Knowledge

Living medicine

Source 📝

174:, cytokines, and chemokines, which further facilitate tumor regression. ① Bacterial toxins from S. Typhimurium, Listeria, and Clostridium can kill tumor cells directly by inducing apoptosis or autophagy. Toxins delivered via Salmonella can upregulate Connexin 43 (Cx43), leading to bacteria-induced gap junctions between the tumor and dendritic cells (DCs), which allow cross-presentation of tumor antigens to the DCs. ② Upon exposure to tumor antigens and interaction with bacterial components, DCs secrete robust amounts of the proinflammatory cytokine IL-1β, which subsequently activates CD8+ T cells. ③ The antitumor response of the activated CD8+ T cells is further enhanced by bacterial flagellin (a protein subunit of the bacterial flagellum) via TLR5 activation. The perforin and granzyme proteins secreted by activated CD8+ T cells efficiently kill tumor cells in primary and metastatic tumors. ④ Flagellin and TLR5 signaling also decreases the abundance of CD4+ CD25+ regulatory T (Treg) cells, which subsequently improves the antitumor response of the activated CD8+ T cells. ⑤ S. Typhimurium flagellin stimulates NK cells to produce interferon-γ (IFN-γ), an important cytokine for both innate and adaptive immunity. ⑥ Listeria-infected MDSCs shift into an immune-stimulating phenotype characterized by increased IL-12 production, which further enhances the CD8+ T and NK cell responses. ⑦ Both S. Typhimurium and Clostridium infection can stimulate significant neutrophil accumulation. Elevated secretion of TNF-α and TNF-related apoptosis-inducing ligand (TRAIL) by neutrophils enhances the immune response and kills tumor cells by inducing apoptosis. ⑧ The macrophage inflammasome is activated through contact with bacterial components (LPS and flagellin) and Salmonella-damaged cancer cells, leading to elevated secretion of IL-1β and TNF-α into the tumor microenvironment. NK cell: natural killer cell. Treg cell: regulatory T cell. MDSCs: myeloid-derived suppressor cells. P2X7 receptor: purinoceptor 7-extracellular ATP receptor. LPS: lipopolysaccharide 125: 109: 159: 27: 179: 167: 874: 317: 293: 225: 39:
CsgA (yellow), the main proteinaceous component of the E. coli biofilm matrix, was genetically fused to a therapeutic domain—in this case, TFF3 (PDB ID: 19ET, bright green), which is a cytokine secreted by mucus-producing cells. The flexible linker (black) includes a 6xHis tag for detection purposes.
34:
Genetically engineered E. coli Nissle 1917 (EcN) with csg (curli) operon deletion (PBP8 strain) containing plasmids encoding a synthetic curli operon capable of producing chimeric CsgA proteins (yellow chevrons with appended bright green domains), which are secreted and self-assembled extracellularly
115:
Several aspects require consideration during the design of an engineered bacterial therapeutic. The selection of a chassis organism can be guided by the desired site of activity and pharmacokinetic properties of the chassis, as well as manufacturing feasibility. The design of genetic circuits may
48:
Interaction of E. coli and the colonic mucosa. Inflammatory lesions in IBD result in loss of colonic crypt structure, damage to epithelial tissue, and compromised barrier integrity (left panel, (−) E. coli). The resulting invasion of luminal contents and recruitment of immune cells to the site
128:
Schematic representation of a workflow for developing clinical candidate-quality engineered strains. The development workflow should incorporate technologies for optimizing strain potency, as well as predictive in vitro and in vivo assays, as well quantitative pharmacology models, to maximize
116:
also be influenced by the circuit's effectors, pragmatic concerns regarding inducer compounds, and the genetic stability of regulatory circuits. Critically, the design of an engineered bacterial drug may also be constrained by considerations for the needs of patients.
604:
Kurtz, Caroline B.; Millet, Yves A.; Puurunen, Marja K.; Perreault, Mylène; Charbonneau, Mark R.; Isabella, Vincent M.; Kotula, Jonathan W.; Antipov, Eugene; Dagon, Yossi; Denney, William S.; Wagner, David A. (2019-01-16).
1002:
Sedighi, Mansour; Zahedi Bialvaei, Abed; Hamblin, Michael R.; Ohadi, Elnaz; Asadi, Arezoo; Halajzadeh, Masoumeh; Lohrasbi, Vahid; Mohammadzadeh, Nima; Amiriani, Taghi; Krutova, Marcela; Amini, Abolfazl (2019-04-05).
49:
exacerbates the local inflammation. The application of E. coli (right panel, (+) E. coli) reinforces barrier function, promotes epithelial restitution, and dampens inflammatory signaling to ameliorate IBD activity.
206:
tumors. This property tends to increase their residence time in the tumor, giving them longer to exert their therapeutic effects, in contrast to other bacteria that would be quickly cleared by the immune system.
170:
After systemic administration, bacteria localize to the tumor microenvironment. The interactions between bacteria, cancer cells, and the surrounding microenvironment cause various alterations in
120:
Optimal strain design often requires a balance between strain suitability for function in the target microenvironment and concerns for feasibility of manufacturing and clinical development.
273: 61:
that consists of a living organism that is used to treat a disease. This usually takes the form of a cell (animal, bacterial, or fungal) or a virus that has been
565: 141:. Currently, there is a large focus on: 1) identifying microbes that naturally produce therapeutic effects (for example, probiotic bacteria), and 2) 17: 590: 124: 232: by Pichet Praveschotinunt, Anna M. Duraj-Thatte, Ilia Gelfat, Franziska Bahl, David B. Chou & Neel S. Joshi available under the 248: 195: 729: 44:
Engineered bacteria are produced in bulk before delivery to the GI tract. A site of colonic inflammation is highlighted in red.
607:"An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans" 782: 108: 513: 158: 1149: 756:"Why now is the time for programmable living medicines: insights from Jim Collins, Aoife Brennan, and Jason Kelly" 1154: 1139: 1129: 21: 755: 194:
environments are particularly attractive for this purpose, as they will tend to migrate to, invade (through the
171: 896:
Sieow, Brendan Fu-Long; Wun, Kwok Soon; Yong, Wei Peng; Hwang, In Young; Chang, Matthew Wook (December 2020).
1124: 142: 1144: 539: 26: 324: by Mark R. Charbonneau, Vincent M. Isabella, Ning Li & Caroline B. Kurtz available under the 300: by Mark R. Charbonneau, Vincent M. Isabella, Ning Li & Caroline B. Kurtz available under the 69:
properties that is injected into a patient. Perhaps the oldest use of a living medicine is the use of
178: 1159: 1134: 881: by Mai Thi-Quynh Duong, Yeshan Qin, Sung-Hwan You & Jung-Joon Min available under the 203: 199: 274:"Engineering Living Medicines for Chronic Diseases | SBE | Society for Biological Engineering" 187: 166: 566:"From 'living' cement to medicine-delivering biofilms, biologists remake the material world" 186:
There is tremendous interest in using bacteria as a therapy to treat tumors. In particular,
820: 675: 882: 873: 664:"Developing a new class of engineered live bacterial therapeutics to treat human diseases" 325: 316: 301: 292: 233: 224: 8: 62: 1005:"Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities" 841: 824: 808: 679: 30:
Genetically engineered probiotics as living medicines to treat intestinal inflammation.
1096: 1061: 1037: 1004: 979: 946: 854: 706: 663: 662:
Charbonneau, Mark R.; Isabella, Vincent M.; Li, Ning; Kurtz, Caroline B. (2020-04-08).
644: 584: 489: 454: 430: 397: 373: 340: 133:
Development of living medicines is an extremely active research area in the fields of
1164: 1101: 1083: 1062:"The role of bacteria in cancer therapy – enemies in the past, but allies at present" 1042: 1024: 984: 966: 927: 919: 858: 846: 711: 693: 636: 628: 494: 476: 435: 417: 378: 360: 191: 134: 93: 58: 648: 1091: 1073: 1032: 1016: 974: 958: 909: 836: 828: 701: 683: 618: 484: 466: 425: 409: 368: 352: 914: 897: 623: 606: 413: 945:
Duong, Mai Thi-Quynh; Qin, Yeshan; You, Sung-Hwan; Min, Jung-Joon (2019-12-11).
688: 1078: 962: 1118: 1087: 1028: 970: 923: 697: 632: 480: 421: 364: 321: 297: 229: 89: 85: 878: 832: 471: 453:
Kitada, Tasuku; DiAndreth, Breanna; Teague, Brian; Weiss, Ron (2018-02-09).
1105: 1046: 988: 931: 850: 715: 640: 498: 439: 382: 138: 81: 74: 807:
Gurbatri, Candice R.; Arpaia, Nicholas; Danino, Tal (25 November 2022).
455:"Programming gene and engineered-cell therapies with synthetic biology" 1020: 77:, though living medicines have advanced tremendously since that time. 97: 356: 783:"Living medicines: Ginkgo's machine to disrupt the pharma industry" 162:
Schematic of therapeutic bacteria strategies against hypoxic tumors
1001: 66: 730:"Gene Circuits Empower Next-Generation Cell and Gene Therapies" 947:"Bacteria-cancer interactions: bacteria-based cancer therapy" 396:
Fischbach, M. A.; Bluestone, J. A.; Lim, W. A. (2013-04-03).
70: 898:"Tweak to Treat: Reprograming Bacteria for Cancer Treatment" 603: 661: 452: 249:"'Living medicine' helps make toxic ammonia breakthrough" 1060:
Song, Shiyu; Vuai, Miza S.; Zhong, Mintao (2018-03-15).
341:"Emerging biomedical applications of synthetic biology" 809:"Engineering bacteria as interactive cancer therapies" 398:"Cell-Based Therapeutics: The Next Pillar of Medicine" 395: 339:
Weber, Wilfried; Fussenegger, Martin (January 2012).
806: 103: 895: 182:Bacteria involved in causing and treating cancers 18:Biological therapy for inflammatory bowel disease 1116: 734:GEN - Genetic Engineering and Biotechnology News 338: 129:translational potential for patient populations. 944: 564:ServiceFeb. 18, Robert F. (18 February 2020). 563: 1059: 514:"Why 2018 Was the Year of 'Living' Medicine" 589:: CS1 maint: numeric names: authors list ( 145:organisms to produce therapeutic effects. 1095: 1077: 1036: 978: 913: 840: 705: 687: 622: 488: 470: 429: 372: 177: 165: 157: 123: 107: 25: 511: 1117: 246: 35:into therapeutic curli hybrid fibers. 951:Experimental & Molecular Medicine 780: 537: 80:Examples of living medicines include 13: 512:McCarty, Niko (18 December 2018). 14: 1176: 781:Costa, Kevin (20 February 2019). 153: 877: This article incorporates 872: 320: This article incorporates 315: 296: This article incorporates 291: 228: This article incorporates 223: 1053: 995: 938: 889: 865: 800: 774: 748: 722: 655: 597: 557: 531: 247:Sample, Ian (16 January 2019). 172:tumor-infiltrating immune cells 148: 104:Development of living medicines 96:, a subset of the latter being 22:Biologics for immunosuppression 611:Science Translational Medicine 505: 446: 402:Science Translational Medicine 389: 332: 308: 284: 266: 240: 216: 1: 540:"The Era of Living Medicines" 538:Kelly, Jason (12 June 2019). 210: 1066:Infectious Agents and Cancer 915:10.1016/j.trecan.2020.11.004 624:10.1126/scitranslmed.aau7975 414:10.1126/scitranslmed.3005568 7: 10: 1181: 689:10.1038/s41467-020-15508-1 15: 1079:10.1186/s13027-018-0180-y 963:10.1038/s12276-019-0297-0 1150:Pharmaceutical industry 833:10.1126/science.add9667 472:10.1126/science.aad1067 345:Nature Reviews Genetics 143:genetically programming 1155:Life sciences industry 1140:Biotechnology products 1130:Biological engineering 200:tumor microenvironment 183: 175: 163: 130: 121: 94:bacterial therapeutics 63:genetically engineered 50: 668:Nature Communications 188:tumor-homing bacteria 181: 169: 161: 127: 111: 82:cellular therapeutics 29: 1125:Bacteria and humans 825:2022Sci...378..858G 680:2020NatCo..11.1738C 1145:Biopharmaceuticals 465:(6376): eaad1067. 184: 176: 164: 131: 122: 90:phage therapeutics 86:immunotherapeutics 51: 1021:10.1002/cam4.2148 819:(6622): 858–864. 736:. 1 February 2020 617:(475): eaau7975. 196:leaky vasculature 135:synthetic biology 1172: 1110: 1109: 1099: 1081: 1057: 1051: 1050: 1040: 1015:(6): 3167–3181. 999: 993: 992: 982: 942: 936: 935: 917: 902:Trends in Cancer 893: 887: 876: 869: 863: 862: 844: 804: 798: 797: 795: 793: 778: 772: 771: 769: 767: 752: 746: 745: 743: 741: 726: 720: 719: 709: 691: 659: 653: 652: 626: 601: 595: 594: 588: 580: 578: 576: 561: 555: 554: 552: 550: 535: 529: 528: 526: 524: 509: 503: 502: 492: 474: 450: 444: 443: 433: 393: 387: 386: 376: 336: 330: 319: 312: 306: 295: 288: 282: 281: 270: 264: 263: 261: 259: 244: 238: 227: 220: 1180: 1179: 1175: 1174: 1173: 1171: 1170: 1169: 1160:Specialty drugs 1115: 1114: 1113: 1058: 1054: 1009:Cancer Medicine 1000: 996: 943: 939: 894: 890: 870: 866: 805: 801: 791: 789: 779: 775: 765: 763: 754: 753: 749: 739: 737: 728: 727: 723: 660: 656: 602: 598: 582: 581: 574: 572: 562: 558: 548: 546: 544:Ginkgo Bioworks 536: 532: 522: 520: 510: 506: 451: 447: 408:(179): 179ps7. 394: 390: 357:10.1038/nrg3094 337: 333: 313: 309: 289: 285: 272: 271: 267: 257: 255: 245: 241: 221: 217: 213: 190:that thrive in 156: 151: 106: 55:living medicine 24: 12: 11: 5: 1178: 1168: 1167: 1162: 1157: 1152: 1147: 1142: 1137: 1132: 1127: 1112: 1111: 1052: 994: 937: 908:(5): 447–464. 888: 864: 799: 773: 762:. 2 April 2019 747: 721: 654: 596: 556: 530: 504: 445: 388: 331: 307: 283: 265: 239: 214: 212: 209: 155: 154:Cancer therapy 152: 150: 147: 105: 102: 9: 6: 4: 3: 2: 1177: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1135:Biotechnology 1133: 1131: 1128: 1126: 1123: 1122: 1120: 1107: 1103: 1098: 1093: 1089: 1085: 1080: 1075: 1071: 1067: 1063: 1056: 1048: 1044: 1039: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 998: 990: 986: 981: 976: 972: 968: 964: 960: 956: 952: 948: 941: 933: 929: 925: 921: 916: 911: 907: 903: 899: 892: 886: 884: 880: 875: 868: 860: 856: 852: 848: 843: 838: 834: 830: 826: 822: 818: 814: 810: 803: 788: 784: 777: 761: 757: 751: 735: 731: 725: 717: 713: 708: 703: 699: 695: 690: 685: 681: 677: 673: 669: 665: 658: 650: 646: 642: 638: 634: 630: 625: 620: 616: 612: 608: 600: 592: 586: 571: 567: 560: 545: 541: 534: 519: 515: 508: 500: 496: 491: 486: 482: 478: 473: 468: 464: 460: 456: 449: 441: 437: 432: 427: 423: 419: 415: 411: 407: 403: 399: 392: 384: 380: 375: 370: 366: 362: 358: 354: 350: 346: 342: 335: 329: 327: 323: 318: 311: 305: 303: 299: 294: 287: 279: 278:www.aiche.org 275: 269: 254: 250: 243: 237: 235: 231: 226: 219: 215: 208: 205: 201: 197: 193: 189: 180: 173: 168: 160: 146: 144: 140: 136: 126: 119: 114: 110: 101: 99: 95: 91: 87: 83: 78: 76: 72: 68: 64: 60: 57:is a type of 56: 47: 43: 38: 33: 28: 23: 19: 1069: 1065: 1055: 1012: 1008: 997: 957:(12): 1–15. 954: 950: 940: 905: 901: 891: 871: 867: 816: 812: 802: 790:. Retrieved 786: 776: 764:. Retrieved 759: 750: 738:. Retrieved 733: 724: 671: 667: 657: 614: 610: 599: 573:. Retrieved 569: 559: 547:. Retrieved 543: 533: 521:. Retrieved 517: 507: 462: 458: 448: 405: 401: 391: 351:(1): 21–35. 348: 344: 334: 314: 310: 290: 286: 277: 268: 256:. Retrieved 253:The Guardian 252: 242: 222: 218: 185: 149:Applications 139:microbiology 132: 117: 112: 79: 75:bloodletting 54: 52: 45: 41: 36: 31: 674:(1): 1738. 84:(including 67:therapeutic 65:to possess 1119:Categories 787:SynBioBeta 760:SynBioBeta 211:References 98:probiotics 16:See also: 1088:1750-9378 1029:2045-7634 971:2092-6413 924:2405-8033 883:CC BY 4.0 859:253839557 698:2041-1723 633:1946-6234 585:cite news 481:0036-8075 422:1946-6234 365:1471-0056 326:CC BY 4.0 302:CC BY 4.0 234:CC BY 4.0 1165:Pharmacy 1106:29568324 1072:(1): 9. 1047:30950210 989:31827064 932:33303401 885:license. 851:36423303 842:10584033 716:32269218 649:58031579 641:30651324 499:29439214 440:23552369 383:22124480 328:license. 304:license. 236:license. 204:colonize 59:biologic 1097:5856380 1038:6558487 980:6906302 821:Bibcode 813:Science 792:5 April 766:5 April 740:5 April 707:7142098 676:Bibcode 575:5 April 549:5 April 523:5 April 490:7643872 459:Science 431:3772767 374:7097403 258:5 April 198:in the 192:hypoxic 71:leeches 1104:  1094:  1086:  1045:  1035:  1027:  987:  977:  969:  930:  922:  857:  849:  839:  714:  704:  696:  647:  639:  631:  518:Medium 497:  487:  479:  438:  428:  420:  381:  371:  363:  202:) and 92:, and 855:S2CID 645:S2CID 1102:PMID 1084:ISSN 1043:PMID 1025:ISSN 985:PMID 967:ISSN 928:PMID 920:ISSN 879:text 847:PMID 794:2020 768:2020 742:2020 712:PMID 694:ISSN 637:PMID 629:ISSN 591:link 577:2020 570:AAAS 551:2020 525:2020 495:PMID 477:ISSN 436:PMID 418:ISSN 379:PMID 361:ISSN 322:text 298:text 260:2020 230:text 137:and 73:for 20:and 1092:PMC 1074:doi 1033:PMC 1017:doi 975:PMC 959:doi 910:doi 837:PMC 829:doi 817:378 702:PMC 684:doi 619:doi 485:PMC 467:doi 463:359 426:PMC 410:doi 369:PMC 353:doi 88:), 1121:: 1100:. 1090:. 1082:. 1070:13 1068:. 1064:. 1041:. 1031:. 1023:. 1011:. 1007:. 983:. 973:. 965:. 955:51 953:. 949:. 926:. 918:. 904:. 900:. 853:. 845:. 835:. 827:. 815:. 811:. 785:. 758:. 732:. 710:. 700:. 692:. 682:. 672:11 670:. 666:. 643:. 635:. 627:. 615:11 613:. 609:. 587:}} 583:{{ 568:. 542:. 516:. 493:. 483:. 475:. 461:. 457:. 434:. 424:. 416:. 404:. 400:. 377:. 367:. 359:. 349:13 347:. 343:. 276:. 251:. 100:. 53:A 1108:. 1076:: 1049:. 1019:: 1013:8 991:. 961:: 934:. 912:: 906:7 861:. 831:: 823:: 796:. 770:. 744:. 718:. 686:: 678:: 651:. 621:: 593:) 579:. 553:. 527:. 501:. 469:: 442:. 412:: 406:5 385:. 355:: 280:. 262:. 118:b 113:a 46:d 42:c 37:b 32:a

Index

Biological therapy for inflammatory bowel disease
Biologics for immunosuppression

biologic
genetically engineered
therapeutic
leeches
bloodletting
cellular therapeutics
immunotherapeutics
phage therapeutics
bacterial therapeutics
probiotics


synthetic biology
microbiology
genetically programming


tumor-infiltrating immune cells

tumor-homing bacteria
hypoxic
leaky vasculature
tumor microenvironment
colonize

text
CC BY 4.0

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.