Knowledge

Recombination-activating gene

Source 📝

675:
monomer with non-specific protein-DNA interactions. The coding end is highly distorted with one base flipped out from the DNA duplex in the active center, which facilitates the hairpin formation by a potential two-metal ion catalytic mechanism. The 12-RSS and 23-RSS intermediates are highly bent and asymmetrically bound to the synaptic RAG complex with the nonamer binding domain dimer tilts towards the nonamer of the 12-RSS but away from the nonamer of the 23-RSS, which emphasizes the 12/23 rule. Two HMGB1 molecules bind at each side of 12-RSS and 23-RSS to stabilize the highly bent RSSs. These structures elaborate the molecular mechanisms for DNA recognition, catalysis and the unique synapsis underlying the 12/23 rule, provide new insights into the RAG-associated human diseases, and represent a most complete set of complexes in the catalytic pathways of any DDE family recombinases, transposases or integrases.
572:(foreign proteins and carbohydrates) without attacking the body itself. The human genome has at most 30,000 genes, and yet it generates millions of different antibodies, which allows it to be able to respond to invasion from millions of different antigens. The immune system generates this diversity of antibodies by shuffling, cutting and recombining a few hundred genes (the VDJ genes) to create millions of permutations, in a process called 689: 622:. RAG-1 was shown to inefficiently induce recombination activity of the VDJ genes when isolated and transfected into fibroblast samples. When RAG-1 was cotransfected with RAG-2, recombination frequency increased by a 1000-fold. This finding has fostered the newly revised theory that RAG genes may not only assist in VDJ recombination, but rather, directly induce the recombinations of the VDJ genes. 837:
RAG1/2-like pair may have been present in its current form in most metazoan lineages and was lost in the jawless vertebrate and urochordate lineages. There is no evidence that the V(D)J recombination system arose earlier than the vertebrate lineage. It is currently hypothesized that the invasion of RAG1/2 is the most important evolutionary event in terms of shaping the gnathostome
772:(a moth). The terminal inverted repeats (TIR) in lancelet ProtoRAG have a heptamer-spacer-nonamer structure similar to that of RSS, but the moth ProtoRAG lacks a nonamer. The nonamer-binding regions and the nonamer sequences of lancelet ProtoRAG and animal RAG are different enough to not recognize each other. The structure of the lancelet protoRAG has been solved ( 854:
would provide the genetic raw material for the development of the adaptive immune system, and the development of endothelial tissue, greater metabolic activity, and a decreased blood volume-to-body weight ratio, all of which are more specialized in vertebrates than invertebrates and facilitate adaptive immune responses.
836:
is due to horizontal gene transfer or gene loss in certain phylogenetic groups due to conventional vertical transmission. Recent analysis has shown the RAG phylogeny to be gradual and directional, suggesting an evolutionary path that relies on vertical transmission. This hypothesis suggests that the
674:
of the 12-RSS and 23-RSS intermediates with base specific interactions in the heptamer of the signal end. The first base of the heptamer in the signal end is flipped out to avoid the clash in the active center. Each coding end of the nicked-RSS intermediate is stabilized exclusively by one RAG1-RAG2
617:
The RAG proteins initiate V(D)J recombination, which is essential for the maturation of pre-B and pre-T cells. Activated mature B cells also possess two other remarkable, RAG-independent phenomena of manipulating their own DNA: so-called class-switch recombination (AKA isotype switching) and somatic
853:
It is still unclear what forces led to the development of a RAG1/2-mediated immune system exclusively in jawed vertebrates and not in any invertebrate species that also acquired the RAG1/2-containing transposon. Current hypotheses include two whole-genome duplication events in vertebrates, which
669:
structures of the synaptic RAG complexes reveal a closed dimer conformation with generation of new intermolecular interactions between two RAG1-RAG2 monomers upon DNA binding, compared to the Apo-RAG complex which constitutes as an open conformation. Both RAG1 molecules in the closed dimer are
594:(RSS). They do this in two steps. They initially introduce a ‘nick’ in the 5' (upstream) end of the RSS heptamer (a conserved region of 7 nucleotides) that is adjacent to the coding sequence, leaving behind a specific biochemical structure on this region of DNA: a 3'- 634:
and mouse RAG-2 contains 527 amino acids. The enzymatic activity of the RAG proteins is concentrated largely in a core region; Residues 384–1008 of RAG-1 and residues 1–387 of RAG-2 retain most of the DNA cleavage activity. The RAG-1 core contains three
655:, the major active site for DNA cleavage. These residues are critical for nicking the DNA strand and for forming the DNA hairpin. Residues 384–454 of RAG-1 comprise a nonamer-binding region (NBR) that specifically binds the conserved nonamer (9 831:
family transposon invaded multiple times in non-vertebrate species, and invaded the ancestral jawed vertebrate genome about 500 MYA. It is hypothesized that the absence of RAG-like genes in jawless vertebrates and
737:
family members include an N-terminal sequence found in RAG1 suggesting the N-terminal of RAG1 came from a separate element. The N-terminal region of RAG1 has been found in the transposable element
576:. RAG-1 and RAG-2 are proteins at the ends of VDJ genes that separate, shuffle, and rejoin the VDJ genes. This shuffling takes place inside B cells and T cells during their maturation. 785:
Although the transposon origins of these genes are well-established, there is still no consensus on when the ancestral RAG1/2 locus became present in the vertebrate genome. Because
1342:
Morales Poole JR, Huang SF, Xu A, Bayet J, Pontarotti P (June 2017). "The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates".
659:) of the RSS and the central domain (amino acids 528–760) of RAG-1 binds specifically to the RSS heptamer. The core region of RAG-2 is predicted to form a six-bladed 484: 375: 610:-group (that is sitting between the RSS and the gene segment on the opposite strand). This produces a 5'-phosphorylated double-stranded break at the RSS and a 1832:
De P, Rodgers KK (Aug 2004). "Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1".
1452:
Kasahara M, Suzuki T, Pasquier LD (Feb 2004). "On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates".
1980: 1293:
Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X, Chen S, Schatz DG, Xu A (June 2016).
182: 41: 986:
Oettinger MA, Schatz DG, Gorka C, Baltimore D (Jun 1990). "RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination".
618:
hypermutation (AKA affinity maturation). Current studies have indicated that RAG-1 and RAG-2 must work in a synergistic manner to activate
614:
closed hairpin at the coding end. The RAG proteins remain at these junctions until other enzymes (notably, TDT) repair the DNA breaks.
747:, which contains the entire RAG1 N-terminal. It is likely that the full RAG1 structure was derived from the recombination between a 544:
during their developmental stages. The enzymes encoded by these genes, RAG-1 and RAG-2, are essential to the generation of mature
1973: 187: 46: 2409: 504: 395: 1395:
Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A, Xiong Y, Schatz DG (May 2019).
206: 65: 606:) group at the RSS end. The next step couples these chemical groups, binding the OH-group (on the coding end) to the PO 1966: 703: 789:(a class of jawless fish) lack a core RAG1 element, it was traditionally assumed that RAG1 invaded after the agnathan/ 2312: 868: 194: 53: 1185:"Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination" 1924:"The Accidental Immune System; Long ago, a wandering piece of DNA—perhaps from a microbe—created a key strategy" 2307: 492: 383: 2250: 798: 591: 842: 793:
split 1001 to 590 million years ago (MYA). However, the core sequence of RAG1 has been identified in the
838: 199: 58: 2136: 1547:
Holland LZ, Albalat R, Azumi K, Benito-Gutiérrez E, Blow MJ, Bronner-Fraser M, et al. (Jul 2008).
488: 379: 1923: 1958: 666: 758:
A transposon with RAG2 arranged next to RAG1 has been identified in the purple sea urchin. Active
2316: 2074: 1652:"Identification of RAG-like transposons in protostomes suggests their ancient bilaterian origin" 2414: 2338: 2056: 1992: 807: 782:​), providing some understanding on what changes lead to the domestication of RAG genes. 553: 2285: 2141: 2119: 630:
As with many enzymes, RAG proteins are fairly large. For example, mouse RAG-1 contains 1040
252: 111: 2419: 2302: 2235: 2146: 2070: 1503: 1408: 1351: 995: 579:
RAG enzymes work as a multi-subunit complex to induce cleavage of a single double stranded
471: 362: 1871:"RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons" 1650:
Martin EC, Vicari C, Tsakou-Ngouafo L, Pontarotti P, Petrescu AJ, Schatz DG (2020-05-06).
1080:"RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons" 276: 256: 135: 115: 8: 2362: 2297: 2280: 2114: 2032: 768: 743: 671: 619: 573: 1507: 1412: 999: 702:
Please expand the section to include this information. Further details may exist on the
524:
that plays important roles in the rearrangement and recombination of the genes encoding
2182: 1946: 1897: 1870: 1857: 1820: 1764: 1737: 1678: 1651: 1622: 1597: 1573: 1548: 1524: 1491: 1429: 1396: 1377: 1319: 1294: 1267: 1240: 1211: 1184: 1155: 1130: 1106: 1079: 1055: 1031:"Molecular Mechanism of V(D)J Recombination from Synaptic RAG1-RAG2 Complex Structures" 1030: 963: 938: 919: 1295:"Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination" 2230: 1996: 1902: 1849: 1845: 1812: 1808: 1769: 1718: 1683: 1627: 1578: 1529: 1469: 1434: 1369: 1324: 1272: 1216: 1160: 1111: 1060: 1011: 968: 911: 907: 774: 479: 370: 1861: 1824: 1598:"Molluscan mobile elements similar to the vertebrate Recombination-Activating Genes" 1381: 1131:"Molluscan mobile elements similar to the vertebrate Recombination-Activating Genes" 923: 433: 324: 2350: 2290: 2262: 2257: 2225: 2212: 2202: 1938: 1892: 1882: 1841: 1804: 1759: 1749: 1710: 1673: 1663: 1617: 1609: 1568: 1560: 1519: 1511: 1461: 1424: 1416: 1361: 1314: 1306: 1262: 1252: 1206: 1196: 1150: 1142: 1101: 1091: 1050: 1042: 1003: 958: 950: 903: 467: 358: 247: 106: 2245: 1887: 1549:"The amphioxus genome illuminates vertebrate origins and cephalochordate biology" 1096: 823:
and protostomes including oysters, mussels, ribbon worms, and the non-bilaterian
811:(Florida lancelet). Sequences with homology to RAG1 have also been identified in 587: 529: 521: 445: 336: 223: 82: 286: 145: 2272: 2217: 2158: 2078: 2051: 1668: 1613: 1496:
Proceedings of the National Academy of Sciences of the United States of America
1310: 1241:"Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon" 1146: 1046: 863: 660: 652: 525: 1754: 1714: 1420: 1365: 1257: 1201: 2403: 2240: 2129: 1955:
A simple explanation of recombination activating gene for the general reader.
1738:"Was the evolutionary road towards adaptive immunity paved with endothelium?" 1465: 1397:"Transposon molecular domestication and the evolution of the RAG recombinase" 1515: 1007: 2207: 2192: 2187: 2124: 2022: 1906: 1853: 1816: 1773: 1722: 1687: 1631: 1582: 1533: 1473: 1438: 1373: 1328: 1276: 1220: 1164: 1115: 1064: 972: 915: 1564: 1015: 790: 724: 723:
Based on core sequence homology, it is believed that RAG1 evolved from a
541: 235: 94: 954: 762:
transposons with both RAG1 and RAG2 ("ProtoRAG") has been discovered in
2330: 2083: 1989: 1950: 892:"The taming of a transposon: V(D)J recombination and the immune system" 794: 656: 631: 565: 230: 89: 778: 2388: 2093: 1988: 786: 599: 1942: 1649: 891: 568:
immune system, each antibody is customized to attack one particular
2378: 2163: 2151: 2109: 2063: 2027: 1792: 1546: 1356: 833: 824: 803: 611: 595: 440: 331: 1490:
Fugmann SD, Messier C, Novack LA, Cameron RA, Rast JP (Mar 2006).
2383: 2197: 2046: 2017: 1793:"Recombination-activating gene proteins: more regulation, please" 1029:
Ru H, Chambers MG, Fu TM, Tong AB, Liao M, Wu H (November 2015).
729: 584: 569: 688: 663:
structure that appears less specific than RAG-1 for its target.
211: 70: 2355: 2343: 2088: 2039: 636: 549: 545: 499: 390: 218: 77: 985: 939:"Human RAG mutations: biochemistry and clinical implications" 552:, two types of lymphocyte that are crucial components of the 1735: 1705:. Hematopoietic cell death/Immunogenetics/Transplantation. 1489: 537: 533: 461: 428: 352: 319: 175: 160: 34: 19: 1492:"An ancient evolutionary origin of the Rag1/2 gene locus" 1341: 1182: 580: 532:
molecules. There are two recombination-activating genes
1701:
Kasahara M (Oct 2007). "The 2R hypothesis: an update".
936: 1451: 937:
Notarangelo LD, Kim MS, Walter JE, Lee YN (Mar 2016).
1736:
van Niekerk G, Davis T, Engelbrecht AM (2015-09-04).
1602:
Biochemical and Biophysical Research Communications
1135:
Biochemical and Biophysical Research Communications
1394: 1292: 1183:Yakovenko I, Agronin J, Smith LC, Oren M (2021). 2401: 1234: 1232: 1230: 1178: 1176: 1174: 1028: 1485: 1483: 1238: 1868: 1645: 1643: 1641: 1288: 1286: 1077: 1974: 1227: 1171: 540:, whose cellular expression is restricted to 1595: 1480: 1128: 889: 1638: 1283: 1981: 1967: 1896: 1886: 1831: 1763: 1753: 1677: 1667: 1621: 1572: 1523: 1428: 1355: 1318: 1266: 1256: 1210: 1200: 1154: 1105: 1095: 1054: 962: 1790: 1700: 885: 883: 2402: 1921: 1239:Kapitonov VV, Koonin EV (2015-04-28). 1022: 598:(OH) group at the coding end and a 5'- 1962: 848: 880: 682: 1078:Kapitonov VV, Jurka J (June 2005). 827:. These findings indicate that the 13: 1869:Kapitonov VV, Jurka J (Jun 2005). 1783: 410:Recombination-activating protein 1 301:Recombination-activating protein 2 14: 2431: 1915: 1846:10.1111/j.0105-2896.2004.00154.x 1809:10.1111/j.0105-2896.2004.00164.x 1596:Panchin Y, Moroz LL (May 2008). 1129:Panchin Y, Moroz LL (May 2008). 908:10.1111/j.0105-2896.2004.00168.x 890:Jones JM, Gellert M (Aug 2004). 869:Severe combined immunodeficiency 687: 1729: 1694: 1589: 1540: 1445: 1388: 1335: 161:recombination-activating gene 2 20:recombination-activating gene 1 2308:Immunoglobulin class switching 1122: 1071: 979: 930: 590:coding segment and a flanking 518:recombination-activating genes 1: 1703:Current Opinion in Immunology 874: 799:Strongylocentrotus purpuratus 592:recombination signal sequence 583:(dsDNA) molecule between the 456:Available protein structures: 347:Available protein structures: 2410:Genes on human chromosome 11 1888:10.1371/journal.pbio.0030181 1097:10.1371/journal.pbio.0030181 843:variable lymphocyte receptor 700:about Specifics in 30971819. 678: 651:) in what is called the DDE 625: 7: 857: 559: 10: 2436: 2137:Polyclonal B cell response 1922:Travis J (November 1998). 1669:10.1186/s13100-020-00214-y 1614:10.1016/j.bbrc.2008.02.097 1311:10.1016/j.cell.2016.05.032 1147:10.1016/j.bbrc.2008.02.097 1047:10.1016/j.cell.2015.10.055 943:Nature Reviews. Immunology 2371: 2329: 2271: 2172: 2102: 2010: 2003: 1755:10.1186/s13062-015-0079-0 1715:10.1016/j.coi.2007.07.009 1421:10.1038/s41586-019-1093-7 1366:10.1007/s00251-017-0979-5 1258:10.1186/s13062-015-0055-8 1202:10.3389/fimmu.2021.709165 802:(purple sea urchin), the 520:(RAGs) encode parts of a 498: 478: 460: 455: 451: 439: 427: 419: 414: 409: 389: 369: 351: 346: 342: 330: 318: 310: 305: 300: 282: 272: 267: 263: 246: 241: 229: 217: 205: 193: 181: 171: 166: 159: 141: 131: 126: 122: 105: 100: 88: 76: 64: 52: 40: 30: 25: 18: 1791:Sadofsky MJ (Aug 2004). 1466:10.1016/j.it.2003.11.005 819:(sea star), the mollusk 667:Cryo-electron microscopy 1516:10.1073/Pnas.0509720103 1189:Frontiers in Immunology 1008:10.1126/science.2360047 766:(Chinese lancelet) and 2251:Tolerance in pregnancy 1993:adaptive immune system 839:adaptive immune system 808:Branchiostoma floridae 698:is missing information 554:adaptive immune system 2286:Somatic hypermutation 2120:Polyclonal antibodies 2115:Monoclonal antibodies 1834:Immunological Reviews 1797:Immunological Reviews 1565:10.1101/gr.073676.107 896:Immunological Reviews 813:Lytechinus veriegatus 2303:Junctional diversity 2071:Antigen presentation 1454:Trends in Immunology 821:Aplysia californica, 815:(green sea urchin), 2298:V(D)J recombination 2281:Affinity maturation 2033:Antigenic variation 1508:2006PNAS..103.3728F 1413:2019Natur.569...79Z 1000:1990Sci...248.1517O 955:10.1038/nri.2016.28 769:Psectrotarsia flava 744:Aplysia californica 672:cooperative binding 574:V(D)J recombination 849:Selective pressure 2397: 2396: 2325: 2324: 2075:professional APCs 994:(4962): 1517–23. 841:vs. the agnathan 741:in the sea slug, 721: 720: 620:VDJ recombination 514: 513: 510: 509: 505:structure summary 405: 404: 401: 400: 396:structure summary 296: 295: 292: 291: 155: 154: 151: 150: 2427: 2291:Clonal selection 2263:Immune privilege 2258:Immunodeficiency 2213:Cross-reactivity 2203:Hypersensitivity 2008: 2007: 1983: 1976: 1969: 1960: 1959: 1954: 1928: 1910: 1900: 1890: 1865: 1828: 1778: 1777: 1767: 1757: 1733: 1727: 1726: 1698: 1692: 1691: 1681: 1671: 1647: 1636: 1635: 1625: 1593: 1587: 1586: 1576: 1544: 1538: 1537: 1527: 1487: 1478: 1477: 1449: 1443: 1442: 1432: 1392: 1386: 1385: 1359: 1339: 1333: 1332: 1322: 1290: 1281: 1280: 1270: 1260: 1236: 1225: 1224: 1214: 1204: 1180: 1169: 1168: 1158: 1126: 1120: 1119: 1109: 1099: 1075: 1069: 1068: 1058: 1041:(5): 1138–1152. 1026: 1020: 1019: 983: 977: 976: 966: 934: 928: 927: 887: 781: 733:superfamily. No 716: 713: 707: 691: 683: 670:involved in the 453: 452: 407: 406: 344: 343: 298: 297: 265: 264: 157: 156: 124: 123: 16: 15: 2435: 2434: 2430: 2429: 2428: 2426: 2425: 2424: 2400: 2399: 2398: 2393: 2367: 2321: 2267: 2246:Clonal deletion 2174: 2168: 2098: 1999: 1987: 1943:10.2307/4010948 1937:(19): 302–303. 1926: 1918: 1913: 1786: 1784:Further reading 1781: 1734: 1730: 1699: 1695: 1648: 1639: 1594: 1590: 1553:Genome Research 1545: 1541: 1502:(10): 3728–33. 1488: 1481: 1450: 1446: 1407:(7754): 79–84. 1393: 1389: 1340: 1336: 1291: 1284: 1237: 1228: 1181: 1172: 1127: 1123: 1076: 1072: 1027: 1023: 984: 980: 935: 931: 888: 881: 877: 860: 851: 773: 717: 711: 708: 701: 692: 681: 650: 646: 642: 628: 609: 605: 562: 530:T cell receptor 522:protein complex 12: 11: 5: 2433: 2423: 2422: 2417: 2412: 2395: 2394: 2392: 2391: 2386: 2381: 2375: 2373: 2369: 2368: 2366: 2365: 2360: 2359: 2358: 2348: 2347: 2346: 2335: 2333: 2327: 2326: 2323: 2322: 2320: 2319: 2310: 2305: 2300: 2295: 2294: 2293: 2288: 2277: 2275: 2273:Immunogenetics 2269: 2268: 2266: 2265: 2260: 2255: 2254: 2253: 2248: 2243: 2238: 2233: 2221: 2220: 2218:Co-stimulation 2215: 2210: 2205: 2200: 2195: 2190: 2185: 2178: 2176: 2170: 2169: 2167: 2166: 2161: 2159:Immune complex 2155: 2154: 2149: 2144: 2139: 2134: 2133: 2132: 2127: 2122: 2117: 2106: 2104: 2100: 2099: 2097: 2096: 2091: 2086: 2081: 2079:Dendritic cell 2067: 2066: 2061: 2060: 2059: 2057:Conformational 2054: 2043: 2042: 2037: 2036: 2035: 2030: 2025: 2014: 2012: 2005: 2001: 2000: 1986: 1985: 1978: 1971: 1963: 1957: 1956: 1917: 1916:External links 1914: 1912: 1911: 1866: 1829: 1787: 1785: 1782: 1780: 1779: 1742:Biology Direct 1728: 1693: 1637: 1588: 1559:(7): 1100–11. 1539: 1479: 1444: 1387: 1357:10.1101/100735 1350:(6): 391–400. 1344:Immunogenetics 1334: 1282: 1245:Biology Direct 1226: 1170: 1141:(3): 818–823. 1121: 1070: 1021: 978: 929: 878: 876: 873: 872: 871: 866: 864:Omenn syndrome 859: 856: 850: 847: 817:Patiria minata 719: 718: 695: 693: 686: 680: 677: 661:beta-propeller 648: 644: 640: 627: 624: 607: 603: 561: 558: 526:immunoglobulin 512: 511: 508: 507: 502: 496: 495: 482: 476: 475: 465: 458: 457: 449: 448: 443: 437: 436: 431: 425: 424: 421: 417: 416: 412: 411: 403: 402: 399: 398: 393: 387: 386: 373: 367: 366: 356: 349: 348: 340: 339: 334: 328: 327: 322: 316: 315: 312: 308: 307: 303: 302: 294: 293: 290: 289: 284: 280: 279: 274: 270: 269: 261: 260: 250: 244: 243: 239: 238: 233: 227: 226: 221: 215: 214: 209: 203: 202: 197: 191: 190: 185: 179: 178: 173: 169: 168: 164: 163: 153: 152: 149: 148: 143: 139: 138: 133: 129: 128: 120: 119: 109: 103: 102: 98: 97: 92: 86: 85: 80: 74: 73: 68: 62: 61: 56: 50: 49: 44: 38: 37: 32: 28: 27: 23: 22: 9: 6: 4: 3: 2: 2432: 2421: 2418: 2416: 2415:Immune system 2413: 2411: 2408: 2407: 2405: 2390: 2387: 2385: 2382: 2380: 2377: 2376: 2374: 2370: 2364: 2361: 2357: 2354: 2353: 2352: 2349: 2345: 2342: 2341: 2340: 2337: 2336: 2334: 2332: 2328: 2318: 2314: 2311: 2309: 2306: 2304: 2301: 2299: 2296: 2292: 2289: 2287: 2284: 2283: 2282: 2279: 2278: 2276: 2274: 2270: 2264: 2261: 2259: 2256: 2252: 2249: 2247: 2244: 2242: 2241:Clonal anergy 2239: 2237: 2234: 2232: 2229: 2228: 2227: 2223: 2222: 2219: 2216: 2214: 2211: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2180: 2179: 2177: 2171: 2165: 2162: 2160: 2157: 2156: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2131: 2130:Microantibody 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2112: 2111: 2108: 2107: 2105: 2101: 2095: 2092: 2090: 2087: 2085: 2082: 2080: 2076: 2072: 2069: 2068: 2065: 2062: 2058: 2055: 2053: 2050: 2049: 2048: 2045: 2044: 2041: 2038: 2034: 2031: 2029: 2026: 2024: 2021: 2020: 2019: 2016: 2015: 2013: 2009: 2006: 2002: 1998: 1994: 1991: 1984: 1979: 1977: 1972: 1970: 1965: 1964: 1961: 1952: 1948: 1944: 1940: 1936: 1932: 1925: 1920: 1919: 1908: 1904: 1899: 1894: 1889: 1884: 1880: 1876: 1872: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1835: 1830: 1826: 1822: 1818: 1814: 1810: 1806: 1802: 1798: 1794: 1789: 1788: 1775: 1771: 1766: 1761: 1756: 1751: 1747: 1743: 1739: 1732: 1724: 1720: 1716: 1712: 1709:(5): 547–52. 1708: 1704: 1697: 1689: 1685: 1680: 1675: 1670: 1665: 1661: 1657: 1653: 1646: 1644: 1642: 1633: 1629: 1624: 1619: 1615: 1611: 1608:(3): 818–23. 1607: 1603: 1599: 1592: 1584: 1580: 1575: 1570: 1566: 1562: 1558: 1554: 1550: 1543: 1535: 1531: 1526: 1521: 1517: 1513: 1509: 1505: 1501: 1497: 1493: 1486: 1484: 1475: 1471: 1467: 1463: 1460:(2): 105–11. 1459: 1455: 1448: 1440: 1436: 1431: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1391: 1383: 1379: 1375: 1371: 1367: 1363: 1358: 1353: 1349: 1345: 1338: 1330: 1326: 1321: 1316: 1312: 1308: 1305:(1): 102–14. 1304: 1300: 1296: 1289: 1287: 1278: 1274: 1269: 1264: 1259: 1254: 1250: 1246: 1242: 1235: 1233: 1231: 1222: 1218: 1213: 1208: 1203: 1198: 1194: 1190: 1186: 1179: 1177: 1175: 1166: 1162: 1157: 1152: 1148: 1144: 1140: 1136: 1132: 1125: 1117: 1113: 1108: 1103: 1098: 1093: 1089: 1085: 1081: 1074: 1066: 1062: 1057: 1052: 1048: 1044: 1040: 1036: 1032: 1025: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 982: 974: 970: 965: 960: 956: 952: 949:(4): 234–46. 948: 944: 940: 933: 925: 921: 917: 913: 909: 905: 901: 897: 893: 886: 884: 879: 870: 867: 865: 862: 861: 855: 846: 844: 840: 835: 830: 826: 822: 818: 814: 810: 809: 805: 801: 800: 796: 792: 788: 783: 780: 776: 771: 770: 765: 761: 756: 754: 750: 746: 745: 740: 736: 732: 731: 726: 715: 705: 699: 696:This section 694: 690: 685: 684: 676: 673: 668: 664: 662: 658: 654: 638: 633: 623: 621: 615: 613: 601: 597: 593: 589: 586: 582: 577: 575: 571: 567: 557: 555: 551: 547: 543: 539: 535: 531: 527: 523: 519: 506: 503: 501: 497: 494: 490: 486: 483: 481: 477: 473: 469: 466: 463: 459: 454: 450: 447: 444: 442: 438: 435: 432: 430: 426: 422: 418: 413: 408: 397: 394: 392: 388: 385: 381: 377: 374: 372: 368: 364: 360: 357: 354: 350: 345: 341: 338: 335: 333: 329: 326: 323: 321: 317: 313: 309: 304: 299: 288: 285: 281: 278: 275: 271: 266: 262: 259: 258: 254: 251: 249: 245: 240: 237: 234: 232: 228: 225: 222: 220: 216: 213: 210: 208: 204: 201: 198: 196: 192: 189: 186: 184: 180: 177: 174: 170: 165: 162: 158: 147: 144: 140: 137: 134: 130: 125: 121: 118: 117: 113: 110: 108: 104: 99: 96: 93: 91: 87: 84: 81: 79: 75: 72: 69: 67: 63: 60: 57: 55: 51: 48: 45: 43: 39: 36: 33: 29: 24: 21: 17: 2208:Inflammation 2193:Alloimmunity 2188:Autoimmunity 2173:Immunity vs. 2125:Autoantibody 2023:Superantigen 1934: 1931:Science News 1930: 1878: 1875:PLOS Biology 1874: 1837: 1833: 1800: 1796: 1745: 1741: 1731: 1706: 1702: 1696: 1659: 1655: 1605: 1601: 1591: 1556: 1552: 1542: 1499: 1495: 1457: 1453: 1447: 1404: 1400: 1390: 1347: 1343: 1337: 1302: 1298: 1248: 1244: 1192: 1188: 1138: 1134: 1124: 1087: 1084:PLOS Biology 1083: 1073: 1038: 1034: 1024: 991: 987: 981: 946: 942: 932: 899: 895: 852: 834:urochordates 828: 820: 816: 812: 806: 797: 784: 767: 764:B. belcheri 763: 759: 757: 755:transposon. 752: 748: 742: 738: 734: 728: 722: 709: 697: 665: 629: 616: 578: 563: 517: 515: 255: 114: 2420:Lymphocytes 2331:Lymphocytes 1990:Lymphocytic 1881:(6): e181. 1090:(6): e181. 791:gnathostome 725:transposase 657:nucleotides 639:residues (D 632:amino acids 542:lymphocytes 415:Identifiers 306:Identifiers 277:Swiss-model 167:Identifiers 136:Swiss-model 26:Identifiers 2404:Categories 2372:Substances 2236:Peripheral 2224:Inaction: 2103:Antibodies 2084:Macrophage 1997:complement 1656:Mobile DNA 1195:: 709165. 902:: 233–48. 875:References 825:cnidarians 795:echinoderm 612:covalently 566:vertebrate 468:structures 359:structures 273:Structures 268:Search for 242:Other data 132:Structures 127:Search for 101:Other data 2389:Cytolysin 2379:Cytokines 2226:Tolerance 2175:tolerance 2094:Immunogen 1840:: 70–82. 1748:(1): 47. 1662:(1): 17. 1251:(1): 20. 787:agnathans 727:from the 704:talk page 679:Evolution 626:Structure 600:phosphate 446:IPR004321 337:IPR004321 224:NM_000536 183:NCBI gene 83:NM_000448 42:NCBI gene 2339:Cellular 2183:Immunity 2181:Action: 2164:Paratope 2152:Idiotype 2142:Allotype 2110:Antibody 2064:Mimotope 2028:Allergen 2011:Antigens 2004:Lymphoid 1907:15898832 1862:22044642 1854:15242397 1825:23905210 1817:15242398 1803:: 83–9. 1774:26341882 1723:17707623 1688:32399063 1632:18313399 1583:18562680 1534:16505374 1474:15102370 1439:30971819 1382:11192471 1374:28451741 1329:27293192 1277:25928409 1221:34394111 1165:18313399 1116:15898832 1065:26548953 973:26996199 924:12080467 916:15242409 858:See also 845:system. 804:amphioxi 753:N-RAG-TP 751:and the 739:N-RAG-TP 712:May 2019 596:hydroxyl 588:receptor 560:Function 485:RCSB PDB 441:InterPro 376:RCSB PDB 332:InterPro 287:InterPro 146:InterPro 2384:Opsonin 2363:NK cell 2351:Humoral 2231:Central 2198:Allergy 2147:Isotype 2047:Epitope 2018:Antigen 1951:4010948 1898:1131882 1765:4560925 1679:7204232 1623:2719772 1574:2493399 1525:1450146 1504:Bibcode 1430:6494689 1409:Bibcode 1352:bioRxiv 1320:5017859 1268:4411706 1212:8355894 1156:2719772 1107:1131882 1056:4690471 1016:2360047 996:Bibcode 988:Science 964:5757527 829:Transib 760:Transib 749:Transib 735:Transib 730:Transib 647:, and E 585:antigen 570:antigen 564:In the 550:T cells 546:B cells 434:PF12940 325:PF03089 283:Domains 253:Chr. 11 231:UniProt 142:Domains 112:Chr. 11 90:UniProt 2356:B cell 2344:T cell 2089:B cell 2052:Linear 2040:Hapten 1949:  1905:  1895:  1860:  1852:  1823:  1815:  1772:  1762:  1721:  1686:  1676:  1630:  1620:  1581:  1571:  1532:  1522:  1472:  1437:  1427:  1401:Nature 1380:  1372:  1354:  1327:  1317:  1275:  1265:  1219:  1209:  1163:  1153:  1114:  1104:  1063:  1053:  1014:  971:  961:  922:  914:  637:acidic 500:PDBsum 474:  464:  420:Symbol 391:PDBsum 365:  355:  311:Symbol 236:P55895 219:RefSeq 212:179616 172:Symbol 95:P15918 78:RefSeq 71:179615 31:Symbol 1947:JSTOR 1927:(PDF) 1858:S2CID 1821:S2CID 1378:S2CID 920:S2CID 653:motif 248:Locus 107:Locus 1995:and 1903:PMID 1850:PMID 1813:PMID 1770:PMID 1719:PMID 1684:PMID 1628:PMID 1579:PMID 1530:PMID 1470:PMID 1435:PMID 1370:PMID 1325:PMID 1299:Cell 1273:PMID 1217:PMID 1161:PMID 1112:PMID 1061:PMID 1035:Cell 1012:PMID 969:PMID 912:PMID 779:6b40 548:and 538:RAG2 536:and 534:RAG1 528:and 516:The 493:PDBj 489:PDBe 472:ECOD 462:Pfam 429:Pfam 423:RAG1 384:PDBj 380:PDBe 363:ECOD 353:Pfam 320:Pfam 314:RAG2 207:OMIM 200:9832 195:HGNC 188:5897 176:RAG2 66:OMIM 59:9831 54:HGNC 47:5896 35:RAG1 2317:HLA 2313:MHC 1939:doi 1935:154 1893:PMC 1883:doi 1842:doi 1838:200 1805:doi 1801:200 1760:PMC 1750:doi 1711:doi 1674:PMC 1664:doi 1618:PMC 1610:doi 1606:369 1569:PMC 1561:doi 1520:PMC 1512:doi 1500:103 1462:doi 1425:PMC 1417:doi 1405:569 1362:doi 1315:PMC 1307:doi 1303:166 1263:PMC 1253:doi 1207:PMC 1197:doi 1151:PMC 1143:doi 1139:369 1102:PMC 1092:doi 1051:PMC 1043:doi 1039:163 1004:doi 992:248 959:PMC 951:doi 904:doi 900:200 775:PDB 649:962 645:708 643:, D 641:600 602:(PO 581:DNA 480:PDB 371:PDB 257:p13 116:p13 2406:: 2077:: 1945:. 1933:. 1929:. 1901:. 1891:. 1877:. 1873:. 1856:. 1848:. 1836:. 1819:. 1811:. 1799:. 1795:. 1768:. 1758:. 1746:10 1744:. 1740:. 1717:. 1707:19 1682:. 1672:. 1660:11 1658:. 1654:. 1640:^ 1626:. 1616:. 1604:. 1600:. 1577:. 1567:. 1557:18 1555:. 1551:. 1528:. 1518:. 1510:. 1498:. 1494:. 1482:^ 1468:. 1458:25 1456:. 1433:. 1423:. 1415:. 1403:. 1399:. 1376:. 1368:. 1360:. 1348:69 1346:. 1323:. 1313:. 1301:. 1297:. 1285:^ 1271:. 1261:. 1249:10 1247:. 1243:. 1229:^ 1215:. 1205:. 1193:12 1191:. 1187:. 1173:^ 1159:. 1149:. 1137:. 1133:. 1110:. 1100:. 1086:. 1082:. 1059:. 1049:. 1037:. 1033:. 1010:. 1002:. 990:. 967:. 957:. 947:16 945:. 941:. 918:. 910:. 898:. 894:. 882:^ 777:: 556:. 491:; 487:; 470:/ 382:; 378:; 361:/ 2315:/ 2073:/ 1982:e 1975:t 1968:v 1953:. 1941:: 1909:. 1885:: 1879:3 1864:. 1844:: 1827:. 1807:: 1776:. 1752:: 1725:. 1713:: 1690:. 1666:: 1634:. 1612:: 1585:. 1563:: 1536:. 1514:: 1506:: 1476:. 1464:: 1441:. 1419:: 1411:: 1384:. 1364:: 1331:. 1309:: 1279:. 1255:: 1223:. 1199:: 1167:. 1145:: 1118:. 1094:: 1088:3 1067:. 1045:: 1018:. 1006:: 998:: 975:. 953:: 926:. 906:: 714:) 710:( 706:. 608:4 604:4

Index

recombination-activating gene 1
RAG1
NCBI gene
5896
HGNC
9831
OMIM
179615
RefSeq
NM_000448
UniProt
P15918
Locus
Chr. 11
p13
Swiss-model
InterPro
recombination-activating gene 2
RAG2
NCBI gene
5897
HGNC
9832
OMIM
179616
RefSeq
NM_000536
UniProt
P55895
Locus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.