Knowledge

Protein tandem repeats

Source đź“ť

17: 88: 101: 120:, either in an identical or a highly similar form. The degree of similarity can be highly variable, with some repeats maintaining only a few conserved amino acid positions and a characteristic length. Highly degenerate repeats can be very difficult to detect from sequence alone. Structural similarity can help to identify repetitive patterns in sequence. 305:
with Pfam are repeat regions. Alternatively, methods requiring no prior knowledge for the detection of repeated substrings can be based on self-comparison, clustering or hidden Markov models. Some others rely on complexity measurements or take advantage of meta searches to combine outputs from different sources.
304:
Sequence-based strategies, based on homology search or domain assignment, mostly underestimate TRs due to the presence of highly degenerate repeat units. A recent study to understand and improve Pfam coverage of the human proteome showed that five of the ten largest sequence clusters not annotated
139:. Repeats that are at least 30 to 40 amino acids long are far more likely to be folded as part of a domain. Such long repeats are frequently indicative of the presence of a solenoid domain in the protein. 128:
Repetitiveness does not in itself indicate anything about the structure of the protein. As a "rule of thumb", short repetitive sequences (e.g. those below the length of 10 amino acids) may be
301:
Protein tandem repeats can be either detected from sequence or annotated from structure. Specialized methods were built for the identification of repeat proteins.
359:
Andrade MA, Ponting CP, Gibson TJ, Bork P (May 2000). "Homology-based method for identification of protein repeats using statistical significance estimates".
296: 1865: 1822: 1708: 1653: 1600: 1488: 1374: 1131: 1065: 1002: 939: 886: 279:
and occur in at least 14% of all proteins. For example, they are present in almost every third human protein and even in every second protein from
581:
Liu J, Xing Y, Hinds TR, Zheng J, Xu W (June 2006). "The third 20 amino acid repeat is the tightest binding site of APC for beta-catenin".
80:. These periodic sequences are generated by internal duplications in both coding and non-coding genomic sequences. Repetitive units of 231:
structures with typical size of repeats over 50 residues, which are already large enough to fold independently into stable domains.
49: 146:
conformation being naturally unfolded. Examples of disordered repetitive sequences include the 7-mer peptide repeats found in the
84:
tandem repeats are considerably diverse, ranging from the repetition of a single amino acid to domains of 100 or more residues.
1162: 308:
Structure-based methods instead take advantage of the modularity of available PDB structures to recognize repetitive elements.
1927: 1858: 174:
has a plethora of shapes and functions. Examples of short repeats exhibiting ordered structures include the three-residue
129: 199: 143: 1235:"XSTREAM: a practical algorithm for identification and architecture modeling of tandem repeats in protein sequences" 2064: 1851: 194:
Depending on the length of the repetitive units, their protein structures can be subdivided into five classes:
706:
Stirnimann CU, Petsalaki E, Russell RB, MĂĽller CW (October 2010). "WD40 proteins propel cellular networks".
659:"RepeatsDB 2.0: improved annotation, classification, search and visualization of repeat protein structures" 167: 1666: 902:"Homology-based method for identification of protein repeats using statistical significance estimates" 287:. Tandem repeats with short repetitive units (especially homorepeats) are more frequent than others. 2069: 1962: 489: 284: 2043: 1903: 1081: 1018:"InterPro in 2019: improving coverage, classification and access to protein sequence annotations" 746:
Marcotte EM, Pellegrini M, Yeates TO, Eisenberg D (October 1999). "A census of protein repeats".
214: 1977: 1616:"ProSTRIP: A method to find similar structural repeats in three-dimensional protein structures" 952: 223: 1816: 1702: 1647: 1594: 1482: 1368: 1125: 1059: 1015: 996: 933: 880: 280: 65: 1724:"ConSole: using modularity of contact maps to locate solenoid domains in protein structures" 394:
Tompa P (September 2003). "Intrinsically unstructured proteins evolve by repeat expansion".
1669:"RAPHAEL: recognition, periodicity and insertion assignment of solenoid protein structures" 542:"Phasing RNA polymerase II using intrinsically bound Zn atoms: an updated structural model" 33: 1416: 657:
Paladin L, Hirsh L, Piovesan D, Andrade-Navarro MA, Kajava AV, Tosatto SC (January 2017).
8: 1957: 1952: 249: 179: 105: 29: 1775:"TAPO: A combined method for the identification of tandem repeats in protein structures" 1390:"De novo identification of highly diverged protein repeats by probabilistic consistency" 252:
proteins, which specifically bind some globular proteins by their concave surfaces; and
198:
crystalline aggregates formed by regions with 1 or 2 residue long repeats, archetypical
1942: 1804: 1750: 1723: 1631: 1577: 1552: 1533: 1465: 1440: 1351: 1326: 1261: 1234: 1174: 1108: 1083: 1082:
Mistry J, Coggill P, Eberhardt RY, Deiana A, Giansanti A, Finn RD; et al. (2013).
1042: 1017: 979: 954: 863: 836: 809: 782: 683: 658: 517: 465: 438: 419: 263:
Tandem repeat proteins frequently function as protein-protein interaction modules. The
175: 163: 61: 1286:"T-REKS: identification of Tandem REpeats in sequences with a K-meanS based algorithm" 619:
Kajava AV (September 2012). "Tandem repeats in proteins: from sequence to structure".
337: 1991: 1967: 1796: 1755: 1690: 1635: 1582: 1525: 1470: 1421: 1356: 1307: 1266: 1215: 1166: 1113: 1047: 984: 953:
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC; et al. (2019).
921: 868: 814: 763: 723: 688: 636: 598: 563: 522: 508: 470: 411: 376: 341: 171: 151: 37: 1808: 1685: 1668: 1568: 1537: 1406: 1389: 1302: 1285: 1210: 1193: 1178: 439:"Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins" 423: 1922: 1786: 1745: 1735: 1680: 1627: 1572: 1564: 1515: 1460: 1452: 1411: 1401: 1346: 1338: 1297: 1256: 1246: 1205: 1158: 1103: 1095: 1037: 1029: 1016:
Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A; et al. (2019).
974: 966: 913: 858: 848: 804: 794: 755: 715: 678: 670: 628: 590: 553: 512: 504: 460: 450: 403: 368: 333: 117: 1791: 1774: 133: 76:
is defined as several (at least two) adjacent copies having the same or similar
1996: 1917: 1912: 1893: 1667:
Walsh I, Sirocco FG, Minervini G, Di Domenico T, Ferrari C, Tosatto SC (2012).
853: 719: 136: 77: 45: 1099: 632: 594: 558: 541: 324:
Heringa J (June 1998). "Detection of internal repeats: how common are they?".
2058: 1932: 1740: 837:"Ab initio detection of fuzzy amino acid tandem repeats in protein sequences" 799: 455: 53: 1251: 170:(adenomatous polyposis coli). The other half of the regions with the stable 2027: 1800: 1759: 1694: 1639: 1615: 1586: 1529: 1474: 1425: 1360: 1311: 1270: 1219: 1170: 1146: 1117: 1051: 988: 925: 917: 901: 872: 818: 767: 759: 727: 692: 640: 602: 567: 526: 474: 415: 380: 372: 155: 41: 16: 1033: 674: 345: 207:
structures stabilized by inter-chain interactions with 3-7 residue repeats
116:, a "repeat" is any sequence block that returns more than one time in the 2011: 2001: 1986: 1947: 1888: 1843: 1456: 1342: 1147:"Rapid automatic detection and alignment of repeats in protein sequences" 970: 899: 264: 253: 245: 244:, which plays a key role in the arrangement of the extracellular matrix; 25: 21: 87: 2006: 1937: 1327:"HHrep: de novo protein repeat detection and the origin of TIM barrels" 783:"Tandem Repeats in Proteins: Prediction Algorithms and Biological Role" 407: 183: 1520: 1503: 1163:
10.1002/1097-0134(20001101)41:2<224::aid-prot70>3.0.co;2-z
1553:"Swelfe: a detector of internal repeats in sequences and structures" 1839:
RepeatsDB: a database of annotated tandem repeat protein structures
656: 276: 241: 1838: 1084:"The challenge of increasing Pfam coverage of the human proteome" 834: 745: 113: 81: 1504:"The evolution and function of protein tandem repeats in plants" 705: 490:"Protein tandem repeats - the more perfect, the less structured" 1613: 1550: 147: 1772: 1324: 1441:"REPPER--repeats and their periodicities in fibrous proteins" 240:
Some well-known examples of proteins with tandem repeats are
222:(not elongated) structures with repeats of 30-60 residues as 159: 57: 1438: 100: 257: 20:
Common examples of protein tandem repeat structures: the
358: 1191: 1501: 1194:"Tracking repeats using significance and transitivity" 213:
structures with repeats of 5–40 residues dominated by
487: 142:
Approximately half of the tandem repeat regions have
1232: 256:, which regulate the expression of genes by binding 1387: 540:Meyer PA, Ye P, Zhang M, Suh MH, Fu J (June 2006). 488:Jorda J, Xue B, Uversky VN, Kajava AV (June 2010). 91:
Schematic representation of tandem repeat sequence.
1283: 900:Andrade MA, Ponting CP, Gibson TJ, Bork P (2000). 95: 1721: 580: 297:List of protein tandem repeat annotation software 248:having structural and oligomerization functions; 2056: 1144: 1077: 1075: 830: 828: 539: 1859: 787:Frontiers in Bioengineering and Biotechnology 1821:: CS1 maint: multiple names: authors list ( 1766: 1715: 1707:: CS1 maint: multiple names: authors list ( 1660: 1652:: CS1 maint: multiple names: authors list ( 1607: 1599:: CS1 maint: multiple names: authors list ( 1544: 1495: 1487:: CS1 maint: multiple names: authors list ( 1432: 1381: 1373:: CS1 maint: multiple names: authors list ( 1318: 1277: 1226: 1185: 1138: 1130:: CS1 maint: multiple names: authors list ( 1072: 1064:: CS1 maint: multiple names: authors list ( 1009: 1001:: CS1 maint: multiple names: authors list ( 955:"The Pfam protein families database in 2019" 946: 938:: CS1 maint: multiple names: authors list ( 893: 885:: CS1 maint: multiple names: authors list ( 825: 436: 270: 574: 533: 1873: 1866: 1852: 835:Pellegrini M, Renda ME, Vecchio A (2012). 780: 1790: 1749: 1739: 1684: 1576: 1519: 1464: 1415: 1405: 1350: 1301: 1260: 1250: 1209: 1107: 1041: 978: 862: 852: 808: 798: 682: 557: 516: 464: 454: 104:Example multiple sequence alignment of a 1614:Sabarinathan R, Basu R, Sekar K (2010). 1551:Abraham AL, Rocha EP, Pothier J (2008). 99: 86: 15: 1773:Do Viet P, Roche DB, Kajava AV (2015). 1325:Söding J, Remmert M, Biegert A (2006). 323: 2057: 618: 1928:Transcription activator-like effector 1847: 1439:Gruber M, Söding J, Lupas AN (2005). 741: 739: 737: 393: 326:Current Opinion in Structural Biology 290: 267:is a prime example of this function. 652: 650: 614: 612: 108:leading to a tandem repeat structure 13: 1632:10.1016/j.compbiolchem.2010.03.006 734: 699: 14: 2081: 1832: 647: 609: 275:Tandem repeats are ubiquitous in 189: 68:regulatory subunit R1a (magenta). 1192:Szklarczyk R, Heringa J (2004). 509:10.1111/j.1742-4658.2010.07684.x 1502:Schaper E, Anisimova M (2015). 774: 1417:11858/00-001M-0000-0017-DADF-9 708:Trends in Biochemical Sciences 481: 430: 387: 352: 317: 1: 1792:10.1016/j.febslet.2015.08.025 1686:10.1093/bioinformatics/bts550 1569:10.1093/bioinformatics/btn234 1451:(Web Server issue): W239-43. 1407:10.1093/bioinformatics/btn039 1337:(Web Server issue): W137-42. 1303:10.1093/bioinformatics/btp482 1233:Newman AM, Cooper JB (2007). 1211:10.1093/bioinformatics/bth911 621:Journal of Structural Biology 338:10.1016/s0959-440x(98)80068-7 311: 1388:Biegert A, Söding J (2008). 748:Journal of Molecular Biology 437:Simon M, Hancock JM (2009). 361:Journal of Molecular Biology 123: 7: 1284:Jorda J, Kajava AV (2009). 235: 10: 2086: 1722:Hrabe T, Godzik A (2014). 854:10.1186/1471-2105-13-S3-S8 720:10.1016/j.tibs.2010.04.003 294: 246:alpha-helical coiled coils 30:leucine-rich repeat domain 2036: 2020: 1976: 1902: 1881: 633:10.1016/j.jsb.2011.08.009 595:10.1016/j.jmb.2006.04.064 559:10.1016/j.str.2006.04.003 271:Distribution in proteomes 1963:Tetratricopeptide repeat 1741:10.1186/1471-2105-15-119 1145:Heger A, Holm L (2000). 800:10.3389/fbioe.2015.00143 456:10.1186/gb-2009-10-6-r59 285:Dictyostelium discoideum 144:intrinsically disordered 130:intrinsically disordered 2044:Repeated sequence (DNA) 1252:10.1186/1471-2105-8-382 1100:10.1093/database/bat023 38:armadillo repeat domain 2065:Protein tandem repeats 1875:Protein tandem repeats 918:10.1006/jmbi.2000.3684 760:10.1006/jmbi.1999.3136 663:Nucleic Acids Research 373:10.1006/jmbi.2000.3684 200:low complexity regions 132:, and not part of any 109: 92: 74:protein tandem repeats 69: 781:Pellegrini M (2015). 281:Plasmodium falciparum 103: 96:"Repeats" in proteins 90: 46:ankyrin repeat domain 19: 254:zinc-finger proteins 178:or the five-residue 1958:Pentapeptide repeat 1953:Leucine-rich repeat 1785:(19 Pt A): 2611–9. 1204:(Suppl 1): i311-7. 1034:10.1093/nar/gky1100 675:10.1093/nar/gkw1136 250:leucine-rich repeat 180:pentapeptide repeat 106:pentapeptide repeat 54:kelch repeat domain 2021:Beads-on-a-string: 1943:Antifreeze protein 1728:BMC Bioinformatics 1457:10.1093/nar/gki405 1343:10.1093/nar/gkl130 1239:BMC Bioinformatics 971:10.1093/nar/gky995 841:BMC Bioinformatics 408:10.1002/bies.10324 291:Annotation methods 110: 93: 70: 62:HEAT repeat domain 22:WD40 repeat domain 2052: 2051: 1992:Beta trefoil fold 1968:Trefoil knot fold 1521:10.1111/nph.13184 1445:Nucleic Acids Res 1331:Nucleic Acids Res 1088:Database (Oxford) 1028:(D1): D351–D360. 1022:Nucleic Acids Res 965:(D1): D427–D432. 959:Nucleic Acids Res 669:(D1): D308–D312. 229:beads on a string 215:solenoid proteins 152:RNA polymerase II 2077: 1923:Armadillo repeat 1868: 1861: 1854: 1845: 1844: 1827: 1826: 1820: 1812: 1794: 1770: 1764: 1763: 1753: 1743: 1719: 1713: 1712: 1706: 1698: 1688: 1664: 1658: 1657: 1651: 1643: 1620:Comput Biol Chem 1611: 1605: 1604: 1598: 1590: 1580: 1548: 1542: 1541: 1523: 1499: 1493: 1492: 1486: 1478: 1468: 1436: 1430: 1429: 1419: 1409: 1385: 1379: 1378: 1372: 1364: 1354: 1322: 1316: 1315: 1305: 1281: 1275: 1274: 1264: 1254: 1230: 1224: 1223: 1213: 1189: 1183: 1182: 1142: 1136: 1135: 1129: 1121: 1111: 1079: 1070: 1069: 1063: 1055: 1045: 1013: 1007: 1006: 1000: 992: 982: 950: 944: 943: 937: 929: 897: 891: 890: 884: 876: 866: 856: 832: 823: 822: 812: 802: 778: 772: 771: 743: 732: 731: 703: 697: 696: 686: 654: 645: 644: 616: 607: 606: 578: 572: 571: 561: 537: 531: 530: 520: 497:The FEBS Journal 494: 485: 479: 478: 468: 458: 434: 428: 427: 391: 385: 384: 356: 350: 349: 321: 154:, or the tandem 2085: 2084: 2080: 2079: 2078: 2076: 2075: 2074: 2070:Protein domains 2055: 2054: 2053: 2048: 2032: 2016: 1972: 1898: 1877: 1872: 1835: 1830: 1814: 1813: 1771: 1767: 1720: 1716: 1700: 1699: 1679:(24): 3257–64. 1665: 1661: 1645: 1644: 1612: 1608: 1592: 1591: 1549: 1545: 1500: 1496: 1480: 1479: 1437: 1433: 1386: 1382: 1366: 1365: 1323: 1319: 1282: 1278: 1231: 1227: 1190: 1186: 1143: 1139: 1123: 1122: 1080: 1073: 1057: 1056: 1014: 1010: 994: 993: 951: 947: 931: 930: 898: 894: 878: 877: 847:(Suppl 3): S8. 833: 826: 779: 775: 744: 735: 704: 700: 655: 648: 617: 610: 579: 575: 538: 534: 503:(12): 2673–82. 492: 486: 482: 435: 431: 392: 388: 357: 353: 322: 318: 314: 299: 293: 273: 238: 192: 176:collagen repeat 137:protein domains 126: 98: 78:sequence motifs 12: 11: 5: 2083: 2073: 2072: 2067: 2050: 2049: 2047: 2046: 2040: 2038: 2034: 2033: 2031: 2030: 2024: 2022: 2018: 2017: 2015: 2014: 2009: 2004: 1999: 1997:Beta-propeller 1994: 1989: 1983: 1981: 1974: 1973: 1971: 1970: 1965: 1960: 1955: 1950: 1945: 1940: 1935: 1930: 1925: 1920: 1918:Ankyrin repeat 1915: 1913:Alpha solenoid 1909: 1907: 1900: 1899: 1897: 1896: 1894:Collagen helix 1891: 1885: 1883: 1879: 1878: 1871: 1870: 1863: 1856: 1848: 1842: 1841: 1834: 1833:External links 1831: 1829: 1828: 1765: 1714: 1673:Bioinformatics 1659: 1606: 1563:(13): 1536–7. 1557:Bioinformatics 1543: 1514:(1): 397–410. 1494: 1431: 1394:Bioinformatics 1380: 1317: 1296:(20): 2632–8. 1290:Bioinformatics 1276: 1225: 1198:Bioinformatics 1184: 1137: 1071: 1008: 945: 892: 824: 773: 733: 714:(10): 565–74. 698: 646: 608: 573: 532: 480: 443:Genome Biology 429: 386: 351: 315: 313: 310: 295:Main article: 292: 289: 272: 269: 237: 234: 233: 232: 226: 224:toroid repeats 217: 208: 202: 191: 190:Classification 188: 125: 122: 97: 94: 9: 6: 4: 3: 2: 2082: 2071: 2068: 2066: 2063: 2062: 2060: 2045: 2042: 2041: 2039: 2035: 2029: 2026: 2025: 2023: 2019: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1988: 1985: 1984: 1982: 1979: 1975: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1933:Beta solenoid 1931: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1910: 1908: 1905: 1901: 1895: 1892: 1890: 1887: 1886: 1884: 1880: 1876: 1869: 1864: 1862: 1857: 1855: 1850: 1849: 1846: 1840: 1837: 1836: 1824: 1818: 1810: 1806: 1802: 1798: 1793: 1788: 1784: 1780: 1776: 1769: 1761: 1757: 1752: 1747: 1742: 1737: 1733: 1729: 1725: 1718: 1710: 1704: 1696: 1692: 1687: 1682: 1678: 1674: 1670: 1663: 1655: 1649: 1641: 1637: 1633: 1629: 1626:(2): 126–30. 1625: 1621: 1617: 1610: 1602: 1596: 1588: 1584: 1579: 1574: 1570: 1566: 1562: 1558: 1554: 1547: 1539: 1535: 1531: 1527: 1522: 1517: 1513: 1509: 1505: 1498: 1490: 1484: 1476: 1472: 1467: 1462: 1458: 1454: 1450: 1446: 1442: 1435: 1427: 1423: 1418: 1413: 1408: 1403: 1400:(6): 807–14. 1399: 1395: 1391: 1384: 1376: 1370: 1362: 1358: 1353: 1348: 1344: 1340: 1336: 1332: 1328: 1321: 1313: 1309: 1304: 1299: 1295: 1291: 1287: 1280: 1272: 1268: 1263: 1258: 1253: 1248: 1244: 1240: 1236: 1229: 1221: 1217: 1212: 1207: 1203: 1199: 1195: 1188: 1180: 1176: 1172: 1168: 1164: 1160: 1157:(2): 224–37. 1156: 1152: 1148: 1141: 1133: 1127: 1119: 1115: 1110: 1105: 1101: 1097: 1093: 1089: 1085: 1078: 1076: 1067: 1061: 1053: 1049: 1044: 1039: 1035: 1031: 1027: 1023: 1019: 1012: 1004: 998: 990: 986: 981: 976: 972: 968: 964: 960: 956: 949: 941: 935: 927: 923: 919: 915: 912:(3): 521–37. 911: 907: 903: 896: 888: 882: 874: 870: 865: 860: 855: 850: 846: 842: 838: 831: 829: 820: 816: 811: 806: 801: 796: 792: 788: 784: 777: 769: 765: 761: 757: 754:(1): 151–60. 753: 749: 742: 740: 738: 729: 725: 721: 717: 713: 709: 702: 694: 690: 685: 680: 676: 672: 668: 664: 660: 653: 651: 642: 638: 634: 630: 627:(3): 279–88. 626: 622: 615: 613: 604: 600: 596: 592: 589:(1): 133–44. 588: 584: 577: 569: 565: 560: 555: 552:(6): 973–82. 551: 547: 543: 536: 528: 524: 519: 514: 510: 506: 502: 498: 491: 484: 476: 472: 467: 462: 457: 452: 448: 444: 440: 433: 425: 421: 417: 413: 409: 405: 402:(9): 847–55. 401: 397: 390: 382: 378: 374: 370: 367:(3): 521–37. 366: 362: 355: 347: 343: 339: 335: 332:(3): 338–45. 331: 327: 320: 316: 309: 306: 302: 298: 288: 286: 282: 278: 268: 266: 261: 259: 255: 251: 247: 243: 230: 227: 225: 221: 218: 216: 212: 209: 206: 203: 201: 197: 196: 195: 187: 185: 182:that forms a 181: 177: 173: 169: 165: 164:linear motifs 161: 157: 153: 149: 145: 140: 138: 135: 131: 121: 119: 115: 107: 102: 89: 85: 83: 79: 75: 67: 63: 60:(yellow) and 59: 55: 51: 47: 43: 39: 35: 31: 27: 23: 18: 2028:Sushi domain 1874: 1817:cite journal 1782: 1778: 1768: 1731: 1727: 1717: 1703:cite journal 1676: 1672: 1662: 1648:cite journal 1623: 1619: 1609: 1595:cite journal 1560: 1556: 1546: 1511: 1507: 1497: 1483:cite journal 1448: 1444: 1434: 1397: 1393: 1383: 1369:cite journal 1334: 1330: 1320: 1293: 1289: 1279: 1242: 1238: 1228: 1201: 1197: 1187: 1154: 1150: 1140: 1126:cite journal 1091: 1087: 1060:cite journal 1025: 1021: 1011: 997:cite journal 962: 958: 948: 934:cite journal 909: 905: 895: 881:cite journal 844: 840: 790: 786: 776: 751: 747: 711: 707: 701: 666: 662: 624: 620: 586: 583:J. Mol. Biol 582: 576: 549: 545: 535: 500: 496: 483: 446: 442: 432: 399: 395: 389: 364: 360: 354: 329: 325: 319: 307: 303: 300: 274: 262: 239: 228: 219: 210: 204: 193: 172:3D structure 156:beta-catenin 148:RPB1 subunit 141: 127: 111: 73: 72:An array of 71: 42:beta-catenin 2012:WD40 repeat 2002:Kelch motif 1987:Beta barrel 1948:HEAT repeat 1889:Coiled coil 265:WD40 repeat 186:structure. 2059:Categories 2007:TIM barrel 1938:Beta helix 1508:New Phytol 1094:: bat023. 906:J Mol Biol 449:(6): R59. 312:References 184:beta helix 52:(orange), 2037:See also: 1904:Elongated 1779:FEBS Lett 546:Structure 396:BioEssays 277:proteomes 211:elongated 124:Structure 28:(green), 26:beta-TrCP 1882:Fibrous: 1809:28423787 1801:26320412 1760:24766872 1695:22962341 1640:20430700 1587:18487242 1538:20656455 1530:25420631 1475:15980460 1426:18245125 1361:16844977 1312:19671691 1271:17931424 1220:15262814 1179:21757391 1171:10966575 1151:Proteins 1118:23603847 1052:30398656 989:30357350 926:10772867 873:22536906 819:26442257 768:10512723 728:20451393 693:27899671 641:21884799 603:16753179 568:16765890 527:20553501 475:19486509 424:32684524 416:12938174 381:10772867 242:collagen 236:Function 162:binding 118:sequence 114:proteins 44:(blue), 1751:4021314 1734:: 119. 1578:2718673 1466:1160166 1352:1538828 1262:2233649 1245:: 382. 1109:3630804 1043:6323941 980:6324024 864:3402919 810:4585158 793:: 143. 684:5210593 518:2928880 466:2718493 346:9666330 205:fibrous 82:protein 36:(red), 1978:Closed 1807:  1799:  1758:  1748:  1693:  1638:  1585:  1575:  1536:  1528:  1473:  1463:  1424:  1359:  1349:  1310:  1269:  1259:  1218:  1177:  1169:  1116:  1106:  1050:  1040:  987:  977:  924:  871:  861:  817:  807:  766:  726:  691:  681:  639:  601:  566:  525:  515:  473:  463:  422:  414:  379:  344:  220:closed 134:folded 50:ANKRA2 1805:S2CID 1534:S2CID 1175:S2CID 493:(PDF) 420:S2CID 64:of a 58:Keap1 1823:link 1797:PMID 1756:PMID 1709:link 1691:PMID 1654:link 1636:PMID 1601:link 1583:PMID 1526:PMID 1489:link 1471:PMID 1422:PMID 1375:link 1357:PMID 1308:PMID 1267:PMID 1216:PMID 1167:PMID 1132:link 1114:PMID 1092:2013 1066:link 1048:PMID 1003:link 985:PMID 940:link 922:PMID 887:link 869:PMID 815:PMID 764:PMID 724:PMID 689:PMID 637:PMID 599:PMID 564:PMID 523:PMID 471:PMID 412:PMID 377:PMID 342:PMID 160:axin 66:PP2A 34:TLR2 1787:doi 1783:589 1746:PMC 1736:doi 1681:doi 1628:doi 1573:PMC 1565:doi 1516:doi 1512:206 1461:PMC 1453:doi 1412:hdl 1402:doi 1347:PMC 1339:doi 1298:doi 1257:PMC 1247:doi 1206:doi 1159:doi 1104:PMC 1096:doi 1038:PMC 1030:doi 975:PMC 967:doi 914:doi 910:298 859:PMC 849:doi 805:PMC 795:doi 756:doi 752:293 716:doi 679:PMC 671:doi 629:doi 625:179 591:doi 587:360 554:doi 513:PMC 505:doi 501:277 461:PMC 451:doi 404:doi 369:doi 365:298 334:doi 283:or 258:DNA 168:APC 166:in 158:or 150:of 112:In 56:of 48:of 40:of 32:of 24:of 2061:: 1819:}} 1815:{{ 1803:. 1795:. 1781:. 1777:. 1754:. 1744:. 1732:15 1730:. 1726:. 1705:}} 1701:{{ 1689:. 1677:28 1675:. 1671:. 1650:}} 1646:{{ 1634:. 1624:34 1622:. 1618:. 1597:}} 1593:{{ 1581:. 1571:. 1561:24 1559:. 1555:. 1532:. 1524:. 1510:. 1506:. 1485:}} 1481:{{ 1469:. 1459:. 1449:33 1447:. 1443:. 1420:. 1410:. 1398:24 1396:. 1392:. 1371:}} 1367:{{ 1355:. 1345:. 1335:34 1333:. 1329:. 1306:. 1294:25 1292:. 1288:. 1265:. 1255:. 1241:. 1237:. 1214:. 1202:20 1200:. 1196:. 1173:. 1165:. 1155:41 1153:. 1149:. 1128:}} 1124:{{ 1112:. 1102:. 1090:. 1086:. 1074:^ 1062:}} 1058:{{ 1046:. 1036:. 1026:47 1024:. 1020:. 999:}} 995:{{ 983:. 973:. 963:47 961:. 957:. 936:}} 932:{{ 920:. 908:. 904:. 883:}} 879:{{ 867:. 857:. 845:13 843:. 839:. 827:^ 813:. 803:. 789:. 785:. 762:. 750:. 736:^ 722:. 712:35 710:. 687:. 677:. 667:45 665:. 661:. 649:^ 635:. 623:. 611:^ 597:. 585:. 562:. 550:14 548:. 544:. 521:. 511:. 499:. 495:. 469:. 459:. 447:10 445:. 441:. 418:. 410:. 400:25 398:. 375:. 363:. 340:. 328:. 260:. 1980:: 1906:: 1867:e 1860:t 1853:v 1825:) 1811:. 1789:: 1762:. 1738:: 1711:) 1697:. 1683:: 1656:) 1642:. 1630:: 1603:) 1589:. 1567:: 1540:. 1518:: 1491:) 1477:. 1455:: 1428:. 1414:: 1404:: 1377:) 1363:. 1341:: 1314:. 1300:: 1273:. 1249:: 1243:8 1222:. 1208:: 1181:. 1161:: 1134:) 1120:. 1098:: 1068:) 1054:. 1032:: 1005:) 991:. 969:: 942:) 928:. 916:: 889:) 875:. 851:: 821:. 797:: 791:3 770:. 758:: 730:. 718:: 695:. 673:: 643:. 631:: 605:. 593:: 570:. 556:: 529:. 507:: 477:. 453:: 426:. 406:: 383:. 371:: 348:. 336:: 330:8

Index


WD40 repeat domain
beta-TrCP
leucine-rich repeat domain
TLR2
armadillo repeat domain
beta-catenin
ankyrin repeat domain
ANKRA2
kelch repeat domain
Keap1
HEAT repeat domain
PP2A
sequence motifs
protein


pentapeptide repeat
proteins
sequence
intrinsically disordered
folded
protein domains
intrinsically disordered
RPB1 subunit
RNA polymerase II
beta-catenin
axin
linear motifs
APC

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑