Knowledge

Lattice of stable matchings

Source đź“ť

1128:
If the doctor is unemployed or has a less-preferred assignment, the doctor accepts the offer (and resigns from their other assignment if it exists). The process always terminates, because each doctor and hospital interact only once. When it terminates, the result is a stable matching, the one that assigns each hospital to its best match and that assigns all doctors to their worst matches. An algorithm that swaps the roles of the doctors and hospitals (in which unemployed doctors send a job applications to their next preference among the hospitals, and hospitals accept applications either when they have an unfilled position or they prefer the new applicant, firing the doctor they had previously accepted) instead produces the stable matching that assigns all doctors to their best matches and each hospital to its worst match.
3216:
of stable matchings, each participant is matched to the median element of the multiset of their matches from the given matchings. For an even set of stable matchings, this can be disambiguated by choosing the assignment that matches each doctor to the higher of the two median elements, and each hospital to the lower of the two median elements. In particular, this leads to a definition for the median matching in the set of all stable matchings. However, for some instances of the stable matching problem, finding this median of all stable matchings is
2781:
total weight of the lower matching. By the correspondence between stable matchings and lower sets of rotations, the total weight of any matching is then equal to the total weight of its corresponding lower set, plus the weight of the bottom element of the lattice of matchings. The problem of finding the minimum or maximum weight stable matching becomes in this way equivalent to the problem of finding the minimum or maximum weight lower set in a partially ordered set of polynomial size, the partially ordered set of rotations.
2303:
matching can be obtained by changing the given matching by rotations downward in the partial ordering, choosing arbitrarily which rotation to perform at each step, until reaching the bottom element, and listing the rotations used in this sequence of changes. The stable matching associated with any lower set of rotations can be obtained by applying the rotations to the bottom element of the lattice of stable matchings, choosing arbitrarily which rotation to apply when more than one can apply.
2299:
are separately the higher matching for the same rotation, then so is their meet. It follows that for any rotation, the set of stable matchings that can be the higher of a pair connected by the rotation has a unique lowest element. This lowest matching is join irreducible, and this gives a one-to-one correspondence between rotations and join-irreducible stable matchings.
140:
preferences for which hospital they would like to work at (for instance based on which cities they would prefer to live in), and the hospitals each have preferences for which doctors they would like to work for them (for instance based on specialization or recommendations). The goal is to find a matching that is
2298:
whose edges alternate between the two matchings. Equivalently, the rotation can be described as the set of changes that would need to be performed to change the lower of the two matchings into the higher one (with lower and higher determined using the partial order). If two different stable matchings
1127:
gives a process for constructing stable matchings, that can be described as follows: until a matching is reached, the algorithm chooses an arbitrary hospital with an unfilled position, and that hospital makes a job offer to the doctor it most prefers among the ones it has not already made offers to.
383:
the other. The same comparison operation can be defined in the same way for any two sets of elements, not just doctors and hospitals. The choice of which of the two sets of elements to use in the role of the doctors is arbitrary. Swapping the roles of the doctors and hospitals reverses the ordering
139:
In its simplest form, an instance of the stable matching problem consists of two sets of the same number of elements to be matched to each other, for instance doctors and positions at hospitals. Each element has a preference ordering on the elements of the other type: the doctors each have different
3215:
and similarly by assigning each hospital the median of the three doctors matched to it. More generally, any set of an odd number of elements of any distributive lattice (or median graph) has a median, a unique element minimizing its sum of distances to the given set. For the median of an odd number
1115:
to any other partner in any stable matching. This contradiction shows that assigning all doctors to their best matches gives a matching. It is a stable matching, because any unstable pair would also be unstable for one of the matchings used to define best matches. As well as assigning all doctor to
2877:
defines the regret of a participant in a stable matching to be the distance of their assigned match from the top of their preference list. He defines the regret of a stable matching to be the maximum regret of any participant. Then one can find the minimum-regret stable matching by a simple greedy
2780:
From the weights on pairs of elements, one can assign weights to each rotation, where a rotation that changes a given stable matching to another one higher in the partial ordering of stable matchings is assigned the change in weight that it causes: the total weight of the higher matching minus the
2302:
If the rotations are given the same partial ordering as their corresponding join-irreducible stable matchings, then Birkhoff's representation theorem gives a one-to-one correspondence between lower sets of rotations and all stable matchings. The set of rotations associated with any given stable
2752:
from a given instance of stable matching, and provides a concise representation to the family of all stable matchings, which can for some instances be exponentially larger when listed explicitly. This allows several other computations on stable matching instances to be performed efficiently.
2597:
of counting the number of stable matchings of a given instance. From the equivalence between lattices of stable matchings and arbitrary finite distributive lattices, it follows that this problem has equivalent computational complexity to counting the number of elements in an arbitrary finite
2154:
of an associated partial order. In the general form of Birkhoff's theorem, this partial order can be taken as the induced order on a subset of the elements of the lattice, the join-irreducible elements (elements that cannot be formed as joins of two other elements). For the lattice of stable
1715:
in which there is a unique minimum element and a unique maximum element, in which every two elements have a unique least element greater than or equal to both of them (their join) and every two elements have a unique greatest element less than or equal to both of them (their meet).
3150: 2878:
algorithm that starts at the bottom element of the lattice of matchings and then repeatedly applies any rotation that reduces the regret of a participant with maximum regret, until this would cause some other participant to have greater regret.
1119:
Symmetrically, assigning all doctors to their worst matches and assigning all hospitals to their best matches gives another stable matching. In the partial order on the matchings, it is less than all other stable matchings.
2150:, with intersection and union as the meet and join operations, and with the relation of being a subset as the comparison operation for the associated partial order. More specifically, these sets can be taken to be the 1837:
because it was defined to give each doctor their preferred choice, and because these preferences of the doctors are how the ordering on matchings is defined. It is below any other matching that is also above both
1878:, because any such matching would have to give each doctor an assigned match that is at least as good. Therefore, it fits the requirements for the join operation of a lattice. Symmetrically, the operation 2046: 2126: 3155:
For the lattice of stable matchings, this median can instead be taken element-wise, by assigning each doctor the median in the doctor's preferences of the three hospitals matched to that doctor in
1599:
are stable. There cannot be a pair of a doctor and hospital who prefer each other to their match, because the same pair would necessarily also be an unstable pair for at least one of
3003: 2860: 2486:
Beyond being a finite distributive lattice, there are no other constraints on the lattice structure of stable matchings. This is because, for every finite distributive lattice
2338:
of elements of a given stable matching instance belongs to at most two rotations: one rotation that, when applied to the lower of two matchings, removes other assignments to
2689: 125: 2583: 1902: 1769: 1697: 1597: 1542: 1424: 1325: 1226: 2995: 2471: 2814: 2722: 1795: 1743: 1671: 1571: 1516: 1450: 1398: 1256: 1200: 1073: 968: 923: 898: 813: 670: 644: 618: 529: 503: 435: 241: 151:
In general, there may be many different stable matchings. For example, suppose there are three doctors (A,B,C) and three hospitals (X,Y,Z) which have preferences of:
2834: 2435: 2408: 2336: 381: 215: 3573:; Gharan, Shayan Oveis; Weber, Robbie (2018), "A simply exponential upper bound on the maximum number of stable matchings", in Diakonikolas, Ilias; Kempe, David; 2761:
If each pair of elements in a stable matching instance is assigned a real-valued weight, it is possible to find the minimum or maximum weight stable matching in
3213: 3193: 3173: 2954: 2934: 2914: 2647: 2627: 2544: 2524: 2504: 2376: 2356: 2288: 2268: 2244: 2224: 2204: 2184: 1969: 1949: 1929: 1876: 1856: 1835: 1815: 1637: 1617: 1490: 1470: 1365: 1345: 1296: 1276: 1174: 1154: 1113: 1093: 1048: 1028: 1008: 988: 943: 873: 853: 833: 788: 768: 748: 728: 708: 592: 572: 552: 477: 457: 409: 361: 341: 321: 301: 281: 261: 1116:
their best matches, it assigns all hospitals to their worst matches. In the partial ordering on the matchings, it is greater than all other stable matchings.
85:
Every finite distributive lattice can be represented as a lattice of stable matchings. The number of elements in the lattice can vary from an average case of
770:
in a stable matching, and define the worst match analogously. Then no two elements can have the same best match. For, suppose to the contrary that doctors
74:
describing the changes between adjacent stable matchings in the lattice. The family of all rotations and their partial order can be constructed in
1452:, for regardless of which of the two doctors is preferred by the hospital, that doctor and hospital would form an unstable pair in whichever of 1907:
Because they are defined using an element-wise minimum or element-wise maximum in the preference ordering, these two operations obey the same
3751: 2792:
in which the goal is to find a subset of vertices of optimal weight with no outgoing edges. The optimal lower set is an optimal closure of a
176:
The lattice of stable matchings organizes this collection of solutions, for any instance of stable matching, giving it the structure of a
78:, leading to polynomial time solutions for other problems on stable matching including the minimum or maximum weight stable matching. The 387:
Then this ordering gives the matchings the structure of a partially ordered set. To do so, it must obey the following three properties:
144:: no pair of a doctor and a hospital prefer each other to their assigned match. Versions of this problem are used, for instance, by the 1426:
are matchings. It is not possible, for instance, for two doctors to have the same best choice and be matched to the same hospital in
1977: 2057: 2862:
in the partial order. The closure problem can, in turn, be solved in polynomial time by transforming it into an instance of the
2378:
and instead assigns them to each other, and a second rotation that, when applied to the lower of two matchings, removes pair
3536: 2143: 59: 2691:. In a stable marriage instance chosen to maximize the number of different stable matchings, this number can be at least 3827: 145: 3277: 2887: 2250:
of the partial order of stable matchings.) Then the set of pairs of elements that are matched in one but not both of
1371:(The same operations can be defined in the same way for any two sets of elements, not just doctors and hospitals.) 3498: 3453: 3496:(1987), "Every finite distributive lattice is a set of stable matchings for a small stable marriage instance", 3145:{\displaystyle m(P,Q,R)=(P\wedge Q)\vee (P\wedge R)\vee (Q\wedge R)=(P\vee Q)\wedge (P\vee R)\wedge (Q\vee R).} 3825:
Teo, Chung-Piaw; Sethuraman, Jay (1998), "The geometry of fractional stable matchings and its applications",
676:
For stable matchings, all three properties follow directly from the definition of the comparison operation.
3789: 3493: 283:: either they have the same assigned hospital in both matchings, or they are assigned a better hospital in 3661: 2839: 1124: 685: 79: 47:
description of the family of all solutions to the problem. It was originally described in the 1970s by
1911:
obeyed by the minimum and maximum operations on linear orderings: for every three different matchings
3625: 3417: 3378: 2155:
matchings, the elements of the partial order can instead be described in terms of structures called
3903: 2774: 2594: 3264: 2652: 88: 3908: 40: 2793: 2549: 1881: 1748: 1676: 1576: 1521: 1403: 1304: 1205: 2959: 2440: 2206:
are comparable and have no third stable matching between them in the partial order. (That is,
2799: 2694: 2506:, there exists a stable matching instance whose lattice of stable matchings is isomorphic to 1774: 1722: 1650: 1550: 1495: 1429: 1377: 1235: 1179: 649: 623: 597: 508: 482: 414: 384:
of every pair of elements, but does not otherwise change the structure of the partial order.
220: 194: 67: 2819: 3884: 3848: 3812: 3774: 3729: 3682: 3646: 3604: 3557: 3521: 3476: 3438: 3324: 3287: 2863: 2729: 2413: 2381: 2309: 2291: 2132: 1704: 366: 200: 177: 36: 8: 3451:
Blair, Charles (1984), "Every finite distributive lattice is a set of stable matchings",
3415:
Irving, Robert W.; Leather, Paul (1986), "The complexity of counting stable marriages",
2777:. An alternative, combinatorial algorithm is possible, based on the same partial order. 2410:
from the matching and finds other assignments for those two elements. Because there are
1053: 948: 903: 878: 793: 3706: 3582: 3198: 3178: 3158: 2939: 2919: 2899: 2766: 2632: 2612: 2529: 2509: 2489: 2361: 2341: 2273: 2253: 2229: 2209: 2189: 2169: 1954: 1934: 1914: 1861: 1841: 1820: 1800: 1622: 1602: 1475: 1455: 1350: 1330: 1281: 1261: 1159: 1139: 1098: 1078: 1033: 1013: 993: 973: 928: 858: 838: 818: 773: 753: 733: 713: 693: 577: 557: 537: 462: 442: 394: 346: 326: 306: 286: 266: 246: 48: 3861:
Cheng, Christine T. (2010), "Understanding the generalized median stable matchings",
3803: 3674: 3512: 3467: 3356: 3351: 3273: 2247: 1327:, each doctor gets their worst choice among the two hospitals they are matched to in 3765: 3337:
Peranson, E.; Randlett, R. R. (June 1995), "The NRMP matching algorithm revisited",
1258:, each doctor gets their best choice among the two hospitals they are matched to in 3872: 3836: 3798: 3760: 3742: 3715: 3670: 3634: 3592: 3574: 3545: 3507: 3462: 3426: 3387: 3373: 3346: 3310: 2602:
in an arbitrary partially ordered set. Computing the number of stable matchings is
1908: 82:
can be used to construct two special lattice elements, its top and bottom element.
44: 28: 3787:
Bandelt, Hans-Jürgen; Barthélémy, Jean-Pierre (1984), "Medians in median graphs",
3746: 3391: 1518:, the hospitals must also be matched. The same reasoning applies symmetrically to 3880: 3844: 3808: 3770: 3725: 3678: 3642: 3600: 3553: 3517: 3472: 3434: 3320: 3283: 2785: 2762: 2749: 2603: 1708: 166:
The doctors get their first choice and the hospitals get their third: AY, BZ, CX.
128: 75: 2546:
elements, then it can be realized using a stable matching instance with at most
70:. The elements of this set can be given a concrete structure as rotations, with 43:. For a given instance of the stable matching problem, this lattice provides an 2789: 2770: 3876: 3315: 2796:
that has the elements of the partial order as its vertices, with an edge from
2146:
states that any finite distributive lattice can be represented by a family of
193:
The lattice of stable matchings is based on the following weaker structure, a
3897: 1700: 172:
The hospitals get their first choice and the doctors their third: AZ, BX, CY.
3596: 2997:
that lies on a shortest path between any two of them. It can be defined as:
3863: 3701: 3620: 3489: 3260: 2893: 52: 3840: 3360: 3570: 3301:
Hwang, J. S. (1982), "The lattice of stable marriages and permutations",
3266:
Mariages stables et leurs relations avec d'autres problèmes combinatoires
2748:
The family of rotations and their partial ordering can be constructed in
2725: 2295: 71: 20: 3720: 3272:(in French), Montréal, Quebec: Les Presses de l'Université de Montréal, 3659:
Vande Vate, John H. (1989), "Linear programming brings marital bliss",
2147: 1712: 197:
whose elements are the stable matchings. Define a comparison operation
3623:(1987), "Three fast algorithms for four problems in stable marriage", 2737: 2599: 2151: 63: 24: 3704:(1987), "An efficient algorithm for the "optimal" stable marriage", 3638: 3579:
Proceedings of the 50th Symposium on Theory of Computing (STOC 2018)
3549: 3430: 2649:
hospitals, the average number of stable matchings is asymptotically
1492:
they are not already matched in. Because the doctors are matched in
127:
to a worst-case of exponential. Computing the number of elements is
3587: 2784:
This optimal lower set problem is equivalent to an instance of the
2609:
In a uniformly-random instance of the stable marriage problem with
3217: 2294:
of their sets of matched pairs) is called a rotation. It forms a
3534:
Pittel, Boris (1989), "The average number of stable matchings",
162:
There are three stable solutions to this matching arrangement:
323:. If the doctors disagree on which matching they prefer, then 2888:
Median graph § Distributive lattices and median algebras
2041:{\displaystyle P\wedge (Q\vee R)=(P\wedge Q)\vee (P\wedge R)} 750:
most prefers, among all the elements that can be matched to
2121:{\displaystyle P\vee (Q\wedge R)=(P\vee Q)\wedge (P\vee R)} 1298:(if these differ) and each hospital gets its worst choice. 3581:, Association for Computing Machinery, pp. 920–925, 3488: 2593:
The lattice of stable matchings can be used to study the
1367:(if these differ) and each hospital gets its best choice. 945:(which must exist by the definition of the best match of 3303:
Journal of the Australian Mathematical Society, Series A
16:
Distributive lattice whose elements are stable matchings
2756: 2956:(here, stable matchings) have a unique median element 2526:. More strongly, if a finite distributive lattice has 3699: 3201: 3181: 3161: 3006: 2962: 2942: 2922: 2902: 2842: 2822: 2802: 2697: 2655: 2635: 2615: 2552: 2532: 2512: 2492: 2443: 2416: 2384: 2364: 2344: 2312: 2276: 2256: 2232: 2212: 2192: 2172: 2060: 1980: 1957: 1937: 1917: 1884: 1864: 1844: 1823: 1803: 1777: 1751: 1725: 1679: 1653: 1625: 1605: 1579: 1553: 1524: 1498: 1478: 1458: 1432: 1406: 1380: 1353: 1333: 1307: 1284: 1264: 1238: 1208: 1182: 1162: 1142: 1101: 1081: 1056: 1036: 1016: 996: 976: 951: 931: 906: 881: 861: 841: 821: 796: 776: 756: 736: 716: 696: 652: 626: 600: 580: 560: 540: 511: 485: 465: 445: 417: 397: 369: 349: 329: 309: 289: 269: 249: 223: 203: 169:
All participants get their second choice: AX, BY, CZ.
91: 1176:
for the same input, one can form two more matchings
3207: 3187: 3167: 3144: 2989: 2948: 2928: 2908: 2854: 2828: 2808: 2716: 2683: 2641: 2621: 2577: 2538: 2518: 2498: 2465: 2429: 2402: 2370: 2350: 2330: 2282: 2262: 2238: 2218: 2198: 2178: 2120: 2040: 1963: 1943: 1923: 1896: 1870: 1850: 1829: 1809: 1789: 1763: 1737: 1691: 1665: 1631: 1611: 1591: 1565: 1536: 1510: 1484: 1464: 1444: 1418: 1392: 1359: 1339: 1319: 1290: 1270: 1250: 1220: 1194: 1168: 1148: 1107: 1087: 1067: 1042: 1022: 1002: 982: 962: 937: 917: 892: 867: 847: 827: 807: 782: 762: 742: 722: 702: 664: 638: 612: 586: 566: 546: 523: 497: 471: 451: 429: 403: 375: 355: 335: 315: 295: 275: 255: 235: 209: 119: 3786: 3569: 148:to match American medical students to hospitals. 3895: 3336: 2892:The elements of any distributive lattice form a 2131:Therefore, the lattice of stable matchings is a 710:of a stable matching instance to be the element 3747:"A ternary operation in distributive lattices" 2138: 1904:fits the requirements for the meet operation. 3824: 3752:Bulletin of the American Mathematical Society 3414: 2773:of the partial order of rotations, or to the 2588: 2160: 188: 3741: 2166:Suppose that two different stable matchings 900:. Then, in the stable matching that matches 3615: 3613: 2765:. One possible method for this is to apply 2743: 243:if and only if all doctors prefer matching 3658: 2896:, a structure in which any three elements 2476: 679: 3802: 3764: 3719: 3586: 3511: 3466: 3350: 3314: 3291:. See in particular Problem 6, pp. 87–94. 2881: 2598:distributive lattice, or to counting the 155:A: YXZ   B: ZYX   C: XZY   62:, this lattice can be represented as the 3619: 3610: 3372: 3255: 3253: 2874: 3366: 3251: 3249: 3247: 3245: 3243: 3241: 3239: 3237: 3235: 3233: 3896: 3695: 3693: 3691: 3533: 2736:(significantly smaller than the naive 3860: 3854: 3527: 3450: 3300: 3259: 1642: 1131: 3537:SIAM Journal on Discrete Mathematics 3444: 3410: 3408: 3406: 3404: 3402: 3400: 3294: 3230: 2757:Weighted stable matching and closure 690:Define the best match of an element 534:For every three different matchings 3688: 3482: 3330: 2740:bound on the number of matchings). 1010:would be an unstable pair, because 13: 3828:Mathematics of Operations Research 3818: 3780: 3735: 3700:Irving, Robert W.; Leather, Paul; 3652: 3563: 2855:{\displaystyle \alpha \leq \beta } 1711:is defined as a partially ordered 479:, it cannot be the case that both 439:For every two different matchings 158:X: BAC   Y: CBA   Z: ACB 146:National Resident Matching Program 14: 3920: 3492:; Irving, Robert; Leather, Paul; 3397: 2869: 2144:Birkhoff's representation theorem 1797:is greater than or equal to both 363:are incomparable: neither one is 60:Birkhoff's representation theorem 3352:10.1097/00001888-199506000-00008 3766:10.1090/S0002-9904-1947-08864-9 3499:Journal of Combinatorial Theory 3454:Journal of Combinatorial Theory 2788:, a problem on vertex-weighted 2481: 1136:Given any two stable matchings 217:on the stable matchings, where 3136: 3124: 3118: 3106: 3100: 3088: 3082: 3070: 3064: 3052: 3046: 3034: 3028: 3010: 2984: 2966: 2460: 2447: 2397: 2385: 2325: 2313: 2115: 2103: 2097: 2085: 2079: 2067: 2035: 2023: 2017: 2005: 1999: 1987: 1719:In the case of the operations 835:as their best match, and that 1: 3392:10.1215/S0012-7094-37-00334-X 3223: 2437:pairs of elements, there are 134: 3804:10.1016/0166-218X(84)90096-9 3790:Discrete Applied Mathematics 3675:10.1016/0167-6377(89)90041-2 3513:10.1016/0097-3165(87)90037-9 3468:10.1016/0097-3165(84)90056-6 2684:{\displaystyle e^{-1}n\ln n} 1707:. In this context, a finite 183: 120:{\displaystyle e^{-1}n\ln n} 7: 3662:Operations Research Letters 2161:Irving & Leather (1986) 2139:Representation by rotations 33:lattice of stable matchings 10: 3925: 2885: 2589:Number of lattice elements 683: 189:Partial order on matchings 3877:10.1007/s00453-009-9307-2 3626:SIAM Journal on Computing 3418:SIAM Journal on Computing 3379:Duke Mathematical Journal 3376:(1937), "Rings of sets", 3316:10.1017/S1446788700018838 2578:{\displaystyle k^{2}-k+4} 1897:{\displaystyle P\wedge Q} 1764:{\displaystyle P\wedge Q} 1692:{\displaystyle P\wedge Q} 1592:{\displaystyle P\wedge Q} 1537:{\displaystyle P\wedge Q} 1419:{\displaystyle P\wedge Q} 1320:{\displaystyle P\wedge Q} 1221:{\displaystyle P\wedge Q} 2990:{\displaystyle m(P,Q,R)} 2775:stable matching polytope 2744:Algorithmic consequences 2595:computational complexity 2466:{\displaystyle O(n^{2})} 1771:defined above, the join 3597:10.1145/3188745.3188848 2809:{\displaystyle \alpha } 2717:{\displaystyle 2^{n-1}} 2585:doctors and hospitals. 2477:Mathematical properties 1790:{\displaystyle P\vee Q} 1738:{\displaystyle P\vee Q} 1703:operations of a finite 1666:{\displaystyle P\vee Q} 1566:{\displaystyle P\vee Q} 1511:{\displaystyle P\vee Q} 1445:{\displaystyle P\vee Q} 1393:{\displaystyle P\vee Q} 1251:{\displaystyle P\vee Q} 1195:{\displaystyle P\vee Q} 680:Top and bottom elements 665:{\displaystyle P\leq R} 639:{\displaystyle Q\leq R} 613:{\displaystyle P\leq Q} 524:{\displaystyle Q\leq P} 498:{\displaystyle P\leq Q} 430:{\displaystyle P\leq P} 236:{\displaystyle P\leq Q} 3745:; Kiss, S. A. (1947), 3209: 3189: 3169: 3146: 2991: 2950: 2930: 2910: 2882:Median stable matching 2856: 2830: 2829:{\displaystyle \beta } 2810: 2794:directed acyclic graph 2718: 2685: 2643: 2623: 2579: 2540: 2520: 2500: 2467: 2431: 2404: 2372: 2352: 2332: 2284: 2264: 2240: 2220: 2200: 2180: 2122: 2042: 1965: 1945: 1925: 1898: 1872: 1852: 1831: 1811: 1791: 1765: 1739: 1693: 1667: 1633: 1613: 1593: 1567: 1538: 1512: 1486: 1466: 1446: 1420: 1394: 1361: 1341: 1321: 1292: 1272: 1252: 1228:in the following way: 1222: 1196: 1170: 1150: 1125:Gale–Shapley algorithm 1109: 1089: 1069: 1044: 1024: 1004: 984: 964: 939: 919: 894: 869: 849: 829: 809: 784: 764: 744: 724: 704: 686:Gale–Shapley algorithm 666: 640: 614: 588: 568: 548: 525: 499: 473: 453: 431: 405: 377: 357: 337: 317: 297: 277: 257: 237: 211: 121: 80:Gale–Shapley algorithm 3841:10.1287/moor.23.4.874 3210: 3190: 3170: 3147: 2992: 2951: 2931: 2911: 2857: 2831: 2811: 2719: 2686: 2644: 2624: 2580: 2541: 2521: 2501: 2468: 2432: 2430:{\displaystyle n^{2}} 2405: 2403:{\displaystyle (x,y)} 2373: 2353: 2333: 2331:{\displaystyle (x,y)} 2285: 2265: 2241: 2221: 2201: 2181: 2123: 2043: 1966: 1946: 1926: 1899: 1873: 1853: 1832: 1812: 1792: 1766: 1740: 1694: 1668: 1634: 1614: 1594: 1568: 1539: 1513: 1487: 1467: 1447: 1421: 1395: 1362: 1342: 1322: 1293: 1273: 1253: 1223: 1197: 1171: 1151: 1110: 1090: 1070: 1045: 1025: 1005: 985: 965: 940: 920: 895: 870: 850: 830: 810: 785: 765: 745: 725: 705: 667: 641: 615: 589: 569: 549: 526: 500: 474: 454: 432: 406: 378: 376:{\displaystyle \leq } 358: 338: 318: 298: 278: 258: 238: 212: 210:{\displaystyle \leq } 195:partially ordered set 122: 68:partially ordered set 3199: 3179: 3159: 3004: 2960: 2940: 2920: 2900: 2864:maximum flow problem 2840: 2820: 2800: 2730:exponential function 2695: 2653: 2633: 2613: 2550: 2530: 2510: 2490: 2441: 2414: 2382: 2362: 2342: 2310: 2292:symmetric difference 2274: 2254: 2230: 2210: 2190: 2170: 2133:distributive lattice 2058: 1978: 1955: 1935: 1915: 1882: 1862: 1842: 1821: 1801: 1775: 1749: 1723: 1705:distributive lattice 1677: 1651: 1623: 1603: 1577: 1551: 1522: 1496: 1476: 1456: 1430: 1404: 1378: 1351: 1331: 1305: 1282: 1262: 1236: 1206: 1180: 1160: 1140: 1099: 1079: 1054: 1034: 1014: 994: 974: 949: 929: 904: 879: 859: 839: 819: 794: 774: 754: 734: 714: 694: 650: 624: 598: 578: 558: 538: 509: 483: 463: 443: 415: 395: 367: 347: 327: 307: 287: 267: 247: 221: 201: 178:distributive lattice 89: 37:distributive lattice 3721:10.1145/28869.28871 2246:form a pair of the 1647:The two operations 1547:Additionally, both 391:For every matching 39:whose elements are 3707:Journal of the ACM 3205: 3185: 3165: 3142: 2987: 2946: 2926: 2906: 2852: 2826: 2806: 2767:linear programming 2714: 2681: 2639: 2619: 2575: 2536: 2516: 2496: 2463: 2427: 2400: 2368: 2348: 2328: 2280: 2260: 2236: 2216: 2196: 2176: 2118: 2038: 1961: 1941: 1921: 1894: 1868: 1848: 1827: 1807: 1787: 1761: 1735: 1689: 1663: 1643:Lattice properties 1629: 1609: 1589: 1563: 1534: 1508: 1482: 1462: 1442: 1416: 1390: 1357: 1337: 1317: 1288: 1268: 1248: 1218: 1192: 1166: 1146: 1132:Lattice operations 1105: 1085: 1068:{\displaystyle x'} 1065: 1040: 1020: 1000: 980: 963:{\displaystyle x'} 960: 935: 918:{\displaystyle x'} 915: 893:{\displaystyle x'} 890: 865: 845: 825: 808:{\displaystyle x'} 805: 780: 760: 740: 720: 700: 662: 636: 610: 584: 564: 544: 521: 495: 469: 449: 427: 401: 373: 353: 333: 313: 293: 273: 253: 233: 207: 117: 49:John Horton Conway 3743:Birkhoff, Garrett 3575:Henzinger, Monika 3374:Birkhoff, Garrett 3339:Academic Medicine 3208:{\displaystyle R} 3188:{\displaystyle Q} 3168:{\displaystyle P} 2949:{\displaystyle R} 2929:{\displaystyle Q} 2909:{\displaystyle P} 2642:{\displaystyle n} 2622:{\displaystyle n} 2539:{\displaystyle k} 2519:{\displaystyle L} 2499:{\displaystyle L} 2371:{\displaystyle y} 2351:{\displaystyle x} 2283:{\displaystyle Q} 2263:{\displaystyle P} 2248:covering relation 2239:{\displaystyle Q} 2219:{\displaystyle P} 2199:{\displaystyle Q} 2179:{\displaystyle P} 1964:{\displaystyle R} 1944:{\displaystyle Q} 1924:{\displaystyle P} 1909:distributive laws 1871:{\displaystyle Q} 1851:{\displaystyle P} 1830:{\displaystyle Q} 1810:{\displaystyle P} 1632:{\displaystyle Q} 1612:{\displaystyle P} 1485:{\displaystyle Q} 1465:{\displaystyle P} 1360:{\displaystyle Q} 1340:{\displaystyle P} 1291:{\displaystyle Q} 1271:{\displaystyle P} 1169:{\displaystyle Q} 1149:{\displaystyle P} 1108:{\displaystyle y} 1088:{\displaystyle x} 1043:{\displaystyle x} 1023:{\displaystyle y} 1003:{\displaystyle y} 983:{\displaystyle x} 938:{\displaystyle y} 868:{\displaystyle x} 848:{\displaystyle y} 828:{\displaystyle y} 783:{\displaystyle x} 763:{\displaystyle x} 743:{\displaystyle x} 723:{\displaystyle y} 703:{\displaystyle x} 587:{\displaystyle R} 567:{\displaystyle Q} 547:{\displaystyle P} 472:{\displaystyle Q} 452:{\displaystyle P} 404:{\displaystyle P} 356:{\displaystyle Q} 336:{\displaystyle P} 316:{\displaystyle P} 303:than they are in 296:{\displaystyle Q} 276:{\displaystyle P} 256:{\displaystyle Q} 66:of an underlying 3916: 3888: 3887: 3858: 3852: 3851: 3822: 3816: 3815: 3806: 3784: 3778: 3777: 3768: 3739: 3733: 3732: 3723: 3697: 3686: 3685: 3656: 3650: 3649: 3617: 3608: 3607: 3590: 3567: 3561: 3560: 3531: 3525: 3524: 3515: 3486: 3480: 3479: 3470: 3448: 3442: 3441: 3412: 3395: 3394: 3370: 3364: 3363: 3354: 3334: 3328: 3327: 3318: 3298: 3292: 3290: 3271: 3261:Knuth, Donald E. 3257: 3214: 3212: 3211: 3206: 3194: 3192: 3191: 3186: 3174: 3172: 3171: 3166: 3151: 3149: 3148: 3143: 2996: 2994: 2993: 2988: 2955: 2953: 2952: 2947: 2935: 2933: 2932: 2927: 2915: 2913: 2912: 2907: 2861: 2859: 2858: 2853: 2835: 2833: 2832: 2827: 2815: 2813: 2812: 2807: 2735: 2723: 2721: 2720: 2715: 2713: 2712: 2690: 2688: 2687: 2682: 2668: 2667: 2648: 2646: 2645: 2640: 2628: 2626: 2625: 2620: 2584: 2582: 2581: 2576: 2562: 2561: 2545: 2543: 2542: 2537: 2525: 2523: 2522: 2517: 2505: 2503: 2502: 2497: 2472: 2470: 2469: 2464: 2459: 2458: 2436: 2434: 2433: 2428: 2426: 2425: 2409: 2407: 2406: 2401: 2377: 2375: 2374: 2369: 2357: 2355: 2354: 2349: 2337: 2335: 2334: 2329: 2289: 2287: 2286: 2281: 2269: 2267: 2266: 2261: 2245: 2243: 2242: 2237: 2225: 2223: 2222: 2217: 2205: 2203: 2202: 2197: 2185: 2183: 2182: 2177: 2127: 2125: 2124: 2119: 2047: 2045: 2044: 2039: 1970: 1968: 1967: 1962: 1950: 1948: 1947: 1942: 1930: 1928: 1927: 1922: 1903: 1901: 1900: 1895: 1877: 1875: 1874: 1869: 1857: 1855: 1854: 1849: 1836: 1834: 1833: 1828: 1816: 1814: 1813: 1808: 1796: 1794: 1793: 1788: 1770: 1768: 1767: 1762: 1744: 1742: 1741: 1736: 1698: 1696: 1695: 1690: 1672: 1670: 1669: 1664: 1638: 1636: 1635: 1630: 1618: 1616: 1615: 1610: 1598: 1596: 1595: 1590: 1572: 1570: 1569: 1564: 1543: 1541: 1540: 1535: 1517: 1515: 1514: 1509: 1491: 1489: 1488: 1483: 1471: 1469: 1468: 1463: 1451: 1449: 1448: 1443: 1425: 1423: 1422: 1417: 1399: 1397: 1396: 1391: 1366: 1364: 1363: 1358: 1346: 1344: 1343: 1338: 1326: 1324: 1323: 1318: 1297: 1295: 1294: 1289: 1277: 1275: 1274: 1269: 1257: 1255: 1254: 1249: 1227: 1225: 1224: 1219: 1201: 1199: 1198: 1193: 1175: 1173: 1172: 1167: 1155: 1153: 1152: 1147: 1114: 1112: 1111: 1106: 1094: 1092: 1091: 1086: 1074: 1072: 1071: 1066: 1064: 1049: 1047: 1046: 1041: 1029: 1027: 1026: 1021: 1009: 1007: 1006: 1001: 989: 987: 986: 981: 969: 967: 966: 961: 959: 944: 942: 941: 936: 924: 922: 921: 916: 914: 899: 897: 896: 891: 889: 874: 872: 871: 866: 854: 852: 851: 846: 834: 832: 831: 826: 814: 812: 811: 806: 804: 789: 787: 786: 781: 769: 767: 766: 761: 749: 747: 746: 741: 729: 727: 726: 721: 709: 707: 706: 701: 671: 669: 668: 663: 645: 643: 642: 637: 619: 617: 616: 611: 593: 591: 590: 585: 573: 571: 570: 565: 553: 551: 550: 545: 530: 528: 527: 522: 504: 502: 501: 496: 478: 476: 475: 470: 458: 456: 455: 450: 436: 434: 433: 428: 410: 408: 407: 402: 382: 380: 379: 374: 362: 360: 359: 354: 342: 340: 339: 334: 322: 320: 319: 314: 302: 300: 299: 294: 282: 280: 279: 274: 262: 260: 259: 254: 242: 240: 239: 234: 216: 214: 213: 208: 126: 124: 123: 118: 104: 103: 41:stable matchings 29:computer science 3924: 3923: 3919: 3918: 3917: 3915: 3914: 3913: 3904:Stable matching 3894: 3893: 3892: 3891: 3859: 3855: 3823: 3819: 3785: 3781: 3740: 3736: 3698: 3689: 3657: 3653: 3639:10.1137/0216010 3618: 3611: 3571:Karlin, Anna R. 3568: 3564: 3550:10.1137/0402048 3532: 3528: 3487: 3483: 3449: 3445: 3431:10.1137/0215048 3413: 3398: 3371: 3367: 3335: 3331: 3299: 3295: 3280: 3269: 3258: 3231: 3226: 3200: 3197: 3196: 3180: 3177: 3176: 3160: 3157: 3156: 3005: 3002: 3001: 2961: 2958: 2957: 2941: 2938: 2937: 2921: 2918: 2917: 2901: 2898: 2897: 2890: 2884: 2875:Gusfield (1987) 2872: 2841: 2838: 2837: 2821: 2818: 2817: 2801: 2798: 2797: 2790:directed graphs 2786:closure problem 2763:polynomial time 2759: 2750:polynomial time 2746: 2733: 2702: 2698: 2696: 2693: 2692: 2660: 2656: 2654: 2651: 2650: 2634: 2631: 2630: 2614: 2611: 2610: 2591: 2557: 2553: 2551: 2548: 2547: 2531: 2528: 2527: 2511: 2508: 2507: 2491: 2488: 2487: 2484: 2479: 2454: 2450: 2442: 2439: 2438: 2421: 2417: 2415: 2412: 2411: 2383: 2380: 2379: 2363: 2360: 2359: 2343: 2340: 2339: 2311: 2308: 2307: 2275: 2272: 2271: 2255: 2252: 2251: 2231: 2228: 2227: 2211: 2208: 2207: 2191: 2188: 2187: 2171: 2168: 2167: 2159:, described by 2141: 2059: 2056: 2055: 1979: 1976: 1975: 1956: 1953: 1952: 1936: 1933: 1932: 1916: 1913: 1912: 1883: 1880: 1879: 1863: 1860: 1859: 1843: 1840: 1839: 1822: 1819: 1818: 1802: 1799: 1798: 1776: 1773: 1772: 1750: 1747: 1746: 1724: 1721: 1720: 1678: 1675: 1674: 1652: 1649: 1648: 1645: 1624: 1621: 1620: 1604: 1601: 1600: 1578: 1575: 1574: 1552: 1549: 1548: 1523: 1520: 1519: 1497: 1494: 1493: 1477: 1474: 1473: 1457: 1454: 1453: 1431: 1428: 1427: 1405: 1402: 1401: 1379: 1376: 1375: 1352: 1349: 1348: 1332: 1329: 1328: 1306: 1303: 1302: 1283: 1280: 1279: 1263: 1260: 1259: 1237: 1234: 1233: 1207: 1204: 1203: 1181: 1178: 1177: 1161: 1158: 1157: 1141: 1138: 1137: 1134: 1100: 1097: 1096: 1080: 1077: 1076: 1057: 1055: 1052: 1051: 1035: 1032: 1031: 1015: 1012: 1011: 995: 992: 991: 975: 972: 971: 952: 950: 947: 946: 930: 927: 926: 907: 905: 902: 901: 882: 880: 877: 876: 860: 857: 856: 840: 837: 836: 820: 817: 816: 797: 795: 792: 791: 775: 772: 771: 755: 752: 751: 735: 732: 731: 715: 712: 711: 695: 692: 691: 688: 682: 651: 648: 647: 625: 622: 621: 599: 596: 595: 579: 576: 575: 559: 556: 555: 539: 536: 535: 510: 507: 506: 484: 481: 480: 464: 461: 460: 444: 441: 440: 416: 413: 412: 396: 393: 392: 368: 365: 364: 348: 345: 344: 328: 325: 324: 308: 305: 304: 288: 285: 284: 268: 265: 264: 248: 245: 244: 222: 219: 218: 202: 199: 198: 191: 186: 137: 96: 92: 90: 87: 86: 76:polynomial time 17: 12: 11: 5: 3922: 3912: 3911: 3909:Lattice theory 3906: 3890: 3889: 3853: 3835:(4): 874–891, 3817: 3797:(2): 131–142, 3779: 3759:(1): 749–752, 3734: 3714:(3): 532–543, 3687: 3669:(3): 147–153, 3651: 3633:(1): 111–128, 3609: 3562: 3544:(4): 530–549, 3526: 3506:(2): 304–309, 3481: 3461:(3): 353–356, 3443: 3425:(3): 655–667, 3396: 3386:(3): 443–454, 3365: 3329: 3309:(3): 401–410, 3293: 3278: 3228: 3227: 3225: 3222: 3204: 3184: 3164: 3153: 3152: 3141: 3138: 3135: 3132: 3129: 3126: 3123: 3120: 3117: 3114: 3111: 3108: 3105: 3102: 3099: 3096: 3093: 3090: 3087: 3084: 3081: 3078: 3075: 3072: 3069: 3066: 3063: 3060: 3057: 3054: 3051: 3048: 3045: 3042: 3039: 3036: 3033: 3030: 3027: 3024: 3021: 3018: 3015: 3012: 3009: 2986: 2983: 2980: 2977: 2974: 2971: 2968: 2965: 2945: 2925: 2905: 2886:Main article: 2883: 2880: 2871: 2870:Minimum regret 2868: 2851: 2848: 2845: 2825: 2805: 2771:order polytope 2758: 2755: 2745: 2742: 2724:, and us also 2711: 2708: 2705: 2701: 2680: 2677: 2674: 2671: 2666: 2663: 2659: 2638: 2618: 2590: 2587: 2574: 2571: 2568: 2565: 2560: 2556: 2535: 2515: 2495: 2483: 2480: 2478: 2475: 2462: 2457: 2453: 2449: 2446: 2424: 2420: 2399: 2396: 2393: 2390: 2387: 2367: 2347: 2327: 2324: 2321: 2318: 2315: 2279: 2259: 2235: 2215: 2195: 2175: 2140: 2137: 2129: 2128: 2117: 2114: 2111: 2108: 2105: 2102: 2099: 2096: 2093: 2090: 2087: 2084: 2081: 2078: 2075: 2072: 2069: 2066: 2063: 2049: 2048: 2037: 2034: 2031: 2028: 2025: 2022: 2019: 2016: 2013: 2010: 2007: 2004: 2001: 1998: 1995: 1992: 1989: 1986: 1983: 1960: 1940: 1920: 1893: 1890: 1887: 1867: 1847: 1826: 1806: 1786: 1783: 1780: 1760: 1757: 1754: 1734: 1731: 1728: 1688: 1685: 1682: 1662: 1659: 1656: 1644: 1641: 1628: 1608: 1588: 1585: 1582: 1562: 1559: 1556: 1533: 1530: 1527: 1507: 1504: 1501: 1481: 1461: 1441: 1438: 1435: 1415: 1412: 1409: 1389: 1386: 1383: 1369: 1368: 1356: 1336: 1316: 1313: 1310: 1299: 1287: 1267: 1247: 1244: 1241: 1217: 1214: 1211: 1191: 1188: 1185: 1165: 1145: 1133: 1130: 1104: 1084: 1063: 1060: 1039: 1019: 999: 979: 958: 955: 934: 913: 910: 888: 885: 864: 844: 824: 803: 800: 779: 759: 739: 719: 699: 684:Main article: 681: 678: 674: 673: 661: 658: 655: 635: 632: 629: 609: 606: 603: 583: 563: 543: 532: 520: 517: 514: 494: 491: 488: 468: 448: 437: 426: 423: 420: 400: 372: 352: 332: 312: 292: 272: 252: 232: 229: 226: 206: 190: 187: 185: 182: 174: 173: 170: 167: 160: 159: 156: 136: 133: 116: 113: 110: 107: 102: 99: 95: 15: 9: 6: 4: 3: 2: 3921: 3910: 3907: 3905: 3902: 3901: 3899: 3886: 3882: 3878: 3874: 3870: 3866: 3865: 3857: 3850: 3846: 3842: 3838: 3834: 3830: 3829: 3821: 3814: 3810: 3805: 3800: 3796: 3792: 3791: 3783: 3776: 3772: 3767: 3762: 3758: 3754: 3753: 3748: 3744: 3738: 3731: 3727: 3722: 3717: 3713: 3709: 3708: 3703: 3702:Gusfield, Dan 3696: 3694: 3692: 3684: 3680: 3676: 3672: 3668: 3664: 3663: 3655: 3648: 3644: 3640: 3636: 3632: 3628: 3627: 3622: 3621:Gusfield, Dan 3616: 3614: 3606: 3602: 3598: 3594: 3589: 3584: 3580: 3576: 3572: 3566: 3559: 3555: 3551: 3547: 3543: 3539: 3538: 3530: 3523: 3519: 3514: 3509: 3505: 3501: 3500: 3495: 3494:Saks, Michael 3491: 3490:Gusfield, Dan 3485: 3478: 3474: 3469: 3464: 3460: 3456: 3455: 3447: 3440: 3436: 3432: 3428: 3424: 3420: 3419: 3411: 3409: 3407: 3405: 3403: 3401: 3393: 3389: 3385: 3381: 3380: 3375: 3369: 3362: 3358: 3353: 3348: 3345:(6): 477–84, 3344: 3340: 3333: 3326: 3322: 3317: 3312: 3308: 3304: 3297: 3289: 3285: 3281: 3279:0-8405-0342-3 3275: 3268: 3267: 3262: 3256: 3254: 3252: 3250: 3248: 3246: 3244: 3242: 3240: 3238: 3236: 3234: 3229: 3221: 3219: 3202: 3182: 3162: 3139: 3133: 3130: 3127: 3121: 3115: 3112: 3109: 3103: 3097: 3094: 3091: 3085: 3079: 3076: 3073: 3067: 3061: 3058: 3055: 3049: 3043: 3040: 3037: 3031: 3025: 3022: 3019: 3016: 3013: 3007: 3000: 2999: 2998: 2981: 2978: 2975: 2972: 2969: 2963: 2943: 2923: 2903: 2895: 2889: 2879: 2876: 2867: 2865: 2849: 2846: 2843: 2823: 2803: 2795: 2791: 2787: 2782: 2778: 2776: 2772: 2768: 2764: 2754: 2751: 2741: 2739: 2731: 2727: 2726:upper-bounded 2709: 2706: 2703: 2699: 2678: 2675: 2672: 2669: 2664: 2661: 2657: 2636: 2616: 2607: 2605: 2601: 2596: 2586: 2572: 2569: 2566: 2563: 2558: 2554: 2533: 2513: 2493: 2474: 2455: 2451: 2444: 2422: 2418: 2394: 2391: 2388: 2365: 2345: 2322: 2319: 2316: 2304: 2300: 2297: 2293: 2277: 2257: 2249: 2233: 2213: 2193: 2173: 2164: 2162: 2158: 2153: 2149: 2145: 2136: 2134: 2112: 2109: 2106: 2100: 2094: 2091: 2088: 2082: 2076: 2073: 2070: 2064: 2061: 2054: 2053: 2052: 2032: 2029: 2026: 2020: 2014: 2011: 2008: 2002: 1996: 1993: 1990: 1984: 1981: 1974: 1973: 1972: 1958: 1938: 1918: 1910: 1905: 1891: 1888: 1885: 1865: 1845: 1824: 1804: 1784: 1781: 1778: 1758: 1755: 1752: 1732: 1729: 1726: 1717: 1714: 1710: 1706: 1702: 1701:join and meet 1686: 1683: 1680: 1660: 1657: 1654: 1640: 1626: 1606: 1586: 1583: 1580: 1560: 1557: 1554: 1545: 1531: 1528: 1525: 1505: 1502: 1499: 1479: 1459: 1439: 1436: 1433: 1413: 1410: 1407: 1387: 1384: 1381: 1372: 1354: 1334: 1314: 1311: 1308: 1300: 1285: 1265: 1245: 1242: 1239: 1231: 1230: 1229: 1215: 1212: 1209: 1189: 1186: 1183: 1163: 1143: 1129: 1126: 1121: 1117: 1102: 1082: 1061: 1058: 1037: 1017: 997: 977: 956: 953: 932: 911: 908: 886: 883: 862: 842: 822: 801: 798: 777: 757: 737: 717: 697: 687: 677: 659: 656: 653: 633: 630: 627: 607: 604: 601: 581: 561: 541: 533: 518: 515: 512: 492: 489: 486: 466: 446: 438: 424: 421: 418: 398: 390: 389: 388: 385: 370: 350: 330: 310: 290: 270: 250: 230: 227: 224: 204: 196: 181: 179: 171: 168: 165: 164: 163: 157: 154: 153: 152: 149: 147: 143: 132: 130: 114: 111: 108: 105: 100: 97: 93: 83: 81: 77: 73: 69: 65: 61: 56: 54: 50: 46: 42: 38: 34: 30: 26: 22: 3871:(1): 34–51, 3868: 3864:Algorithmica 3862: 3856: 3832: 3826: 3820: 3794: 3788: 3782: 3756: 3750: 3737: 3711: 3705: 3666: 3660: 3654: 3630: 3624: 3578: 3565: 3541: 3535: 3529: 3503: 3502:, Series A, 3497: 3484: 3458: 3457:, Series A, 3452: 3446: 3422: 3416: 3383: 3377: 3368: 3342: 3338: 3332: 3306: 3302: 3296: 3265: 3154: 2894:median graph 2891: 2873: 2783: 2779: 2760: 2747: 2629:doctors and 2608: 2592: 2485: 2482:Universality 2305: 2301: 2165: 2156: 2142: 2130: 2050: 1906: 1718: 1646: 1546: 1373: 1370: 1135: 1122: 1118: 689: 675: 386: 263:to matching 192: 175: 161: 150: 141: 138: 84: 72:cycle graphs 57: 53:Donald Knuth 32: 18: 2604:#P-complete 2473:rotations. 2306:Every pair 2296:cycle graph 2148:finite sets 129:#P-complete 21:mathematics 3898:Categories 3588:1711.01032 3224:References 2600:antichains 2152:lower sets 1713:finite set 1374:Then both 815:both have 135:Background 64:lower sets 3131:∨ 3122:∧ 3113:∨ 3104:∧ 3095:∨ 3077:∧ 3068:∨ 3059:∧ 3050:∨ 3041:∧ 2850:β 2847:≤ 2844:α 2836:whenever 2824:β 2804:α 2738:factorial 2707:− 2676:⁡ 2662:− 2564:− 2157:rotations 2110:∨ 2101:∧ 2092:∨ 2074:∧ 2065:∨ 2030:∧ 2021:∨ 2012:∧ 1994:∨ 1985:∧ 1889:∧ 1782:∨ 1756:∧ 1730:∨ 1699:form the 1684:∧ 1658:∨ 1584:∧ 1558:∨ 1529:∧ 1503:∨ 1437:∨ 1411:∧ 1385:∨ 1312:∧ 1243:∨ 1213:∧ 1187:∨ 657:≤ 631:≤ 605:≤ 531:are true. 516:≤ 490:≤ 422:≤ 371:≤ 228:≤ 205:≤ 184:Structure 112:⁡ 98:− 45:algebraic 25:economics 3577:(eds.), 3263:(1976), 1095:prefers 1062:′ 1030:prefers 957:′ 912:′ 887:′ 855:prefers 802:′ 3885:2658099 3849:1662426 3813:0743019 3775:0021540 3730:0904192 3683:1007271 3647:0873255 3605:3826305 3558:1018538 3522:0879688 3477:0769224 3439:0850415 3361:7786367 3325:0678518 3288:0488980 3218:NP-hard 2769:to the 1709:lattice 646:, then 3883:  3847:  3811:  3773:  3728:  3681:  3645:  3603:  3556:  3520:  3475:  3437:  3359:  3323:  3286:  3276:  3195:, and 2936:, and 2728:by an 1951:, and 574:, and 142:stable 31:, the 27:, and 3583:arXiv 3270:(PDF) 2290:(the 730:that 594:, if 35:is a 3357:PMID 3274:ISBN 2358:and 2270:and 2226:and 2186:and 2051:and 1858:and 1817:and 1745:and 1673:and 1619:and 1573:and 1472:and 1400:and 1347:and 1278:and 1202:and 1156:and 1123:The 1075:and 990:and 790:and 620:and 505:and 459:and 343:and 51:and 3873:doi 3837:doi 3799:doi 3761:doi 3716:doi 3671:doi 3635:doi 3593:doi 3546:doi 3508:doi 3463:doi 3427:doi 3388:doi 3347:doi 3311:doi 2816:to 2732:of 1301:In 1232:In 1050:to 970:), 925:to 875:to 58:By 19:In 3900:: 3881:MR 3879:, 3869:58 3867:, 3845:MR 3843:, 3833:23 3831:, 3809:MR 3807:, 3793:, 3771:MR 3769:, 3757:53 3755:, 3749:, 3726:MR 3724:, 3712:34 3710:, 3690:^ 3679:MR 3677:, 3665:, 3643:MR 3641:, 3631:16 3629:, 3612:^ 3601:MR 3599:, 3591:, 3554:MR 3552:, 3540:, 3518:MR 3516:, 3504:44 3473:MR 3471:, 3459:37 3435:MR 3433:, 3423:15 3421:, 3399:^ 3382:, 3355:, 3343:70 3341:, 3321:MR 3319:, 3307:33 3305:, 3284:MR 3282:, 3232:^ 3220:. 3175:, 2916:, 2866:. 2673:ln 2606:. 2163:. 2135:. 1971:, 1931:, 1639:. 1544:. 554:, 411:, 180:. 131:. 109:ln 55:. 23:, 3875:: 3839:: 3801:: 3795:8 3763:: 3718:: 3673:: 3667:8 3637:: 3595:: 3585:: 3548:: 3542:2 3510:: 3465:: 3429:: 3390:: 3384:3 3349:: 3313:: 3203:R 3183:Q 3163:P 3140:. 3137:) 3134:R 3128:Q 3125:( 3119:) 3116:R 3110:P 3107:( 3101:) 3098:Q 3092:P 3089:( 3086:= 3083:) 3080:R 3074:Q 3071:( 3065:) 3062:R 3056:P 3053:( 3047:) 3044:Q 3038:P 3035:( 3032:= 3029:) 3026:R 3023:, 3020:Q 3017:, 3014:P 3011:( 3008:m 2985:) 2982:R 2979:, 2976:Q 2973:, 2970:P 2967:( 2964:m 2944:R 2924:Q 2904:P 2734:n 2710:1 2704:n 2700:2 2679:n 2670:n 2665:1 2658:e 2637:n 2617:n 2573:4 2570:+ 2567:k 2559:2 2555:k 2534:k 2514:L 2494:L 2461:) 2456:2 2452:n 2448:( 2445:O 2423:2 2419:n 2398:) 2395:y 2392:, 2389:x 2386:( 2366:y 2346:x 2326:) 2323:y 2320:, 2317:x 2314:( 2278:Q 2258:P 2234:Q 2214:P 2194:Q 2174:P 2116:) 2113:R 2107:P 2104:( 2098:) 2095:Q 2089:P 2086:( 2083:= 2080:) 2077:R 2071:Q 2068:( 2062:P 2036:) 2033:R 2027:P 2024:( 2018:) 2015:Q 2009:P 2006:( 2003:= 2000:) 1997:R 1991:Q 1988:( 1982:P 1959:R 1939:Q 1919:P 1892:Q 1886:P 1866:Q 1846:P 1825:Q 1805:P 1785:Q 1779:P 1759:Q 1753:P 1733:Q 1727:P 1687:Q 1681:P 1661:Q 1655:P 1627:Q 1607:P 1587:Q 1581:P 1561:Q 1555:P 1532:Q 1526:P 1506:Q 1500:P 1480:Q 1460:P 1440:Q 1434:P 1414:Q 1408:P 1388:Q 1382:P 1355:Q 1335:P 1315:Q 1309:P 1286:Q 1266:P 1246:Q 1240:P 1216:Q 1210:P 1190:Q 1184:P 1164:Q 1144:P 1103:y 1083:x 1059:x 1038:x 1018:y 998:y 978:x 954:x 933:y 909:x 884:x 863:x 843:y 823:y 799:x 778:x 758:x 738:x 718:y 698:x 672:. 660:R 654:P 634:R 628:Q 608:Q 602:P 582:R 562:Q 542:P 519:P 513:Q 493:Q 487:P 467:Q 447:P 425:P 419:P 399:P 351:Q 331:P 311:P 291:Q 271:P 251:Q 231:Q 225:P 115:n 106:n 101:1 94:e

Index

mathematics
economics
computer science
distributive lattice
stable matchings
algebraic
John Horton Conway
Donald Knuth
Birkhoff's representation theorem
lower sets
partially ordered set
cycle graphs
polynomial time
Gale–Shapley algorithm
#P-complete
National Resident Matching Program
distributive lattice
partially ordered set
Gale–Shapley algorithm
Gale–Shapley algorithm
join and meet
distributive lattice
lattice
finite set
distributive laws
distributive lattice
Birkhoff's representation theorem
finite sets
lower sets
Irving & Leather (1986)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑