Knowledge

Quantum logic

Source 📝

1314:
bad, it is rather the tale of the unrelenting pursuit of a bad idea. ... Many, many philosophers and physicists have become convinced that a change of logic (and most dramatically, the rejection of classical logic) will somehow help in understanding quantum theory, or is somehow suggested or forced on us by quantum theory. But quantum logic, even through its many incarnations and variations, both in technical form and in interpretation, has never yielded the goods.
5269: 5571: 3109:
Although many treatments of quantum logic assume that the underlying lattice must be orthomodular, such logics cannot handle multiple interacting quantum systems. In an example due to Foulis and Randall, there are orthomodular propositions with finite-dimensional Hilbert models whose pairing admits
925:
A number of other logics have also been proposed to analyze quantum-mechanical phenomena, unfortunately also under the name of "quantum logic(s)". They are not the subject of this article. For discussion of the similarities and differences between quantum logic and some of these competitors, see
1313:
The horse of quantum logic has been so thrashed, whipped and pummeled, and is so thoroughly deceased that...the question is not whether the horse will rise again, it is: how in the world did this horse get here in the first place? The tale of quantum logic is not the tale of a promising idea gone
2973: 1280:
presents severe difficulties for this goal. Later, Putnam retracted his views, albeit with much less fanfare, but the damage had been done. While Birkhoff and von Neumann's original work only attempted to organize the calculations associated with the
2781: 1328:
Quantum logic remains in limited use among logicians as an extremely pathological counterexample (Dalla Chiara and Giuntini: "Why quantum logics? Simply because 'quantum logics are there!'"). Although the central insight to quantum logic remains
2174:. Although much of the development of quantum logic has been motivated by the standard semantics, it is not the characterized by the latter; there are additional properties satisfied by that lattice that need not hold in quantum logic. 3098:. Indeed, modern logics for the analysis of quantum computation often begin with quantum logic, and attempt to graft desirable features of an extension of classical logic thereonto; the results then necessarily embed quantum logic. 1285:
of quantum mechanics, a school of researchers had now sprung up, either hoping that quantum logic would provide a viable hidden-variable theory, or obviate the need for one. Their work proved fruitless, and now lies in poor repute.
1780: 1915: 106: 3457:, p. 94: "Quantum logics are, without any doubt, logics. As we have seen, they satisfy all the canonical conditions that the present community of logicians require in order to call a given abstract object a logic." 3751:, Addison-Wesley Series in Advanced Physics; Addison-Wesley, 1968, this property cannot be used to deduce a vector space structure, because it is not peculiar to (pre-)Hilbert spaces. An analogous claim holds in most 4303: 3288:, vol. 7, 1998. p. 882ff: " differs from the standard sentential calculus....The most notable difference is that the distributive laws fail, being replaced by a weaker law known as orthomodularity." 1259:
popularized Mackey's work in two papers in 1968 and 1975, in which he attributed the idea that anomalies associated to quantum measurements originate with a failure of logic itself to his coauthor, physicist
3068: 2867: 1297:, in the sense of describing a process of reasoning, as opposed to a particularly convenient language to summarize the measurements performed by quantum apparatuses. In particular, modern 1203:
an observer might ask about the state of a physical system, questions that could be settled by some measurement. Principles for manipulating these quantum propositions were then called
2311:, such as position and momentum. This occurs because measurement affects the system, and measurement of whether a disjunction holds does not measure which of the disjuncts is true. 2170:
This semantics has the nice property that the pre-Hilbert space is complete (i.e., Hilbert) if and only if the propositions satisfy the orthomodular law, a result known as the
2679: 1701: 1842: 1301:
argue that quantum logic attempts to substitute metaphysical difficulties for unsolved problems in physics, rather than properly solving the physics problems.
4059:
Richard Blute, Alessio Guglielmi, Ivan T. Ivanov, Prakash Panangaden, Lutz Straß­burger, "A Logical Basis for Quantum Evolution and Entanglement" in
3861:, Boston Studies in the Philosophy of Science 13, ed. Robert S. Cohen and Marx W. Wartofsky; D. Riedel, 1974. pp. 92-122. DOI:  1963:
This suggests the following quantum mechanical replacement for the orthocomplemented lattice of propositions in classical mechanics, essentially Mackey's
2279:
Expressions in quantum logic describe observables using a syntax that resembles classical logic. However, unlike classical logic, the distributive law
4498: 3101:
The orthocomplemented lattice of any set of quantum propositions can be embedded into a Boolean algebra, which is then amenable to classical logic.
3020: 2186:
immediately points to a difference with the partial order structure of a classical proposition system. In the classical case, given a proposition
36: 4100:, trans. Robert T. Beyer, ed. Nicholas A. Wheeler; Princeton University Press, 2018 (original 1932). pp. 160-164. 5305: 5066: 1149:(they each have uncertainty 1/3, which is less than the allowed minimum of 1/2). So there are no states that can support either proposition, and 3787:, University of Western Ontario Series in Philosophy of Science 5a, ed. C. A. Hooker; D. Riedel, c. 1975-1979. pp. 123-133. 3537: 4699: 3183: 2220:. In the case of the lattice of projections there are infinitely many solutions to the above equations (any closed, algebraic complement of 1183: 372: 3001:
is the lattice of closed subspaces of a separable Hilbert space of complex dimension at least 3. Then for any quantum probability measure
4129: 3252:. They are presented here because they are simple enough to enable intuition, and can be considered as limiting cases of operators that 873: 5237: 4432:, vol. 1: "Derivation of Hilbert Space Structure", trans. Leo F. Boron, ed. Karl Just; Springer, 1985. DOI:  1610:. It follows easily from this characterization of propositions in classical systems that the corresponding logic is identical to the 4220: 1671:
are respectively set intersection and set union. The orthocomplementation operation is set complement. Moreover, this lattice is
4548: 1634: 947:
status of the rules of propositional logic. Modern philosophers reject quantum logic as a basis for reasoning, because it lacks a
124: 5249: 1559:
on the state space. Examples of observables are position, momentum or energy of a particle. For classical systems, the value
580: 3756: 1225:
in terms of quantum propositions. Although Mackey's presentation still assumed that the ortho­complemented lattice is the
4933: 4491: 353: 2968:{\displaystyle \operatorname {P} \!\left(\bigvee _{i=1}^{\infty }E_{i}\right)=\sum _{i=1}^{\infty }\operatorname {P} (E_{i}).} 4867: 4441: 3870: 1047:
To illustrate why the distributive law fails, consider a particle moving on a line and (using some system of units where the
536: 935:
Quantum logic has been proposed as the correct logic for propositional inference generally, most notably by the philosopher
4790: 3284: 2308: 459: 4007:
Luc Bouten; Ramon van Handel; Matthew R. James (2009). "A discrete invitation to quantum filtering and feedback control".
1793:
formulation of quantum mechanics as presented by von Neumann, a physical observable is represented by some (possibly
5298: 4286: 4267: 4061:
Categories and Types in Logic, Language, and Physics: Essays Dedicated to Jim Lambek on the Occasion of His 90th Birthday
1630: 1344:, which has engendered a proliferation of new logics for formal analysis of quantum protocols and algorithms (see also 4421: 1659:
We summarize these remarks as follows: The proposition system of a classical system is a lattice with a distinguished
4521: 4484: 4253: 3133:. Consequently, quantum logic struggles to represent the passage of time. One possible workaround is the theory of 119: 2812:, then there is a bijective correspondence between Mackey observables and densely-defined self-adjoint operators on 2425:). Moreover: if the relevant Hilbert space for the particle's dynamics only admits momenta no greater than 1, then 5602: 4631: 208: 5204: 4913: 4908: 4616: 3596:
N.J. Cutland; P.F. Gibbins (Sep 1982). "A regular sequent calculus for Quantum Logic in which √ and ∧ are dual".
866: 315: 295: 163: 4174:, Boston Studies in the Philosophy of Science V, ed. Robert S. Cohen and Marx W. Wartofsky, 1969. 5291: 5216: 4888: 4196:, in Current Issues in Quantum Logic, Plenum Press, New York, ed. E. Beltrametti et al., 1981, pp. 333-340 2987: 555: 285: 5575: 5194: 4971: 4893: 4765: 4661: 4531: 2829: 595: 333: 233: 1244:, GĂŒnther Ludwig and others later developed axiomatizations that do not assume an underlying Hilbert space. 5607: 4928: 4862: 4857: 4828: 4526: 3249: 1145:" each assert tighter restrictions on simultaneous values of position and momentum than are allowed by the 531: 526: 497: 348: 129: 5597: 5537: 4996: 4903: 4237: 3130: 1611: 1485: 919: 565: 310: 300: 2776:{\displaystyle \varphi \left(\bigcup _{i=1}^{\infty }S_{i}\right)=\sum _{i=1}^{\infty }\varphi (S_{i}).} 939:, at least at one point in his career. This thesis was an important ingredient in Putnam's 1968 paper " 922:, but the structure of experimental tests in quantum mechanics forms a much more complicated structure. 5612: 5552: 5352: 5272: 5034: 4842: 4813: 4242: 3126: 2624: 2366: 859: 511: 482: 5382: 5367: 5056: 4923: 4847: 4808: 4745: 4724: 4681: 4574: 2787: 1817: 1282: 1218: 516: 477: 430: 405: 328: 188: 2446:
be the momentum functions (Fourier transforms) for the projections of the particle wave function to
5525: 5520: 5449: 5424: 5409: 5404: 5399: 5123: 5103: 5093: 5083: 5039: 4599: 4335: 3726: 1513: 1192: 600: 3708: 4818: 4729: 1971:
The propositions of a quantum mechanical system correspond to the lattice of closed subspaces of
1932: 1048: 975: 769: 487: 395: 5232: 4780: 4355: 2365:
and hence does not have non-isolated zeroes. Therefore, there is no wave function that is both
1356:
Quantum logic can be axiomatized as the theory of propositions modulo the following identities:
445: 343: 109: 5542: 5464: 5143: 4918: 4898: 4823: 4676: 4408:, Springer-Verlag, 1989. Elementary and well-illustrated; suitable for advanced undergraduates. 3896: 3721: 3716:. 8th Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX). 3357: 1298: 1265: 774: 492: 320: 290: 253: 4719: 4323: 400: 5515: 5489: 5314: 5168: 4666: 4646: 3203: 2978:
Every quantum probability measure on the closed subspaces of a Hilbert space is induced by a
2156: 2104: 1798: 1525: 1509: 1330: 1269: 1146: 1123: 243: 228: 4154: 3223: 5454: 5377: 5199: 5128: 5073: 4803: 4611: 4569: 4362:, vol. 21, V. F. Hendricks and J. Malinowski (eds.), Springer, 2003. arXiv  4227:, ed. K. Engesser, D. M. Gabbay, and D. Lehmann; Elsevier, 2009. pp. 49-78. 4026: 3911: 3671: 3634: 3208: 3142: 3118: 2825: 2238:
to {⊄,⊀} must be Boolean. A standard workaround is to study maximal partial homomorphisms
2235: 1553: 1541: 1493: 1430: 1277: 948: 940: 560: 472: 198: 155: 804: 8: 5547: 5505: 5474: 5434: 5419: 5394: 5184: 5153: 5098: 5078: 4986: 4943: 4798: 4709: 4636: 4626: 4538: 3213: 3193: 3138: 2422: 2066: 1951:. That subspace can be interpreted as the quantum analogue of the classical proposition 1626: 1622: 1607: 1533: 1529: 1306: 1273: 991: 895: 659: 467: 385: 213: 193: 145: 4030: 3915: 3675: 3638: 3110:
no orthomodular model. Likewise, quantum logic with the orthomodular law falsifies the
5439: 5329: 5244: 5113: 5011: 4704: 4651: 4543: 4383: 4109: 4042: 4016: 3987: 3969: 3927: 3857: 3687: 3650: 3605: 3188: 3122: 1991:
of quantum propositions is also sequentially complete: any pairwise-disjoint sequence {
1775:{\displaystyle \operatorname {LUB} (\{E_{i}\})=\bigcup _{i=1}^{\infty }E_{i}{\text{.}}} 1252: 887: 380: 305: 238: 150: 4346:, vol. 6, D. Gabbay and F. Guenthner (eds.), Kluwer, 2002. arXiv  3960:
V. P. Belavkin (1992). "Quantum stochastic calculus and quantum nonlinear filtering".
3815: 5484: 5372: 5342: 5337: 5254: 5163: 5133: 5061: 5024: 5019: 5001: 4966: 4956: 4760: 4656: 4621: 4604: 4507: 4437: 4249: 3983: 3931: 3866: 3691: 3654: 3198: 3134: 3111: 2983: 2354: 2350: 2228: 2077: 1695: 1477: 1341: 1261: 907: 814: 789: 729: 724: 624: 590: 570: 168: 27: 4046: 2603:. Such interference is key to the richness of quantum logic and quantum mechanics. 1910:{\displaystyle f(A)=\int _{\mathbb {R} }f(\lambda )\,d\operatorname {E} (\lambda ).} 5389: 4981: 4976: 4833: 4714: 4465: 4125: 4121: 4113: 4034: 3991: 3979: 3919: 3679: 3642: 3218: 2801: 2231:
has unusual properties in quantum logic. An orthocomplemented lattice admitting a
1813: 1794: 1641: 1481: 1415: 1334: 1248: 1241: 1188: 994: 959: 915: 911: 819: 809: 799: 699: 679: 664: 634: 502: 390: 4277: 4246: 4136:, series II, vol. 37, issue 4, pp. 823–843, 1936. JSTOR  3855:
Jeffery Bub and William Demopoulos, "The Interpretation of Quantum Mechanics," in
2171: 5459: 5444: 5414: 5362: 5357: 5211: 5138: 5118: 5088: 5051: 5046: 4951: 4775: 4281: 4201: 4190: 4179: 4159: 4064: 3752: 3547: 3358:
Attempt of an Axiomatic Foundation of Quantum Mechanics and More General Theories
2617: 2362: 2358: 2314:
For example, consider a simple one-dimensional particle with position denoted by
2070: 1619: 1505: 1290: 1237: 1233: 1226: 987: 963: 844: 714: 694: 440: 280: 3248:
Due to technical reasons, it is not possible to represent these propositions as
1199:
can be viewed as propositions about physical observables; that is, as potential
5479: 5469: 5189: 5158: 5148: 4770: 4750: 4579: 4433: 4339: 4311: 4137: 3862: 3780: 3772: 3146: 2979: 2232: 1825: 974:
can be defined in terms of functions on or to the lattice, giving an alternate
779: 739: 719: 689: 669: 619: 585: 435: 425: 218: 4451: 2065:
The standard semantics of quantum logic is that quantum logic is the logic of
1586:
concerning a classical system are generated from basic statements of the form
5591: 5530: 4961: 4755: 4671: 4641: 4594: 4167: 4149: 3172: 2073: 1790: 1256: 1210: 1196: 971: 936: 839: 834: 764: 734: 704: 575: 248: 223: 101:{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle } 4416:(in German), Springer, 1954. The definitive work. Released in English as: 4105: 3662:
Hirokazu Nishimura (Jul 1994). "Proof theory for minimal quantum logic II".
3517: 3515: 3513: 3511: 1340:
Quantum logic's best chance at revival is through the recent development of
5510: 4991: 4589: 4584: 3818:, which cites G.D. Crown, "On some orthomodular posets of vector bundles," 3625:
Hirokazu Nishimura (Jan 1994). "Proof theory for minimal quantum logic I".
3228: 3178: 3154: 3150: 3088: 1615: 1512:
on a Hilbert space. However, the main ideas can be under­stood in the
1489: 952: 944: 829: 824: 759: 744: 709: 203: 4371: 4006: 2421:, which is certainly not false (there are states for which it is a viable 918:, that the structure of experimental tests in classical mechanics forms a 5347: 5029: 4363: 4347: 4232: 3947:
V. P. Belavkin (1978). "Optimal quantum filtration of Makovian signals".
3717: 3508: 3167: 3092: 3010: 2349:
Now, position and momentum are Fourier transforms of each other, and the
1629:) with the set operations of union and intersection corresponding to the 1583: 1423: 1374: 1370: 1302: 910:. The formal system takes as its starting point an obs­ervation of 903: 794: 749: 684: 639: 5283: 3609: 1348:). The logic may also find application in (computational) linguistics. 3923: 3800: 3683: 3646: 3341: 3303: 2093: 2085: 2054: 1784: 1537: 1419: 1230: 967: 784: 754: 674: 649: 644: 629: 4038: 1504:
The remainder of this article assumes the reader is familiar with the
4883: 4564: 4322:
A. Baltag, J. Bergfeld, K. Kishida, J. Sack, S. Smets and S. Zhong, "
4141: 4068: 4021: 3974: 3837: 3533: 1470: 275: 4476: 4425:, vol. 1, trans. Carl A. Hein; Springer-Verlag, 1983. 4295: 3129:
in a certain technical sense reduces the class of propositions to a
4391: 4375: 4315: 1059: 654: 4262: 2216:
have exactly one solution, namely the set-theoretic complement of
1289:
Most philosophers find quantum logic an unappealing competitor to
3538:
Venn and Euler type diagrams for vector spaces and abelian groups
891: 4310:, vol. 16, issue 3, pp. 491-525, 2006. DOI  1217:), attempted to axiomatize quantum logic as the structure of an 4225:
Handbook of Quantum Logic and Quantum Structures: Quantum Logic
3779:, vol. 6, no. 4, 1957. pp. 885-893. DOI:  3291: 1293:. It is far from evident (albeit true) that quantum logic is a 1126:
of momenta between 0 and +1/6 and positions between −1 and +3.
16:
Theory of logic to account for observations from quantum theory
4185:, Z. Logik und Grundl. Math., vol. 20, 1974, pp. 395-406. 3257: 1476:
Alternative formulations include propositions derivable via a
4354:
M. L. Dalla Chiara, R. Giuntini, and R. Leporini, "
4101: 3063:{\displaystyle \operatorname {P} (E)=\operatorname {Tr} (SE)} 1466: 1122:
in other words, that the state of the particle is a weighted
958:
Mathematically, quantum logic is formulated by weakening the
4353: 4245:"Contemporary Philosophy in Focus" series, 2005. DOI:  3553: 3438: 3436: 1499: 4455: 4324:
PLQP & Company: Decidable Logics for Quantum Algorithms
4263:"Quantum Logic in Historical and Philosophical Perspective" 3858:
Logical and Epistemological Studies in Contemporary Physics
3460: 3153:
that is very close to quantum logic, can handle arbitrary
4321: 3843: 3775:, "Measures on the Closed Subspaces of a Hilbert Space", 3433: 4330:, vol. 53, issue 10, pp. 3628-3647, 2014. 3805:
Work­shop on Physics and Computation (PhysComp '92)
3595: 3484: 1923:
is the indicator function of an interval , the operator
3825: 3763:, vol. 348, no. 5, 1996. pp. 1839-1862. 2627:
from the orthocomplemented lattice of Borel subsets of
1544:. In the simplest case of a single particle moving in 3496: 2606: 2517:
differently so as to make such states possible; also,
2111:(since for those states, the probability of observing 1640:
In fact, a stronger claim is true: they must obey the
1594:
yields a value in the interval for some real numbers
986:
The most notable difference between quantum logic and
4384:
Reasoning Formally About Quantum Systems: An Overview
3807:
proceedings. See also the dis­cuss­ion at
3564: 3562: 3381: 3379: 3377: 3023: 2870: 2682: 1845: 1704: 1264:. Putnam hoped to develop a possible alternative to 1221:, and recognized that a physical observable could be 39: 4334: 4212: 3876: 3740: 3706: 3521: 3454: 3429:, vol. 14, no. 5, 1984. pp. 409-430. 1931:) is a self-adjoint projection onto the subspace of 1785:
Propositional lattice of a quantum mechanical system
1433:, which additionally satisfy the orthomodular law: 4260: 4158:, W. A. Benjamin, 1963. HathiTrust  4120: 3744: 3309: 2842:
with values in such that P("⊄)=0, P(⊀)=1 and if {
2177: 1606:through the conventional arithmetic operations and 4406:An Introduction to Hilbert Space and Quantum Logic 3785:The Logico-Algebraic Approach to Quantum Mechanics 3559: 3374: 3062: 2967: 2775: 2669:are pairwise-orthogonal propositions (elements of 1909: 1774: 1207:by von Neumann and Birkhoff in a 1936 paper. 100: 4296:Mathematical study and computational applications 3747:. Despite suggestions otherwise in Josef Jauch, 3472: 3391: 3315: 2874: 2857:is a sequence of pairwise-orthogonal elements of 2635:. In symbols, this means that for any sequence { 1548:, the state space is the position–momentum space 1345: 928: 5589: 3258:§ Quantum logic as the logic of observables 2224:solves it; it need not be the orthocomplement). 1618:of the state space. They thus obey the laws of 4063:; Springer, 2014. pp. 90-107. DOI:  3822:, vol. 15 issue 1-2: pp. 11–25, 1975. 3554:Dalla Chiara, Giuntini & Leporini 2003 3408: 3406: 3336:C. Piron, "Axiomatique quantique" (in French), 3082: 2819: 2010:has a least upper bound. Here disjointness of 1519: 1176: 3801:Linear logic for generalized quantum mechanics 2808:is the lattice of closed subspaces of Hilbert 5299: 4492: 4304:LQP: The Dynamic Logic of Quantum Information 4261:de Ronde, C.; Domenech, G.; Freytes, H. 4218: 4194:Orthomodular Logic as a Hilbert Type Calculus 4155:Mathematical Foundations of Quantum Mechanics 4098:Mathematical Foundations of Quantum Mechanics 3442: 3184:Mathematical formulation of quantum mechanics 1575:, is obtained by a process of measurement of 1215:Mathematical Foundations of Quantum Mechanics 1184:Mathematical Foundations of Quantum Mechanics 867: 4328:International Journal of Theoretical Physics 3664:International Journal of Theoretical Physics 3627:International Journal of Theoretical Physics 3403: 2472:to momenta that are (in absolute value) ≄1. 2369:in momentum space and vanishes on precisely 2274: 1727: 1714: 1337:, discussions rarely mention quantum logic. 1309:by making the problem impossible to state." 902:is a set of rules for manip­ulation of 95: 69: 4308:Mathematical Structures in Computer Science 4301: 4095: 3894: 3831: 3297: 1414:("¬" is the traditional notation for " 5570: 5306: 5292: 4499: 4485: 4000: 3949:Problems of Control and Information Theory 1488:system. Despite the relatively developed 874: 860: 5313: 4020: 3973: 3795: 3793: 3725: 3137:developed in the late 1970s and 1980s by 1885: 1867: 1500:Quantum logic as the logic of observables 4430:An Axiomatic Basis for Quantum Mechanics 4200: 4189: 4178: 3882: 3584: 3580: 1698:, specifically the set-theoretic union: 1305:writes that quantum "logic 'solves' the 955:, of which quantum logic is a fragment. 951:; a common alternative is the system of 4390:, 36(3), 2005. pp. 51–66. arXiv 4231: 3502: 3466: 3385: 3364:, vol. 4, 1967. pp. 331-348. 3175:(An approach to temporal quantum logic) 2786:Equivalently, a Mackey observable is a 1319: 962:for a Boolean algebra, resulting in an 5590: 4411: 4398: 4369: 4356:Quantum Computational Logics: A Survey 4278:"Quantum Logic and Probability Theory" 4166: 4148: 3790: 3777:Indiana University Mathematics Journal 3568: 3425:T. A. Brody, "On Quantum Logic", 3397: 3367: 3321: 2650:of pairwise-disjoint Borel subsets of 1663:operation: The lattice operations of 1633:and subset inclusion corresponding to 1469:and ""⊄" the traditional notation for 1380:There is a maximal element ⊀, and ⊀ = 1351: 5287: 4506: 4480: 4464: 3745:de Ronde, Domenech & Freytes 3710:Gentzen-like Methods in Quantum Logic 3522:Dalla Chiara & Giuntini 2002 3490: 3478: 3455:Dalla Chiara & Giuntini 2002 3424: 3347: 3141:. It is known, however, that System 2611: 2060: 1465:("⊀" is the traditional notation for 1129:On the other hand, the propositions " 3310:Birkhoff & von Neumann 1936 3285:Routledge Encyclopedia of Philosophy 4287:Stanford Encyclopedia of Philosophy 4268:Internet Encyclopedia of Philosophy 4082: 3117:Quantum logic admits no reasonable 2607:Relationship to quantum measurement 2513:= 0 (this holds even if we defined 1492:, quantum logic is not known to be 1422:", and "∧" the notation for " 1346:§ Relationship to other logics 1092:= "the particle is in the interval 1082:= "the particle is in the interval 929:§ Relationship to other logics 13: 4472:, W. A. Benjamin, 1976. 4414:Der Grundlagen der Quantenmechanik 3282:Peter Forrest, "Quantum logic" in 3024: 2940: 2935: 2896: 2871: 2746: 2707: 1889: 1824:. In particular, for any bounded 1820:E defined on the Borel subsets of 1752: 1675:, in the sense that any sequence { 406:Sum-over-histories (path integral) 92: 66: 22:Part of a series of articles about 14: 5624: 4275: 4235:, "The Tale of Quantum Logic" in 4213:Modern philosophical perspectives 3412: 2595:might interfere to produce zero | 1694:of elements of the lattice has a 1571:for some particular system state 43: 5569: 5268: 5267: 4450: 4422:Foundations of Quantum Mechanics 3962:Journal of Multivariate Analysis 3820:Journ. of Natural Sci. and Math. 3808: 3749:Foundations of Quantum Mechanics 3741:Dalla Chiara & Giuntini 2002 3070:for any self-adjoint projection 2178:Differences with classical logic 1975:; the negation of a proposition 1959:yields a value in the interval . 1213:, in his 1963 book (also called 4344:Handbook of Philosophical Logic 4053: 3938: 3888: 3849: 3766: 3757:Decompositions in Quantum Logic 3734: 3707:Uwe Egly; Hans Tompits (1999). 3700: 3616: 3589: 3574: 3527: 3448: 3418: 3340:vol. 37, 1964. DOI:  2625:countably additive homomorphism 1418:", "∨" the notation for " 1219:ortho­complemented lattice 981: 964:ortho­complemented lattice 5217:Relativistic quantum mechanics 4470:Foundations of Quantum Physics 4207:, Academic Press, London, 1983 4130:The Logic of Quantum Mechanics 3895:RomĂĄn, L.; Rumbos, B. (1991). 3327: 3276: 3242: 3104: 3057: 3048: 3036: 3030: 2959: 2946: 2767: 2754: 2491:) corresponds to states with | 1901: 1895: 1882: 1876: 1855: 1849: 1730: 1711: 556:Relativistic quantum mechanics 88: 81: 62: 1: 5195:Quantum statistical mechanics 4972:Quantum differential calculus 4894:Delayed-choice quantum eraser 4662:Symmetry in quantum mechanics 2830:Quantum statistical mechanics 2623:, a Mackey observable φ is a 1979:is the orthogonal complement 1835:, the following extension of 1181:In his classic 1932 treatise 1044:are propositional variables. 906:inspired by the structure of 596:Quantum statistical mechanics 4336:M. L. Dalla Chiara 4247:10.1017/CBO9780511614187.006 3984:10.1016/0047-259X(92)90042-E 3270: 3250:quantum-mechanical operators 3083:Relationship to other logics 2820:Quantum probability measures 2547:corresponds to states with | 2038:. The least upper bound of { 1520:Logic of classical mechanics 1177:History and modern criticism 7: 4997:Quantum stochastic calculus 4987:Quantum measurement problem 4909:Mach–Zehnder interferometer 4065:10.1007/978-3-642-54789-8_6 3160: 2838:is a function P defined on 2836:quantum probability measure 2242:with a filtering property: 943:" in which he analysed the 888:mathematical study of logic 566:Quantum information science 10: 5629: 5553:Thermoacoustic heat engine 4243:Cambridge University Press 4077: 3087:Quantum logic embeds into 2823: 2322:, and define observables: 2307:) fails when dealing with 1839:to operators can be made: 1251:'s then-recent defence of 978:for quantum computations. 5565: 5538:Immersive virtual reality 5498: 5328: 5321: 5263: 5225: 5177: 5057:Quantum complexity theory 5035:Quantum cellular automata 5010: 4942: 4876: 4789: 4738: 4725:Path integral formulation 4692: 4557: 4514: 4434:10.1007/978-3-642-70029-3 4312:10.1017/S0960129506005299 4302:A. Baltag and S. Smets, " 3897:"Quantum logic revisited" 3863:10.1007/978-94-010-2656-7 3781:10.1512/iumj.1957.6.56050 2788:projection-valued measure 2618:orthocomplemented lattice 2275:Failure of distributivity 1818:projection-valued measure 1429:Some authors restrict to 1333:as an intuition pump for 1283:Copenhagen interpretation 5521:Digital scent technology 5124:Quantum machine learning 5104:Quantum key distribution 5094:Quantum image processing 5084:Quantum error correction 4934:Wheeler's delayed choice 4089:Arranged chronologically 3235: 2454:≄ 0 respectively. Let | 2432:To understand more, let 2357:nonzero function with a 2309:noncommuting observables 2155:) refers to states that 1933:generalized eigenvectors 1567:), that is the value of 1552:. An observable is some 1532:have three ingredients: 601:Quantum machine learning 354:Wheeler's delayed-choice 5603:Systems of formal logic 5040:Quantum finite automata 4338:and R. Giuntini, " 4160:2027/mdp.39015001329567 3832:Baltag & Smets 2006 3761:Transactions of the AMS 2229:propositional valuation 2129:is the intersection of 2084:is associated with the 2053:is the closed internal 1299:philosophers of science 1100:We might observe that: 1049:reduced Planck constant 966:. Quantum-mechanical 311:Leggett–Garg inequality 5543:Magnetic refrigeration 5144:Quantum neural network 4372:Quantum Logic Explorer 4219:Guido Bacciagaluppi, " 3904:Foundations of Physics 3427:Foundations of Physics 3338:Helvetica Physica Acta 3064: 3009:there exists a unique 2969: 2939: 2900: 2777: 2750: 2711: 2465:be the restriction of 2405:) is false. However, 2080:, where an observable 1911: 1814:spectral decomposition 1776: 1756: 1510:self-adjoint operators 1326: 1323:, pp. 184–185 990:is the failure of the 102: 5516:Cloak of invisibility 5315:Emerging technologies 5169:Quantum teleportation 4682:Wave–particle duality 4205:Orthomodular Lattices 4134:Annals of Mathematics 4096:J. von Neumann, 3755:; see John Harding, " 3298:von Neumann 1932 3204:Quantum contextuality 3065: 2970: 2919: 2880: 2778: 2730: 2691: 2555:= 0. As an operator, 2333:| ≀ 1 (in some units) 2105:orthogonal complement 2086:set of quantum states 1912: 1799:self-adjoint operator 1777: 1736: 1673:sequentially complete 1627:de Morgan's laws 1431:orthomodular lattices 1331:mathematical folklore 1317:— Maudlin, 1311: 1270:wavefunction collapse 1189:John von Neumann 1147:uncertainty principle 916:John von Neumann 296:Elitzur–Vaidman 286:Davisson–Germer 103: 5200:Quantum field theory 5129:Quantum metamaterial 5074:Quantum cryptography 4804:Consistent histories 3342:10.5169/seals-113494 3209:Quantum field theory 3119:material conditional 3021: 2984:nonnegative operator 2868: 2680: 2236:lattice homomorphism 2092:(when measured) has 2067:projection operators 1843: 1702: 1661:orthocomplementation 1635:material implication 1631:Boolean conjunctives 1554:real-valued function 1437:If ⊀ = ¬(¬ 1398:∨¬(¬ 1058:= "the particle has 949:material conditional 561:Quantum field theory 473:Consistent histories 110:Schrödinger equation 37: 5608:Non-classical logic 5548:Phased-array optics 5506:Acoustic levitation 5185:Quantum fluctuation 5154:Quantum programming 5114:Quantum logic gates 5099:Quantum information 5079:Quantum electronics 4539:Classical mechanics 4399:Quantum foundations 4221:Is Logic Empirical? 4172:Is Logic Empirical? 4126:J. von Neumann 4031:2009SIAMR..51..239B 3916:1991FoPh...21..727R 3676:1994IJTP...33.1427N 3639:1994IJTP...33..103N 3493:, pp. 428–429. 3362:Commun. Math. Phys. 3214:Quantum probability 3194:Quantum Bayesianism 3155:discrete spacetimes 3135:quantum filtrations 2423:measurement outcome 1939:with eigenvalue in 1804:on a Hilbert space 1623:propositional logic 1530:classical mechanics 1352:Algebraic structure 1274:quantum measurement 1201:yes-or-no questions 941:Is Logic Empirical? 896:quantum foundations 349:Stern–Gerlach 146:Classical mechanics 5598:Mathematical logic 5238:in popular culture 5020:Quantum algorithms 4868:Von Neumann–Wigner 4848:Objective collapse 4544:Old quantum theory 4382:N. Papanikolaou, " 4276:Wilce, Alexander. 4183:Orthomodular Logic 3924:10.1007/BF00733278 3844:Baltag et al. 2014 3684:10.1007/bf00670687 3647:10.1007/BF00671616 3600:. Nouvelle SĂ©rie. 3598:Logique et Analyse 3469:, p. 159-161. 3443:Bacciagaluppi 2009 3189:Multi-valued logic 3060: 2965: 2773: 2612:Mackey observables 2061:Standard semantics 1907: 1797:) densely defined 1772: 1514:finite-dimensional 1272:in the problem of 1255:, the philosopher 1253:general relativity 1032:where the symbols 537:Von Neumann–Wigner 517:Objective-collapse 316:Mach–Zehnder 306:Leggett inequality 301:Franck–Hertz 151:Old quantum theory 98: 5613:Quantum mechanics 5585: 5584: 5561: 5560: 5368:complexity theory 5353:cellular automata 5281: 5280: 5255:Quantum mysticism 5233:Schrödinger's cat 5164:Quantum simulator 5134:Quantum metrology 5062:Quantum computing 5025:Quantum amplifier 5002:Quantum spacetime 4967:Quantum cosmology 4957:Quantum chemistry 4657:Scattering theory 4605:Zero-point energy 4600:Degenerate levels 4508:Quantum mechanics 4442:978-3-642-70029-3 4112:available at the 4039:10.1137/060671504 3871:978-94-010-2656-7 3356:GĂŒnther Ludwig, " 3199:Quantum cognition 3112:deduction theorem 2826:Gleason's theorem 2355:square-integrable 2351:Fourier transform 2182:The structure of 2078:pre-Hilbert space 2031:is a subspace of 1770: 1696:least upper bound 1490:proof theory 1478:natural deduction 1342:quantum computing 1278:Gleason's theorem 1262:David Finkelstein 884: 883: 591:Scattering theory 571:Quantum computing 344:Schrödinger's cat 276:Bell's inequality 84: 59: 28:Quantum mechanics 5620: 5573: 5572: 5450:machine learning 5425:key distribution 5410:image processing 5400:error correction 5326: 5325: 5308: 5301: 5294: 5285: 5284: 5271: 5270: 4982:Quantum geometry 4977:Quantum dynamics 4834:Superdeterminism 4766:Rarita–Schwinger 4715:Matrix mechanics 4570:Bra–ket notation 4501: 4494: 4487: 4478: 4477: 4473: 4461: 4447: 4428:GĂŒnther Ludwig, 4419:GĂŒnther Ludwig, 4412:GĂŒnther Ludwig, 4379: 4366: 4364:quant-ph/0305029 4350: 4348:quant-ph/0101028 4331: 4318: 4291: 4282:Zalta, Edward N. 4272: 4257: 4228: 4208: 4197: 4186: 4175: 4163: 4145: 4117: 4114:Internet Archive 4083:Historical works 4072: 4057: 4051: 4050: 4024: 4004: 3998: 3995: 3977: 3956: 3942: 3936: 3935: 3901: 3892: 3886: 3880: 3874: 3853: 3847: 3841: 3835: 3829: 3823: 3799:Vaughan Pratt, " 3797: 3788: 3783:. Reprinted in 3770: 3764: 3738: 3732: 3731: 3729: 3715: 3704: 3698: 3695: 3670:(7): 1427–1443. 3658: 3620: 3614: 3613: 3593: 3587: 3578: 3572: 3566: 3557: 3551: 3545: 3531: 3525: 3519: 3506: 3500: 3494: 3488: 3482: 3476: 3470: 3464: 3458: 3452: 3446: 3440: 3431: 3430: 3422: 3416: 3410: 3401: 3395: 3389: 3383: 3372: 3331: 3325: 3319: 3313: 3307: 3301: 3295: 3289: 3280: 3264: 3246: 3219:Quasi-set theory 3069: 3067: 3066: 3061: 2982: — a 2974: 2972: 2971: 2966: 2958: 2957: 2938: 2933: 2915: 2911: 2910: 2909: 2899: 2894: 2802:Spectral theorem 2782: 2780: 2779: 2774: 2766: 2765: 2749: 2744: 2726: 2722: 2721: 2720: 2710: 2705: 2543:=0). Meanwhile, 2525:corresponds to | 2318:and momentum by 2227:More generally, 2190:, the equations 2096:1. From there, 1950: 1916: 1914: 1913: 1908: 1872: 1871: 1870: 1781: 1779: 1778: 1773: 1771: 1768: 1766: 1765: 1755: 1750: 1726: 1725: 1655: 1642:infinitary logic 1608:pointwise limits 1590:"Measurement of 1528:formulations of 1482:sequent calculus 1335:categorification 1324: 1266:hidden variables 1249:Hans Reichenbach 1242:Constantin Piron 1234:linear subspaces 1095: 1085: 1075: 1073: 1072: 1068: 1062:in the interval 995:distributive law 960:distributive law 912:Garrett Birkhoff 876: 869: 862: 503:Superdeterminism 156:Bra–ket notation 107: 105: 104: 99: 91: 86: 85: 77: 65: 60: 58: 47: 19: 18: 5628: 5627: 5623: 5622: 5621: 5619: 5618: 5617: 5588: 5587: 5586: 5581: 5557: 5494: 5405:finite automata 5317: 5312: 5282: 5277: 5259: 5245:Wigner's friend 5221: 5212:Quantum gravity 5173: 5159:Quantum sensing 5139:Quantum network 5119:Quantum machine 5089:Quantum imaging 5052:Quantum circuit 5047:Quantum channel 5006: 4952:Quantum biology 4938: 4914:Elitzur–Vaidman 4889:Davisson–Germer 4872: 4824:Hidden-variable 4814:de Broglie–Bohm 4791:Interpretations 4785: 4734: 4688: 4575:Complementarity 4553: 4510: 4505: 4401: 4388:ACM SIGACT News 4370:Norman Megill, 4360:Trends in Logic 4298: 4215: 4142:10.2307/1968621 4085: 4080: 4075: 4058: 4054: 4005: 4001: 3959: 3946: 3943: 3939: 3899: 3893: 3889: 3881: 3877: 3854: 3850: 3842: 3838: 3830: 3826: 3798: 3791: 3771: 3767: 3739: 3735: 3713: 3705: 3701: 3661: 3624: 3621: 3617: 3604:(99): 221–248. 3594: 3590: 3579: 3575: 3567: 3560: 3552: 3548: 3532: 3528: 3520: 3509: 3501: 3497: 3489: 3485: 3477: 3473: 3465: 3461: 3453: 3449: 3441: 3434: 3423: 3419: 3411: 3404: 3396: 3392: 3384: 3375: 3332: 3328: 3320: 3316: 3308: 3304: 3296: 3292: 3281: 3277: 3273: 3268: 3267: 3256:feasible. See 3247: 3243: 3238: 3233: 3224:SolĂšr's theorem 3163: 3131:Boolean algebra 3107: 3085: 3022: 3019: 3018: 2953: 2949: 2934: 2923: 2905: 2901: 2895: 2884: 2879: 2875: 2869: 2866: 2865: 2856: 2850: 2832: 2824:Main articles: 2822: 2761: 2757: 2745: 2734: 2716: 2712: 2706: 2695: 2690: 2686: 2681: 2678: 2677: 2668: 2662: 2649: 2643: 2614: 2609: 2602: 2594: 2590: 2583: 2579: 2573:, and nonzero | 2572: 2565: 2554: 2542: 2535: 2531: 2512: 2508: 2501: 2497: 2471: 2464: 2460: 2445: 2438: 2389:are false, so ( 2359:compact support 2277: 2180: 2063: 2052: 2046: 2037: 2030: 2023: 2016: 2006:of elements of 2005: 1999: 1955:Measurement of 1940: 1866: 1865: 1861: 1844: 1841: 1840: 1787: 1767: 1761: 1757: 1751: 1740: 1721: 1717: 1703: 1700: 1699: 1693: 1683: 1654: 1652: 1644: 1612:Boolean algebra 1522: 1506:spectral theory 1502: 1445:)∨¬( 1354: 1325: 1316: 1315: 1291:classical logic 1240:Hilbert space, 1179: 1093: 1084:[−1, 1] 1083: 1070: 1066: 1065: 1063: 988:classical logic 984: 945:epistemological 920:Boolean algebra 880: 851: 850: 849: 614: 606: 605: 551: 550:Advanced topics 543: 542: 541: 493:Hidden-variable 483:de Broglie–Bohm 462: 460:Interpretations 452: 451: 450: 420: 412: 411: 410: 368: 360: 359: 358: 325: 281:CHSH inequality 270: 262: 261: 260: 189:Complementarity 183: 175: 174: 173: 141: 112: 87: 76: 75: 61: 51: 46: 38: 35: 34: 17: 12: 11: 5: 5626: 5616: 5615: 5610: 5605: 5600: 5583: 5582: 5580: 5579: 5566: 5563: 5562: 5559: 5558: 5556: 5555: 5550: 5545: 5540: 5535: 5534: 5533: 5523: 5518: 5513: 5508: 5502: 5500: 5496: 5495: 5493: 5492: 5487: 5482: 5477: 5472: 5467: 5465:neural network 5462: 5457: 5452: 5447: 5442: 5437: 5432: 5427: 5422: 5417: 5412: 5407: 5402: 5397: 5392: 5387: 5386: 5385: 5375: 5370: 5365: 5360: 5355: 5350: 5345: 5340: 5334: 5332: 5323: 5319: 5318: 5311: 5310: 5303: 5296: 5288: 5279: 5278: 5276: 5275: 5264: 5261: 5260: 5258: 5257: 5252: 5247: 5242: 5241: 5240: 5229: 5227: 5223: 5222: 5220: 5219: 5214: 5209: 5208: 5207: 5197: 5192: 5190:Casimir effect 5187: 5181: 5179: 5175: 5174: 5172: 5171: 5166: 5161: 5156: 5151: 5149:Quantum optics 5146: 5141: 5136: 5131: 5126: 5121: 5116: 5111: 5106: 5101: 5096: 5091: 5086: 5081: 5076: 5071: 5070: 5069: 5059: 5054: 5049: 5044: 5043: 5042: 5032: 5027: 5022: 5016: 5014: 5008: 5007: 5005: 5004: 4999: 4994: 4989: 4984: 4979: 4974: 4969: 4964: 4959: 4954: 4948: 4946: 4940: 4939: 4937: 4936: 4931: 4926: 4924:Quantum eraser 4921: 4916: 4911: 4906: 4901: 4896: 4891: 4886: 4880: 4878: 4874: 4873: 4871: 4870: 4865: 4860: 4855: 4850: 4845: 4840: 4839: 4838: 4837: 4836: 4821: 4816: 4811: 4806: 4801: 4795: 4793: 4787: 4786: 4784: 4783: 4778: 4773: 4768: 4763: 4758: 4753: 4748: 4742: 4740: 4736: 4735: 4733: 4732: 4727: 4722: 4717: 4712: 4707: 4702: 4696: 4694: 4690: 4689: 4687: 4686: 4685: 4684: 4679: 4669: 4664: 4659: 4654: 4649: 4644: 4639: 4634: 4629: 4624: 4619: 4614: 4609: 4608: 4607: 4602: 4597: 4592: 4582: 4580:Density matrix 4577: 4572: 4567: 4561: 4559: 4555: 4554: 4552: 4551: 4546: 4541: 4536: 4535: 4534: 4524: 4518: 4516: 4512: 4511: 4504: 4503: 4496: 4489: 4481: 4475: 4474: 4462: 4448: 4446: 4445: 4426: 4409: 4400: 4397: 4396: 4395: 4380: 4367: 4351: 4340:Quantum Logics 4332: 4319: 4297: 4294: 4293: 4292: 4273: 4258: 4229: 4214: 4211: 4210: 4209: 4198: 4187: 4176: 4164: 4146: 4118: 4092: 4091: 4084: 4081: 4079: 4076: 4074: 4073: 4052: 4015:(2): 239–316. 3999: 3997: 3996: 3968:(2): 171–201. 3957: 3951:(in Russian). 3937: 3910:(6): 727–734. 3887: 3875: 3848: 3836: 3824: 3789: 3765: 3733: 3727:10.1.1.88.9045 3699: 3697: 3696: 3659: 3633:(1): 103–113. 3615: 3588: 3573: 3558: 3546: 3526: 3507: 3505:, p. 174. 3495: 3483: 3471: 3459: 3447: 3432: 3417: 3402: 3390: 3373: 3371: 3370: 3365: 3352: 3351: 3345: 3326: 3314: 3302: 3290: 3274: 3272: 3269: 3266: 3265: 3240: 3239: 3237: 3234: 3232: 3231: 3226: 3221: 3216: 3211: 3206: 3201: 3196: 3191: 3186: 3181: 3176: 3170: 3164: 3162: 3159: 3147:deep inference 3106: 3103: 3084: 3081: 3080: 3079: 3059: 3056: 3053: 3050: 3047: 3044: 3041: 3038: 3035: 3032: 3029: 3026: 2990:1. Formally, 2980:density matrix 2976: 2975: 2964: 2961: 2956: 2952: 2948: 2945: 2942: 2937: 2932: 2929: 2926: 2922: 2918: 2914: 2908: 2904: 2898: 2893: 2890: 2887: 2883: 2878: 2873: 2852: 2846: 2821: 2818: 2784: 2783: 2772: 2769: 2764: 2760: 2756: 2753: 2748: 2743: 2740: 2737: 2733: 2729: 2725: 2719: 2715: 2709: 2704: 2701: 2698: 2694: 2689: 2685: 2664: 2658: 2645: 2639: 2613: 2610: 2608: 2605: 2600: 2592: 2588: 2581: 2577: 2570: 2563: 2552: 2540: 2533: 2529: 2510: 2506: 2499: 2495: 2469: 2462: 2458: 2443: 2436: 2381:and similarly 2347: 2346: 2340: 2334: 2276: 2273: 2272: 2271: 2214: 2213: 2203: 2179: 2176: 2168: 2167: 2138: 2120: 2062: 2059: 2048: 2042: 2035: 2028: 2021: 2014: 2001: 1995: 1985: 1984: 1961: 1960: 1906: 1903: 1900: 1897: 1894: 1891: 1888: 1884: 1881: 1878: 1875: 1869: 1864: 1860: 1857: 1854: 1851: 1848: 1826:Borel function 1786: 1783: 1764: 1760: 1754: 1749: 1746: 1743: 1739: 1735: 1732: 1729: 1724: 1720: 1716: 1713: 1710: 1707: 1685: 1679: 1650: 1648: 1604: 1603: 1521: 1518: 1501: 1498: 1463: 1462: 1412: 1411: 1393: 1378: 1367: 1363:= ¬¬ 1353: 1350: 1312: 1178: 1175: 1174: 1173: 1120: 1119: 1098: 1097: 1094:[1, 3] 1087: 1077: 1030: 1029: 983: 980: 908:quantum theory 882: 881: 879: 878: 871: 864: 856: 853: 852: 848: 847: 842: 837: 832: 827: 822: 817: 812: 807: 802: 797: 792: 787: 782: 777: 772: 767: 762: 757: 752: 747: 742: 737: 732: 727: 722: 717: 712: 707: 702: 697: 692: 687: 682: 677: 672: 667: 662: 657: 652: 647: 642: 637: 632: 627: 622: 616: 615: 612: 611: 608: 607: 604: 603: 598: 593: 588: 586:Density matrix 583: 578: 573: 568: 563: 558: 552: 549: 548: 545: 544: 540: 539: 534: 529: 524: 519: 514: 509: 508: 507: 506: 505: 490: 485: 480: 475: 470: 464: 463: 458: 457: 454: 453: 449: 448: 443: 438: 433: 428: 422: 421: 418: 417: 414: 413: 409: 408: 403: 398: 393: 388: 383: 377: 376: 375: 369: 366: 365: 362: 361: 357: 356: 351: 346: 340: 339: 338: 337: 336: 334:Delayed-choice 329:Quantum eraser 324: 323: 318: 313: 308: 303: 298: 293: 288: 283: 278: 272: 271: 268: 267: 264: 263: 259: 258: 257: 256: 246: 241: 236: 231: 226: 221: 219:Quantum number 216: 211: 206: 201: 196: 191: 185: 184: 181: 180: 177: 176: 172: 171: 166: 160: 159: 158: 153: 148: 142: 139: 138: 135: 134: 133: 132: 127: 122: 114: 113: 108: 97: 94: 90: 83: 80: 74: 71: 68: 64: 57: 54: 50: 45: 42: 31: 30: 24: 23: 15: 9: 6: 4: 3: 2: 5625: 5614: 5611: 5609: 5606: 5604: 5601: 5599: 5596: 5595: 5593: 5578: 5577: 5568: 5567: 5564: 5554: 5551: 5549: 5546: 5544: 5541: 5539: 5536: 5532: 5531:Plasma window 5529: 5528: 5527: 5524: 5522: 5519: 5517: 5514: 5512: 5509: 5507: 5504: 5503: 5501: 5497: 5491: 5490:teleportation 5488: 5486: 5483: 5481: 5478: 5476: 5473: 5471: 5468: 5466: 5463: 5461: 5458: 5456: 5453: 5451: 5448: 5446: 5443: 5441: 5438: 5436: 5433: 5431: 5428: 5426: 5423: 5421: 5418: 5416: 5413: 5411: 5408: 5406: 5403: 5401: 5398: 5396: 5393: 5391: 5388: 5384: 5381: 5380: 5379: 5376: 5374: 5371: 5369: 5366: 5364: 5361: 5359: 5356: 5354: 5351: 5349: 5346: 5344: 5341: 5339: 5336: 5335: 5333: 5331: 5327: 5324: 5320: 5316: 5309: 5304: 5302: 5297: 5295: 5290: 5289: 5286: 5274: 5266: 5265: 5262: 5256: 5253: 5251: 5248: 5246: 5243: 5239: 5236: 5235: 5234: 5231: 5230: 5228: 5224: 5218: 5215: 5213: 5210: 5206: 5203: 5202: 5201: 5198: 5196: 5193: 5191: 5188: 5186: 5183: 5182: 5180: 5176: 5170: 5167: 5165: 5162: 5160: 5157: 5155: 5152: 5150: 5147: 5145: 5142: 5140: 5137: 5135: 5132: 5130: 5127: 5125: 5122: 5120: 5117: 5115: 5112: 5110: 5109:Quantum logic 5107: 5105: 5102: 5100: 5097: 5095: 5092: 5090: 5087: 5085: 5082: 5080: 5077: 5075: 5072: 5068: 5065: 5064: 5063: 5060: 5058: 5055: 5053: 5050: 5048: 5045: 5041: 5038: 5037: 5036: 5033: 5031: 5028: 5026: 5023: 5021: 5018: 5017: 5015: 5013: 5009: 5003: 5000: 4998: 4995: 4993: 4990: 4988: 4985: 4983: 4980: 4978: 4975: 4973: 4970: 4968: 4965: 4963: 4962:Quantum chaos 4960: 4958: 4955: 4953: 4950: 4949: 4947: 4945: 4941: 4935: 4932: 4930: 4929:Stern–Gerlach 4927: 4925: 4922: 4920: 4917: 4915: 4912: 4910: 4907: 4905: 4902: 4900: 4897: 4895: 4892: 4890: 4887: 4885: 4882: 4881: 4879: 4875: 4869: 4866: 4864: 4863:Transactional 4861: 4859: 4856: 4854: 4853:Quantum logic 4851: 4849: 4846: 4844: 4841: 4835: 4832: 4831: 4830: 4827: 4826: 4825: 4822: 4820: 4817: 4815: 4812: 4810: 4807: 4805: 4802: 4800: 4797: 4796: 4794: 4792: 4788: 4782: 4779: 4777: 4774: 4772: 4769: 4767: 4764: 4762: 4759: 4757: 4754: 4752: 4749: 4747: 4744: 4743: 4741: 4737: 4731: 4728: 4726: 4723: 4721: 4718: 4716: 4713: 4711: 4708: 4706: 4703: 4701: 4698: 4697: 4695: 4691: 4683: 4680: 4678: 4675: 4674: 4673: 4672:Wave function 4670: 4668: 4665: 4663: 4660: 4658: 4655: 4653: 4650: 4648: 4647:Superposition 4645: 4643: 4642:Quantum state 4640: 4638: 4635: 4633: 4630: 4628: 4625: 4623: 4620: 4618: 4615: 4613: 4610: 4606: 4603: 4601: 4598: 4596: 4595:Excited state 4593: 4591: 4588: 4587: 4586: 4583: 4581: 4578: 4576: 4573: 4571: 4568: 4566: 4563: 4562: 4560: 4556: 4550: 4547: 4545: 4542: 4540: 4537: 4533: 4530: 4529: 4528: 4525: 4523: 4520: 4519: 4517: 4513: 4509: 4502: 4497: 4495: 4490: 4488: 4483: 4482: 4479: 4471: 4467: 4463: 4460: 4458: 4453: 4452:Quantum Logic 4449: 4443: 4439: 4435: 4431: 4427: 4424: 4423: 4418: 4417: 4415: 4410: 4407: 4403: 4402: 4393: 4389: 4385: 4381: 4377: 4373: 4368: 4365: 4361: 4357: 4352: 4349: 4345: 4341: 4337: 4333: 4329: 4325: 4320: 4317: 4313: 4309: 4305: 4300: 4299: 4289: 4288: 4283: 4279: 4274: 4270: 4269: 4264: 4259: 4255: 4254:9780521012546 4251: 4248: 4244: 4240: 4239: 4238:Hilary Putnam 4234: 4230: 4226: 4222: 4217: 4216: 4206: 4203: 4199: 4195: 4192: 4188: 4184: 4181: 4177: 4173: 4169: 4165: 4161: 4157: 4156: 4151: 4147: 4143: 4139: 4135: 4131: 4127: 4123: 4119: 4115: 4111: 4107: 4103: 4099: 4094: 4093: 4090: 4087: 4086: 4070: 4066: 4062: 4056: 4048: 4044: 4040: 4036: 4032: 4028: 4023: 4018: 4014: 4010: 4003: 3993: 3989: 3985: 3981: 3976: 3971: 3967: 3963: 3958: 3955:(5): 345–360. 3954: 3950: 3945: 3944: 3941: 3933: 3929: 3925: 3921: 3917: 3913: 3909: 3905: 3898: 3891: 3884: 3883:Kalmbach 1981 3879: 3872: 3868: 3864: 3860: 3859: 3852: 3845: 3840: 3833: 3828: 3821: 3817: 3813: 3811: 3806: 3802: 3796: 3794: 3786: 3782: 3778: 3774: 3769: 3762: 3758: 3754: 3750: 3746: 3742: 3737: 3728: 3723: 3719: 3712: 3711: 3703: 3693: 3689: 3685: 3681: 3677: 3673: 3669: 3665: 3660: 3656: 3652: 3648: 3644: 3640: 3636: 3632: 3628: 3623: 3622: 3619: 3611: 3607: 3603: 3599: 3592: 3586: 3585:Kalmbach 1983 3582: 3581:Kalmbach 1974 3577: 3570: 3565: 3563: 3555: 3550: 3544:(blog), 2021. 3543: 3539: 3535: 3530: 3523: 3518: 3516: 3514: 3512: 3504: 3499: 3492: 3487: 3480: 3475: 3468: 3463: 3456: 3451: 3444: 3439: 3437: 3428: 3421: 3414: 3409: 3407: 3399: 3394: 3387: 3382: 3380: 3378: 3369: 3366: 3363: 3359: 3355: 3354: 3349: 3346: 3343: 3339: 3335: 3334: 3330: 3323: 3318: 3311: 3306: 3299: 3294: 3287: 3286: 3279: 3275: 3262: 3259: 3255: 3251: 3245: 3241: 3230: 3227: 3225: 3222: 3220: 3217: 3215: 3212: 3210: 3207: 3205: 3202: 3200: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3180: 3177: 3174: 3173:HPO formalism 3171: 3169: 3166: 3165: 3158: 3156: 3152: 3148: 3144: 3140: 3136: 3132: 3128: 3124: 3120: 3115: 3113: 3102: 3099: 3097: 3094: 3090: 3077: 3073: 3054: 3051: 3045: 3042: 3039: 3033: 3027: 3016: 3012: 3008: 3004: 3000: 2996: 2993: 2992: 2991: 2989: 2985: 2981: 2962: 2954: 2950: 2943: 2930: 2927: 2924: 2920: 2916: 2912: 2906: 2902: 2891: 2888: 2885: 2881: 2876: 2864: 2863: 2862: 2860: 2855: 2849: 2845: 2841: 2837: 2831: 2827: 2817: 2815: 2811: 2807: 2803: 2799: 2795: 2793: 2789: 2770: 2762: 2758: 2751: 2741: 2738: 2735: 2731: 2727: 2723: 2717: 2713: 2702: 2699: 2696: 2692: 2687: 2683: 2676: 2675: 2674: 2672: 2667: 2661: 2657: 2653: 2648: 2642: 2638: 2634: 2630: 2626: 2622: 2619: 2604: 2598: 2587: 2576: 2569: 2562: 2558: 2550: 2546: 2539: 2528: 2524: 2520: 2516: 2505: 2494: 2490: 2486: 2482: 2478: 2473: 2468: 2457: 2453: 2449: 2442: 2435: 2430: 2428: 2424: 2420: 2416: 2412: 2408: 2404: 2400: 2396: 2392: 2388: 2384: 2380: 2376: 2372: 2368: 2364: 2360: 2356: 2352: 2344: 2341: 2338: 2335: 2332: 2328: 2325: 2324: 2323: 2321: 2317: 2312: 2310: 2306: 2302: 2298: 2294: 2290: 2286: 2282: 2269: 2265: 2261: 2257: 2253: 2249: 2245: 2244: 2243: 2241: 2237: 2234: 2230: 2225: 2223: 2219: 2212: 2208: 2204: 2201: 2197: 2193: 2192: 2191: 2189: 2185: 2175: 2173: 2172:SolĂšr theorem 2165: 2161: 2158: 2154: 2150: 2146: 2142: 2139: 2136: 2132: 2128: 2124: 2121: 2118: 2114: 2110: 2106: 2102: 2099: 2098: 2097: 2095: 2091: 2087: 2083: 2079: 2075: 2072: 2068: 2058: 2056: 2051: 2045: 2041: 2034: 2027: 2020: 2013: 2009: 2004: 1998: 1994: 1990: 1982: 1978: 1974: 1970: 1969: 1968: 1966: 1958: 1954: 1953: 1952: 1948: 1944: 1938: 1934: 1930: 1926: 1922: 1917: 1904: 1898: 1892: 1886: 1879: 1873: 1862: 1858: 1852: 1846: 1838: 1834: 1830: 1827: 1823: 1819: 1816:, which is a 1815: 1811: 1807: 1803: 1800: 1796: 1792: 1791:Hilbert space 1782: 1762: 1758: 1747: 1744: 1741: 1737: 1733: 1722: 1718: 1708: 1705: 1697: 1692: 1688: 1682: 1678: 1674: 1670: 1666: 1662: 1657: 1647: 1643: 1638: 1636: 1632: 1628: 1624: 1621: 1617: 1616:Borel subsets 1613: 1609: 1601: 1597: 1593: 1589: 1588: 1587: 1585: 1580: 1578: 1574: 1570: 1566: 1562: 1558: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1527: 1517: 1515: 1511: 1507: 1497: 1495: 1491: 1487: 1483: 1479: 1474: 1472: 1468: 1460: 1456: 1452: 1448: 1444: 1441:∨¬ 1440: 1436: 1435: 1434: 1432: 1427: 1425: 1421: 1417: 1409: 1405: 1401: 1397: 1394: 1391: 1387: 1384:∨¬ 1383: 1379: 1376: 1372: 1368: 1366: 1362: 1359: 1358: 1357: 1349: 1347: 1343: 1338: 1336: 1332: 1322: 1321: 1320:Hilary Putnam 1310: 1308: 1304: 1300: 1296: 1292: 1287: 1284: 1279: 1275: 1271: 1267: 1263: 1258: 1257:Hilary Putnam 1254: 1250: 1245: 1243: 1239: 1235: 1232: 1228: 1224: 1220: 1216: 1212: 1211:George Mackey 1208: 1206: 1205:quantum logic 1202: 1198: 1197:Hilbert space 1194: 1190: 1186: 1185: 1172: 1168: 1164: 1160: 1156: 1152: 1151: 1150: 1148: 1144: 1140: 1136: 1132: 1127: 1125: 1124:superposition 1118: 1114: 1110: 1106: 1103: 1102: 1101: 1091: 1088: 1081: 1078: 1061: 1057: 1054: 1053: 1052: 1050: 1045: 1043: 1039: 1035: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 1000: 999: 998: 996: 993: 992:propositional 989: 979: 977: 973: 969: 965: 961: 956: 954: 950: 946: 942: 938: 937:Hilary Putnam 933: 931: 930: 923: 921: 917: 913: 909: 905: 901: 900:quantum logic 897: 893: 889: 877: 872: 870: 865: 863: 858: 857: 855: 854: 846: 843: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 731: 728: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 701: 698: 696: 693: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 617: 610: 609: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 577: 576:Quantum chaos 574: 572: 569: 567: 564: 562: 559: 557: 554: 553: 547: 546: 538: 535: 533: 532:Transactional 530: 528: 525: 523: 522:Quantum logic 520: 518: 515: 513: 510: 504: 501: 500: 499: 496: 495: 494: 491: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 465: 461: 456: 455: 447: 444: 442: 439: 437: 434: 432: 429: 427: 424: 423: 416: 415: 407: 404: 402: 399: 397: 394: 392: 389: 387: 384: 382: 379: 378: 374: 371: 370: 364: 363: 355: 352: 350: 347: 345: 342: 341: 335: 332: 331: 330: 327: 326: 322: 319: 317: 314: 312: 309: 307: 304: 302: 299: 297: 294: 292: 289: 287: 284: 282: 279: 277: 274: 273: 266: 265: 255: 252: 251: 250: 249:Wave function 247: 245: 242: 240: 237: 235: 232: 230: 229:Superposition 227: 225: 222: 220: 217: 215: 212: 210: 207: 205: 202: 200: 197: 195: 192: 190: 187: 186: 179: 178: 170: 167: 165: 162: 161: 157: 154: 152: 149: 147: 144: 143: 137: 136: 131: 128: 126: 123: 121: 118: 117: 116: 115: 111: 78: 72: 55: 52: 48: 40: 33: 32: 29: 26: 25: 21: 20: 5574: 5511:Anti-gravity 5455:metamaterial 5429: 5383:post-quantum 5378:cryptography 5108: 4992:Quantum mind 4904:Franck–Hertz 4852: 4746:Klein–Gordon 4700:Formulations 4693:Formulations 4622:Interference 4612:Entanglement 4590:Ground state 4585:Energy level 4558:Fundamentals 4522:Introduction 4469: 4456: 4429: 4420: 4413: 4405: 4387: 4359: 4343: 4327: 4307: 4285: 4266: 4236: 4224: 4204: 4193: 4182: 4171: 4153: 4133: 4110:1955 edition 4106:j.ctt1wq8zhp 4097: 4088: 4067:. HAL  4060: 4055: 4022:math/0606118 4012: 4008: 4002: 3975:math/0512362 3965: 3961: 3952: 3948: 3940: 3907: 3903: 3890: 3878: 3856: 3851: 3839: 3827: 3819: 3809: 3804: 3784: 3776: 3768: 3760: 3748: 3736: 3709: 3702: 3667: 3663: 3630: 3626: 3618: 3601: 3597: 3591: 3576: 3549: 3541: 3529: 3503:Maudlin 2005 3498: 3486: 3474: 3467:Maudlin 2005 3462: 3450: 3426: 3420: 3393: 3386:Maudlin 2005 3361: 3337: 3329: 3317: 3305: 3293: 3283: 3278: 3263:for details. 3260: 3253: 3244: 3229:Vector logic 3179:Linear logic 3151:linear logic 3149:fragment of 3116: 3108: 3100: 3095: 3089:linear logic 3086: 3075: 3071: 3014: 3006: 3002: 2998: 2994: 2977: 2858: 2853: 2847: 2843: 2839: 2835: 2833: 2813: 2809: 2805: 2797: 2796: 2791: 2785: 2670: 2665: 2659: 2655: 2651: 2646: 2640: 2636: 2632: 2628: 2620: 2615: 2596: 2585: 2574: 2567: 2560: 2556: 2548: 2544: 2537: 2526: 2522: 2518: 2514: 2503: 2492: 2488: 2484: 2480: 2476: 2474: 2466: 2455: 2451: 2447: 2440: 2433: 2431: 2426: 2418: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2373:≄ 0. Thus, 2370: 2367:normalizable 2348: 2342: 2336: 2330: 2326: 2319: 2315: 2313: 2304: 2300: 2296: 2292: 2288: 2284: 2280: 2278: 2267: 2263: 2262:) = ⊀, then 2259: 2255: 2251: 2247: 2239: 2226: 2221: 2217: 2215: 2210: 2206: 2199: 2195: 2187: 2183: 2181: 2169: 2163: 2159: 2152: 2148: 2144: 2140: 2134: 2130: 2126: 2122: 2116: 2112: 2108: 2100: 2089: 2081: 2064: 2049: 2043: 2039: 2032: 2025: 2018: 2011: 2007: 2002: 1996: 1992: 1988: 1986: 1980: 1976: 1972: 1964: 1962: 1956: 1946: 1942: 1936: 1928: 1924: 1920: 1918: 1836: 1832: 1828: 1821: 1809: 1805: 1801: 1788: 1690: 1686: 1680: 1676: 1672: 1668: 1664: 1660: 1658: 1645: 1639: 1605: 1599: 1595: 1591: 1584:propositions 1581: 1576: 1572: 1568: 1564: 1560: 1556: 1549: 1545: 1523: 1503: 1475: 1464: 1458: 1454: 1450: 1446: 1442: 1438: 1428: 1413: 1407: 1403: 1399: 1395: 1389: 1385: 1381: 1364: 1360: 1355: 1339: 1327: 1318: 1294: 1288: 1247:Inspired by 1246: 1222: 1214: 1209: 1204: 1200: 1182: 1180: 1170: 1166: 1162: 1158: 1154: 1142: 1138: 1134: 1130: 1128: 1121: 1116: 1112: 1108: 1104: 1099: 1089: 1079: 1055: 1046: 1041: 1037: 1033: 1031: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 985: 982:Introduction 957: 953:linear logic 934: 927: 924: 904:propositions 899: 894:analysis of 885: 521: 431:Klein–Gordon 367:Formulations 204:Energy level 199:Entanglement 182:Fundamentals 169:Interference 120:Introduction 5526:Force field 5475:programming 5435:logic clock 5420:information 5395:electronics 5250:EPR paradox 5030:Quantum bus 4899:Double-slit 4877:Experiments 4843:Many-worlds 4781:Schrödinger 4730:Phase space 4720:Schrödinger 4710:Interaction 4667:Uncertainty 4637:Nonlocality 4632:Measurement 4627:Decoherence 4617:Hamiltonian 4314:arXiv  4233:Tim Maudlin 4202:G. Kalmbach 4191:G. Kalmbach 4180:G. Kalmbach 4122:G. Birkhoff 4009:SIAM Review 3816:Revision 42 3718:SUNY Albany 3569:Megill 2019 3398:Putnam 1969 3368:Ludwig 1954 3360:" II, 3322:Mackey 1963 3168:Fuzzy logic 3105:Limitations 3093:modal logic 3011:trace class 1538:observables 1526:Hamiltonian 1375:associative 1371:commutative 1369:∨ is 1303:Tim Maudlin 1193:projections 1191:noted that 968:observables 820:von Neumann 805:Schrödinger 581:EPR paradox 512:Many-worlds 446:Schrödinger 401:Schrödinger 396:Phase-space 386:Interaction 291:Double-slit 269:Experiments 244:Uncertainty 214:Nonlocality 209:Measurement 194:Decoherence 164:Hamiltonian 5592:Categories 5440:logic gate 5338:algorithms 5178:Extensions 5012:Technology 4858:Relational 4809:Copenhagen 4705:Heisenberg 4652:Tunnelling 4515:Background 4404:D. Cohen, 4392:cs/0508005 4316:2110.01361 3773:A. Gleason 3753:categories 3542:What's New 3491:Brody 1984 3479:Brody 1984 3348:Piron 1976 3123:connective 3017:such that 2997:. Suppose 2094:eigenvalue 2088:for which 2055:direct sum 1987:The space 1051:is 1) let 815:Sommerfeld 730:Heisenberg 725:Gutzwiller 665:de Broglie 613:Scientists 527:Relational 478:Copenhagen 381:Heisenberg 239:Tunnelling 140:Background 5485:simulator 5373:computing 5343:amplifier 4884:Bell test 4739:Equations 4565:Born rule 4168:H. Putnam 4150:G. Mackey 3932:123383431 3722:CiteSeerX 3692:189850106 3655:123183879 3534:Terry Tao 3271:Citations 3046:⁡ 3028:⁡ 3013:operator 2944:⁡ 2936:∞ 2921:∑ 2897:∞ 2882:⋁ 2752:φ 2747:∞ 2732:∑ 2708:∞ 2693:⋃ 2684:φ 2429:is true. 2417:) equals 2157:superpose 2071:separable 1965:Axiom VII 1899:λ 1893:⁡ 1880:λ 1863:∫ 1795:unbounded 1753:∞ 1738:⋃ 1709:⁡ 1625:(such as 1620:classical 1494:decidable 1238:separable 1064:[0, + 976:formalism 845:Zeilinger 690:Ehrenfest 419:Equations 96:⟩ 93:Ψ 82:^ 70:⟩ 67:Ψ 44:ℏ 5390:dynamics 5273:Category 5067:Timeline 4819:Ensemble 4799:Bayesian 4761:Majorana 4677:Collapse 4549:Glossary 4532:Timeline 4466:C. Piron 4376:Metamath 4069:01092279 4047:10435983 3610:44084050 3353:Ludwig: 3161:See also 3139:Belavkin 3127:monotone 3125:that is 3091:and the 2616:Given a 2450:≀ 0 and 1919:In case 1542:dynamics 1486:tableaux 1388:for any 1060:momentum 892:physical 890:and the 770:Millikan 695:Einstein 680:Davisson 635:Blackett 620:Aharonov 488:Ensemble 468:Bayesian 373:Overview 254:Collapse 234:Symmetry 125:Glossary 5480:sensing 5460:network 5445:machine 5415:imaging 5363:circuit 5358:channel 5330:Quantum 5226:Related 5205:History 4944:Science 4776:Rydberg 4527:History 4454:at the 4378:, 2019. 4284:(ed.). 4140:. DOI 4138:1968621 4078:Sources 4027:Bibcode 3992:3909067 3912:Bibcode 3672:Bibcode 3635:Bibcode 3333:Piron: 3261:et seq. 2995:Theorem 2798:Theorem 2536:=0 and 2345:— x ≄ 0 2339:— x ≀ 0 2209:∧ 2198:∨ 2119:) = 0), 2103:is the 2074:Hilbert 1789:In the 1653:,ω 1471:falsity 1453:) then 1449:∨ 1402:∨ 1307:problem 1227:lattice 1223:defined 1137:" and " 1069:⁄ 886:In the 810:Simmons 800:Rydberg 765:Moseley 745:Kramers 735:Hilbert 720:Glauber 715:Feynman 700:Everett 670:Compton 441:Rydberg 130:History 5470:optics 5322:Fields 4919:Popper 4440:  4358:", in 4342:", in 4252:  4223:", in 4104:  4045:  3990:  3930:  3869:  3803:," in 3724:  3690:  3653:  3608:  3121:; any 2804:). If 2673:) and 2363:entire 2270:) = ⊀. 2024:means 1812:has a 1649:ω 1534:states 1516:case. 1276:, but 1231:closed 1161:) or ( 1020:) or ( 972:states 840:Zeeman 835:Wigner 785:Planck 755:Landau 740:Jordan 391:Matrix 321:Popper 5499:Other 5430:logic 4829:Local 4771:Pauli 4751:Dirac 4280:. In 4102:JSTOR 4043:S2CID 4017:arXiv 3988:S2CID 3970:arXiv 3928:S2CID 3900:(PDF) 3714:(PDF) 3688:S2CID 3651:S2CID 3606:JSTOR 3540:" on 3413:Wilce 3236:Notes 2988:trace 2861:then 2654:, {φ( 2584:and | 2483:) √ ( 2397:) √ ( 2353:of a 2299:) √ ( 2291:) = ( 2233:total 2147:= ÂŹ(ÂŹ 2137:, and 2069:in a 1949:] 1941:[ 1467:truth 1295:logic 1236:of a 1195:on a 1171:false 1107:and ( 1074:] 1012:) = ( 1004:and ( 795:Raman 780:Pauli 775:Onnes 710:Fermi 685:Debye 675:Dirac 640:Bloch 630:Bethe 498:Local 436:Pauli 426:Dirac 224:State 5576:List 4756:Weyl 4438:ISBN 4250:ISBN 4124:and 3867:ISBN 3743:and 3583:and 3145:, a 2828:and 2439:and 2254:and 2205:⊄ = 2194:⊀ = 2162:and 2133:and 2115:, P( 2017:and 1669:join 1667:and 1665:meet 1582:The 1540:and 1524:The 1426:".) 1406:) = 1373:and 1169:) = 1165:and 1157:and 1141:and 1133:and 1117:true 1115:) = 1040:and 1024:and 1016:and 970:and 914:and 830:Wien 825:Weyl 790:Rabi 760:Laue 750:Lamb 705:Fock 660:Bose 655:Born 650:Bohr 645:Bohm 625:Bell 5348:bus 4459:Lab 4436:. 4386:", 4374:at 4326:", 4306:", 4144:. 4132:," 4128:, " 4108:. 4035:doi 3980:doi 3920:doi 3865:. 3812:Lab 3759:," 3680:doi 3643:doi 3536:, " 3254:are 3074:in 3005:on 2986:of 2790:on 2631:to 2502:= | 2409:∧ ( 2361:is 2329:— | 2283:∧ ( 2246:if 2202:and 2107:of 2076:or 1935:of 1831:on 1808:. 1706:LUB 1614:of 1508:of 1484:or 1473:.) 1424:and 1416:not 1268:or 1229:of 1111:or 1008:or 997:: 5594:: 4468:, 4265:. 4241:; 4170:, 4152:, 4041:. 4033:. 4025:. 4013:51 4011:. 3986:. 3978:. 3966:42 3964:. 3926:. 3918:. 3908:21 3906:. 3902:. 3814:, 3792:^ 3720:. 3686:. 3678:. 3668:33 3666:. 3649:. 3641:. 3631:33 3629:. 3602:25 3561:^ 3510:^ 3435:^ 3405:^ 3376:^ 3157:. 3143:BV 3114:. 3043:Tr 2834:A 2816:. 2794:. 2663:)} 2601:≄1 2599:|↟ 2593:≄1 2591:|↟ 2582:≄1 2580:|↟ 2566:+ 2559:= 2553:≄1 2551:|↟ 2534:≄1 2532:|↟ 2521:∧ 2511:≄1 2509:|↟ 2500:≄1 2498:|↟ 2487:∧ 2479:∧ 2463:≄1 2461:|↟ 2413:√ 2401:∧ 2393:∧ 2385:∧ 2377:∧ 2303:∧ 2295:∧ 2287:√ 2151:∧ 2101:ÂŹp 2057:. 1967:: 1656:. 1637:. 1602:." 1598:, 1579:. 1536:, 1496:. 1480:, 1457:= 1420:or 1187:, 1036:, 1028:), 932:. 898:, 5307:e 5300:t 5293:v 4500:e 4493:t 4486:v 4457:n 4444:. 4394:. 4290:. 4271:. 4256:. 4162:. 4116:. 4071:. 4049:. 4037:: 4029:: 4019:: 3994:. 3982:: 3972:: 3953:7 3934:. 3922:: 3914:: 3885:. 3873:. 3846:. 3834:. 3810:n 3730:. 3694:. 3682:: 3674:: 3657:. 3645:: 3637:: 3612:. 3571:. 3556:. 3524:. 3481:. 3445:. 3415:. 3400:. 3388:. 3350:. 3344:. 3324:. 3312:. 3300:. 3096:B 3078:. 3076:Q 3072:E 3058:) 3055:E 3052:S 3049:( 3040:= 3037:) 3034:E 3031:( 3025:P 3015:S 3007:Q 3003:P 2999:Q 2963:. 2960:) 2955:i 2951:E 2947:( 2941:P 2931:1 2928:= 2925:i 2917:= 2913:) 2907:i 2903:E 2892:1 2889:= 2886:i 2877:( 2872:P 2859:Q 2854:i 2851:} 2848:i 2844:E 2840:Q 2814:H 2810:H 2806:Q 2800:( 2792:R 2771:. 2768:) 2763:i 2759:S 2755:( 2742:1 2739:= 2736:i 2728:= 2724:) 2718:i 2714:S 2703:1 2700:= 2697:i 2688:( 2671:Q 2666:i 2660:i 2656:S 2652:R 2647:i 2644:} 2641:i 2637:S 2633:Q 2629:R 2621:Q 2597:p 2589:2 2586:p 2578:1 2575:p 2571:2 2568:p 2564:1 2561:p 2557:p 2549:p 2545:a 2541:2 2538:p 2530:1 2527:p 2523:b 2519:a 2515:p 2507:2 2504:p 2496:1 2493:p 2489:c 2485:a 2481:b 2477:a 2475:( 2470:i 2467:p 2459:i 2456:p 2452:x 2448:x 2444:2 2441:p 2437:1 2434:p 2427:a 2419:a 2415:c 2411:b 2407:a 2403:c 2399:a 2395:b 2391:a 2387:c 2383:a 2379:b 2375:a 2371:x 2343:c 2337:b 2331:p 2327:a 2320:p 2316:x 2305:c 2301:a 2297:b 2293:a 2289:c 2285:b 2281:a 2268:b 2266:( 2264:q 2260:a 2258:( 2256:q 2252:b 2250:≀ 2248:a 2240:q 2222:p 2218:p 2211:q 2207:p 2200:q 2196:p 2188:p 2184:Q 2166:. 2164:q 2160:p 2153:q 2149:p 2145:q 2143:√ 2141:p 2135:q 2131:p 2127:q 2125:∧ 2123:p 2117:p 2113:p 2109:p 2090:p 2082:p 2050:i 2047:} 2044:i 2040:V 2036:1 2033:W 2029:2 2026:W 2022:2 2019:W 2015:1 2012:W 2008:Q 2003:i 2000:} 1997:i 1993:V 1989:Q 1983:. 1981:V 1977:V 1973:H 1957:A 1947:b 1945:, 1943:a 1937:A 1929:A 1927:( 1925:f 1921:f 1905:. 1902:) 1896:( 1890:E 1887:d 1883:) 1877:( 1874:f 1868:R 1859:= 1856:) 1853:A 1850:( 1847:f 1837:f 1833:R 1829:f 1822:R 1810:A 1806:H 1802:A 1769:. 1763:i 1759:E 1748:1 1745:= 1742:i 1734:= 1731:) 1728:} 1723:i 1719:E 1715:{ 1712:( 1691:N 1689:∈ 1687:i 1684:} 1681:i 1677:E 1651:1 1646:L 1600:b 1596:a 1592:f 1577:f 1573:x 1569:f 1565:x 1563:( 1561:f 1557:f 1550:R 1546:R 1461:. 1459:b 1455:a 1451:b 1447:a 1443:b 1439:a 1410:. 1408:a 1404:b 1400:a 1396:a 1392:. 1390:b 1386:b 1382:b 1377:. 1365:a 1361:a 1167:r 1163:p 1159:q 1155:p 1153:( 1143:r 1139:p 1135:q 1131:p 1113:r 1109:q 1105:p 1096:" 1090:r 1086:" 1080:q 1076:" 1071:6 1067:1 1056:p 1042:r 1038:q 1034:p 1026:r 1022:p 1018:q 1014:p 1010:r 1006:q 1002:p 875:e 868:t 861:v 89:| 79:H 73:= 63:| 56:t 53:d 49:d 41:i

Index

Quantum mechanics
Schrödinger equation
Introduction
Glossary
History
Classical mechanics
Old quantum theory
Bra–ket notation
Hamiltonian
Interference
Complementarity
Decoherence
Entanglement
Energy level
Measurement
Nonlocality
Quantum number
State
Superposition
Symmetry
Tunnelling
Uncertainty
Wave function
Collapse
Bell's inequality
CHSH inequality
Davisson–Germer
Double-slit
Elitzur–Vaidman
Franck–Hertz

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑