971: 1965: 1963: 1959: 1955: 1951: 1947: 1943: 1942: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1909: 1901: 1897: 1893: 1889: 1885: 1884: 1880: 1879: 1878: 1876: 1872: 1868: 1864: 1854: 1852: 1848: 1844: 1839: 1836: 1832: 1828: 1823: 1817: 1813: 1809: 1802: 1798: 1794: 1789: 1784: 1782: 1761: 1755: 1743: 1739: 1735: 1731: 1727: 1722: 1718: 1714: 1704: 1700: 1696: 1690: 1686: 1682: 1676: 1672: 1665: 1661: 1657: 1653: 1649: 1645: 1640: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1606: 1605: 1604: 1602: 1598: 1594: 1589: 1587: 1583: 1579: 1575: 1570: 1566: 1561: 1557: 1556:neighbourhood 1553: 1549: 1539: 1537: 1532: 1530: 1524: 1520: 1516: 1512: 1508: 1503: 1495: 1491: 1487: 1486: 1485: 1482: 1480: 1476: 1467: 1463: 1459: 1455: 1449: 1445: 1441: 1438: 1435: 1432: 1428: 1424: 1421: 1418: 1413: 1412: 1411: 1410:) such that: 1409: 1405: 1401: 1397: 1389: 1385: 1381: 1380: 1379: 1377: 1373: 1369: 1357: 1353: 1352: 1347: 1346: 1341: 1337: 1336: 1332: 1330: 1326: 1325: 1320: 1319: 1314: 1310: 1309: 1305: 1303: 1299: 1298: 1293: 1292: 1287: 1283: 1282: 1278: 1275: 1271: 1270: 1265: 1264: 1259: 1255: 1254: 1250: 1248: 1244: 1243: 1238: 1237: 1232: 1228: 1227: 1223: 1220: 1219: 1214: 1213: 1208: 1204: 1203: 1199: 1197: 1193: 1192: 1187: 1186: 1181: 1177: 1176: 1172: 1169: 1168: 1163: 1162: 1157: 1153: 1152: 1148: 1147: 1146: 1143: 1141: 1137: 1133: 1129: 1128: 1123: 1118: 1115: →  1114: 1111: :  1110: 1109: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1074: 1069: 1062: 1058: 1054: 1050: 1049: 1045: 1044: 1043: 1036: 1035: 1030: 1029: 1024: 1023: 1018: 1017: 1012: 1008: 1007: 1002: 1001: 1000: 999:topomorphism 998: 990: 989: 985: →  984: 983: 979: :  978: 974: 973: 972: 970: 965: 963: 959: 955: 954: 949: 948: 943: 942: 937: 933: 932: 928: 924: 923: 918: 917: 912: 908: 905: 900: 898: 897: 892: 891: 886: 885: 880: 879: 874: 870: 866: 862: 854: 853: 849:is closed in 848: 844: 840: 836: 832: 828: 827: 826: 824: 820: 811: 810: 805: 801: 797: 793: 789: 785: 784: 783: 781: 777: 767: 763: 759: 755: 754: 749: 748: 743: 742: 741: 734: 730: 726: 721: 720: 719: 717: 713: 709: 705: 701: 700: 696: 681: 678: 674: 670: 666: 662: 658: 654: 650: 646: 642: 637: 633: 629: 625: 621: 617: 613: 609: 605: 604:inverse image 601: 591: 589: 585: 581: 577: 573: 569: 565: 562:. (The terms 561: 550: 548: 544: 536: 532: 528: 524: 521:is closed in 520: 516: 513: 510:) is open in 509: 505: 501: 497: 493: 492: 491: 489: 485: 481: 477: 473: 469: 465: 461: 457: 450:Topomorphisms 444: 440: 436: 432: 429: 426: 422: 418: 414: 411: 410: 409: 407: 403: 399: 396: 393: 389: 385: 381: 377: 373: 369: 368:homomorphisms 365: 358:Homomorphisms 350: 348: 343: 338: 336: 335: 330: 326: 325: 320: 316: 312: 311: 306: 302: 301: 296: 292: 282: 280: 275: 271: 267: 264:of the form ⟨ 263: 259: 255: 247: 245: 241: 237: 233: 229: 227: 223: 220: 218: 214: 211: 210: 209: 207: 203: 199: 195: 191: 187: 183: 182: 177: 172: 170: 166: 162: 155: 153: 150: 146: 142: 140: 136: 133: 131: 127: 124: 123: 122: 120: 116: 112: 104: 100: 99: 98: 92: 88: 87: 86: 85: 81: 77: 67: 65: 61: 57: 54:and ordinary 53: 49: 45: 42: 38: 34: 30: 26: 22: 3076: 3072: 3062: 3058: 3048: 3044: 3037: 3027: 3013: 3002: 2986: 2977: 2966: 2958: 2930: 2921: 2916: 2889: 2880: 2876: 2872: 2843: 2832: 2831: 2827: 2821: 2820: 2815: 2814: 2809: 2808: 2803: 2802: 2795: 2794: 2789: 2788: 2783: 2782: 2777: 2776: 2770: 2769: 2764: 2760: 2756: 2749: 2745: 2741: 2735: 2734: 2727: 2726: 2721: 2720: 2714: 2713: 2711: 2706: 2702: 2699:derived sets 2694: 2686: 2682: 2672: 2666: 2665: 2660: 2659: 2654: 2653: 2641: 2640: 2638: 2628: 2612: 2608: 2596: 2586: 2561: 2551: 2547: 2543: 2531: 2525: 2520: 2516: 2508: 2504: 2493: 2482: 2481: 2476: 2475: 2470: 2469: 2464: 2463: 2458: 2457: 2453: 2449: 2445: 2441: 2439: 2431: 2427: 2423: 2419: 2415: 2411: 2407: 2403: 2399: 2395: 2388: 2380: 2376: 2372: 2368: 2364: 2360: 2356: 2352: 2348: 2344: 2334: 2333: 2328: 2327: 2311: 2310: 2297: 2292: 2283: 2282: 2274: 2273: 2268: 2267: 2259: 2255: 2251: 2247: 2243: 2239: 2235: 2231: 2230: 2224: 2220: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2184: 2178: 2174: 2168: 2164: 2160: 2156: 2152: 2148: 2144: 2140: 2136: 2128: 2119: 2112: 2108: 2104: 2099: 2098: 2093: 2092: 2084: 2079: 2078: 2073: 2068: 2060: 2049:Kripke frame 2022: 2012: 2008: 2000:, after the 1997: 1993: 1989: 1987: 1982: 1978: 1974: 1969: 1968: 1966: 1957: 1953: 1945: 1940: 1939: 1935: 1931: 1923: 1919: 1915: 1911: 1907: 1905: 1899: 1895: 1891: 1887: 1882: 1881: 1870: 1866: 1860: 1850: 1840: 1834: 1830: 1826: 1821: 1815: 1811: 1807: 1800: 1796: 1792: 1787: 1785: 1780: 1741: 1737: 1733: 1729: 1725: 1720: 1716: 1712: 1711:The mapping 1710: 1702: 1698: 1694: 1688: 1684: 1680: 1674: 1670: 1663: 1659: 1655: 1651: 1647: 1643: 1633: 1629: 1625: 1621: 1617: 1613: 1609: 1600: 1596: 1592: 1590: 1581: 1577: 1573: 1568: 1564: 1559: 1555: 1551: 1545: 1533: 1528: 1522: 1518: 1514: 1510: 1506: 1501: 1499: 1493: 1489: 1483: 1478: 1474: 1473: 1465: 1461: 1457: 1453: 1447: 1443: 1436: 1430: 1426: 1422: 1416: 1407: 1403: 1399: 1395: 1393: 1387: 1383: 1378:of the form 1371: 1365: 1350: 1349: 1344: 1343: 1334: 1333: 1323: 1322: 1317: 1316: 1307: 1306: 1296: 1295: 1290: 1289: 1280: 1279: 1273: 1268: 1267: 1262: 1261: 1252: 1251: 1241: 1240: 1235: 1234: 1225: 1224: 1221:) is Boolean 1217: 1216: 1211: 1210: 1201: 1200: 1190: 1189: 1184: 1183: 1174: 1173: 1170:) is trivial 1166: 1165: 1160: 1159: 1150: 1149: 1144: 1135: 1131: 1126: 1125: 1116: 1112: 1107: 1106: 1097: 1093: 1085: 1077: 1072: 1071: 1067: 1065: 1060: 1056: 1052: 1047: 1046: 1041: 1033: 1032: 1027: 1026: 1021: 1020: 1015: 1014: 1010: 1005: 1004: 994: 987: 986: 981: 980: 976: 966: 961: 957: 952: 951: 946: 945: 939: 930: 929: 921: 920: 915: 914: 901: 895: 894: 889: 888: 883: 882: 877: 876: 872: 868: 864: 860: 859: 851: 850: 846: 842: 838: 834: 830: 822: 818: 816: 808: 807: 803: 799: 795: 791: 787: 779: 775: 773: 765: 761: 757: 752: 751: 746: 745: 739: 732: 728: 724: 715: 707: 703: 698: 697: 692: 668: 664: 660: 656: 652: 648: 644: 640: 631: 627: 623: 619: 615: 611: 597: 587: 583: 567: 563: 559: 556: 546: 542: 540: 534: 530: 526: 522: 518: 511: 507: 503: 499: 495: 487: 483: 479: 475: 472:topomorphism 467: 463: 459: 453: 442: 438: 434: 430: 424: 420: 416: 412: 405: 401: 397: 391: 387: 383: 379: 375: 371: 361: 346: 341: 339: 332: 328: 324:regular open 322: 318: 314: 308: 298: 294: 290: 288: 269: 265: 261: 257: 253: 251: 243: 239: 235: 231: 225: 221: 216: 212: 201: 197: 193: 189: 185: 179: 173: 168: 164: 160: 159: 151: 148: 144: 138: 134: 129: 125: 118: 108: 102: 96: 90: 75: 73: 43: 24: 18: 3113:Modal logic 2937:undecidable 2877:p-morphisms 2800:. However, 2548:necessarily 2521:S5 algebras 2278:) for some 2047:, called a 2005:C. I. Lewis 1994:S4 algebras 1983:necessarily 1979:necessarily 1954:necessarily 1857:Modal logic 1450:, the join 1406:(subset of 925:) for some 806:is open in 498:is open in 305:complements 297:are called 184:defined by 41:modal logic 3087:Categories 2996:References 2917:field maps 2774:, we have 2513:semisimple 2402:| for all 2351:| for all 2147:| for all 1824:such that 1790:such that 1728:= max{y ∈ 1678:such that 1368:topologies 1247:semisimple 1180:indiscrete 911:isomorphic 584:σ-complete 70:Definition 52:set theory 3033:: 141-91. 3019:: 155-70. 2972:: 137–52. 2621:necessity 2615:theories 2603:play for 2550:) and ◊ ( 2454:down-sets 2122:power set 2120:from the 2061:S4-frames 2029:operators 2019:Preorders 1910:given by 1286:connected 712:power set 673:covariant 606:map of a 490:. Hence: 456:morphisms 204:. By the 84:signature 82:with the 2909:McKinsey 2552:possibly 2426:implies 2410:and all 2375:implies 2359:and all 2317:topology 2304:topology 2264:embedded 2242:outside 2219:for all 2173:for all 2163:implies 2074:Given a 2002:logician 1958:possibly 1861:Given a 1641:For all 1607:For all 1207:discrete 1140:open map 1090:category 997:complete 967:Given a 936:embedded 904:complete 817:For all 693:Given a 689:Topology 600:Sikorski 462: : 382: : 378:, a map 279:Wim Blok 165:interior 39:and the 37:topology 33:interior 3079:: 12-20 3068:: 33-48 3054:: 1-34. 2857:Jónsson 2679:variety 2501:variety 2446:up-sets 2422:«  2371:«  2315:with a 2213:«  2159:«  1985:false. 1777:⁠ 1748:⁠ 1538:apply. 1394:where ⟨ 1340:compact 1088:is the 1080:is the 525:, then 502:, then 366:, have 347:trivial 342:Boolean 198:closure 60:variety 50:are to 2861:Tarski 2853:Kripke 2629:S4.Grz 2625:normal 2619:under 2617:closed 2542:) and 2442:worlds 2319:, the 2252:worlds 2246:, and 2240:worlds 2236:worlds 1934:, and 1863:theory 1638:exists 1616:, max{ 1586:filter 1470:exists 1415:0,1 ∈ 1374:is an 1196:simple 907:atomic 902:Every 390:is an 334:clopen 310:closed 303:. The 192:′))′. 117:, the 97:where 78:is an 2951:Notes 2945:chain 2826:does 2819:)) = 2793:)) = 2450:world 2256:world 2209:with 2103:) = ⟨ 2027:with 1890:) = ⟨ 1354:) is 1327:) is 1300:) is 1272:) is 1245:) is 1194:) is 1156:empty 1120:is a 833:= ∩ { 790:= ∪ { 756:) = ⟨ 580:joins 576:meets 470:is a 248:0 = 0 156:1 = 1 109:is a 46:what 23:, an 2754:and 2752:′ ′ 2701:and 2599:and 2591:for 2576:dual 2568:dual 2494:Any 2486:)). 2468:) = 2011:and 1926:are 1922:and 1902:, □⟩ 1692:and 1509:= Σ{ 1104:and 1100:are 1096:and 1059:) = 867:and 845:and 802:and 663:) ≤ 626:) ≤ 578:and 545:and 482:and 437:) = 419:) = 404:and 374:and 300:open 274:dual 256:= (( 238:) = 188:= (( 176:dual 174:The 147:) = 3017:127 3012:," 2875:or 2828:not 2703:wK4 2695:wK4 2295:). 2291:(a 2258:in 2193:= { 2139:= { 2127:of 2115:, ⟩ 2083:= ⟨ 1996:or 1952:□ ( 1930:in 1562:if 1504:by 1446:of 1338:is 1311:is 1284:is 1256:is 1229:is 1205:is 1178:is 1154:is 1117:Cit 1113:Top 1098:Cit 1094:Top 1086:Cit 1078:Top 1070:of 1042:by 960:or 875:in 768:, ⟩ 702:= ⟨ 647:or 566:or 517:If 494:If 200:of 167:of 74:An 62:of 19:In 3089:: 3075:, 3066:79 3061:, 3052:58 3047:, 3031:45 2970:38 2859:, 2836:. 2763:+ 2759:= 2744:= 2709:. 2707:S4 2685:≥ 2631:. 2613:S4 2609:S4 2597:S4 2544:S5 2532:S5 2523:. 2517:S5 2507:= 2430:∈ 2418:, 2414:∈ 2406:∈ 2398:⊆ 2379:∈ 2367:, 2363:∈ 2355:∈ 2347:⊆ 2223:⊆ 2205:∈ 2197:∈ 2177:⊆ 2167:∈ 2155:, 2151:∈ 2143:∈ 2069:S4 2055:. 2015:. 2013:S5 2009:S4 1990:S4 1914:~ 1898:, 1877:: 1871:S4 1838:. 1833:≤ 1829:≤ 1810:∈ 1795:∈ 1744:)} 1736:∈ 1732:| 1697:∈ 1687:≤ 1683:≤ 1673:∈ 1658:∈ 1654:, 1650:∈ 1636:)} 1628:∈ 1624:| 1620:∈ 1612:∈ 1591:A 1567:≤ 1521:≤ 1517:| 1464:≤ 1460:| 1452:Σ{ 1142:. 1055:)( 964:. 841:⊆ 837:| 821:⊆ 798:⊆ 794:| 778:⊆ 718:: 706:, 466:→ 445:). 427:); 386:→ 317:= 293:= 281:. 242:+ 234:+ 224:= 215:≥ 171:. 145:xy 137:= 128:≤ 66:. 44:S4 2989:. 2833:V 2822:V 2816:V 2813:( 2810:I 2807:( 2804:D 2796:A 2790:A 2787:( 2784:D 2781:( 2778:I 2771:A 2765:x 2761:x 2757:x 2750:x 2748:· 2746:x 2742:x 2736:V 2731:) 2728:V 2725:( 2722:I 2715:V 2687:x 2683:x 2667:A 2661:A 2658:( 2655:D 2642:A 2509:x 2505:x 2483:X 2480:( 2477:T 2474:( 2471:A 2465:X 2462:( 2459:B 2436:. 2434:} 2432:C 2428:y 2424:x 2420:y 2416:X 2412:y 2408:C 2404:x 2400:X 2396:C 2394:{ 2385:. 2383:} 2381:O 2377:y 2373:y 2369:x 2365:X 2361:y 2357:O 2353:x 2349:X 2345:O 2343:{ 2335:X 2332:( 2329:T 2312:X 2284:X 2275:X 2272:( 2269:B 2260:S 2248:S 2244:S 2232:S 2227:. 2225:X 2221:S 2217:} 2215:x 2211:y 2207:S 2203:y 2199:X 2195:x 2191:S 2181:. 2179:X 2175:S 2171:} 2169:S 2165:y 2161:y 2157:x 2153:X 2149:y 2145:X 2141:x 2137:S 2129:X 2113:X 2109:X 2107:( 2105:P 2100:X 2097:( 2094:B 2085:X 2080:X 1975:M 1973:( 1970:L 1946:M 1944:( 1941:L 1936:M 1932:M 1924:q 1920:p 1916:q 1912:p 1908:M 1900:T 1896:F 1892:M 1888:M 1886:( 1883:L 1867:M 1835:x 1831:z 1827:y 1822:z 1818:) 1816:y 1814:( 1812:N 1808:x 1803:) 1801:x 1799:( 1797:N 1793:x 1788:x 1781:x 1765:) 1762:x 1759:( 1756:N 1742:y 1740:( 1738:N 1734:x 1730:B 1726:x 1721:B 1717:N 1713:N 1707:. 1705:) 1703:z 1701:( 1699:N 1695:z 1689:x 1685:z 1681:y 1675:B 1671:z 1666:) 1664:y 1662:( 1660:N 1656:x 1652:B 1648:y 1646:, 1644:x 1634:y 1632:( 1630:N 1626:x 1622:B 1618:y 1614:B 1610:x 1601:B 1597:N 1582:x 1580:( 1578:N 1574:x 1569:y 1565:x 1560:x 1552:y 1529:T 1525:} 1523:b 1519:a 1515:T 1513:∈ 1511:a 1507:b 1502:B 1496:⟩ 1494:T 1490:B 1488:⟨ 1475:T 1468:} 1466:b 1462:a 1458:T 1456:∈ 1454:a 1448:B 1444:b 1437:T 1433:) 1431:T 1427:T 1423:T 1417:T 1408:B 1404:B 1400:T 1396:B 1390:⟩ 1388:T 1384:B 1382:⟨ 1351:X 1348:( 1345:A 1335:X 1324:X 1321:( 1318:A 1308:X 1297:X 1294:( 1291:A 1281:X 1269:X 1266:( 1263:A 1253:X 1242:X 1239:( 1236:A 1226:X 1218:X 1215:( 1212:A 1202:X 1191:X 1188:( 1185:A 1175:X 1167:X 1164:( 1161:A 1151:X 1136:f 1132:f 1130:( 1127:A 1108:A 1073:Y 1068:S 1061:f 1057:S 1053:f 1051:( 1048:A 1037:) 1034:X 1031:( 1028:A 1022:Y 1019:( 1016:A 1011:f 1009:( 1006:A 988:Y 982:X 977:f 953:X 950:( 947:A 931:X 922:X 919:( 916:A 896:X 890:X 887:( 884:A 878:X 873:S 869:S 865:S 861:S 855:} 852:X 847:C 843:C 839:S 835:C 831:S 823:X 819:S 812:} 809:X 804:O 800:S 796:O 792:O 788:S 780:X 776:S 770:, 766:X 762:X 760:( 758:P 753:X 750:( 747:A 735:⟩ 733:X 729:X 727:( 725:P 723:⟨ 716:X 708:T 704:X 699:X 669:x 667:( 665:f 661:x 659:( 657:f 653:f 632:x 630:( 628:f 624:x 622:( 620:f 616:f 537:. 535:B 531:x 529:( 527:f 523:A 519:x 514:; 512:B 508:x 506:( 504:f 500:A 496:x 488:A 484:B 480:A 476:f 468:B 464:A 460:f 443:x 441:( 439:f 435:x 433:( 431:f 425:x 423:( 421:f 417:x 415:( 413:f 406:B 402:A 398:f 388:B 384:A 380:f 376:B 372:A 319:x 315:x 295:x 291:x 270:S 266:S 258:x 254:x 244:y 240:x 236:y 232:x 230:( 226:x 222:x 217:x 213:x 202:x 194:x 190:x 186:x 169:x 161:x 152:y 149:x 143:( 139:x 135:x 130:x 126:x 103:S 101:⟨ 91:S 89:⟨

Index

abstract algebra
algebraic structure
interior
topology
modal logic
Boolean algebras
set theory
propositional logic
variety
modal algebras
algebraic structure
signature
Boolean algebra
unary operator
dual
closure operator
principle of duality
dual
Wim Blok
open
complements
closed
regular open
clopen
algebraic structures
homomorphisms
if and only if
morphisms
topomorphism
universal algebra

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.