Knowledge

Respiratory quotient

Source đź“ť

47:. The respiratory quotient value indicates which macronutrients are being metabolized, as different energy pathways are used for fats, carbohydrates, and proteins. If metabolism consists solely of lipids, the respiratory quotient is approximately 0.7, for proteins it is approximately 0.8, and for carbohydrates it is 1.0. Most of the time, however, energy consumption is composed of both fats and carbohydrates. The approximate respiratory quotient of a mixed diet is 0.8. Some of the other factors that may affect the respiratory quotient are energy balance, circulating insulin, and insulin sensitivity. 674:, non-protein respiratory quotient (npRQ) values act as good indicators in the prediction of overall survival rate. Patients having a npRQ < 0.85 show considerably lower survival rates as compared to patients with a npRQ > 0.85. A decrease in npRQ corresponds to a decrease in glycogen storage by the liver. Similar research indicates that non-alcoholic fatty liver diseases are also accompanied by a low respiratory quotient value, and the non protein respiratory quotient value was a good indication of disease severity. 663:, will increase it. Underfeeding is marked by a respiratory quotient below 0.85, while a respiratory quotient greater than 1.0 indicates overfeeding. This is particularly important in patients with compromised respiratory systems, as an increased respiratory quotient significantly corresponds to increased respiratory rate and decreased 599:). Historically, it was assumed that 'average fat' had an RQ of about 0.71, and this holds true for most mammals including humans. However, a recent survey showed that aquatic animals, especially fish, have fat that should yield higher RQs on oxidation, reaching as high as 0.73 due to high amounts of docosahexaenoic acid. 452: 590:
being the predominant fuel source, and a value between 0.7 and 1.0 suggests a mix of both fat and carbohydrate. In general a mixed diet corresponds with an RER of approximately 0.8. For fats, the RQ depends on the specific fatty acids present. Amongst the commonly stored fatty acids in vertebrates,
681:
using different single substrates suggested that RQ is linked to the elemental composition of the respired compounds. By this way, it is demonstrated that bacterioplankton RQ is not only a practical aspect of Bacterioplankton Respiration determination, but also a major ecosystem state variable that
602:
The range of respiratory coefficients for organisms in metabolic balance usually ranges from 1.0 (representing the value expected for pure carbohydrate oxidation) to ~0.7 (the value expected for pure fat oxidation). In general, molecules that are more oxidized (e.g., glucose) require less oxygen to
577: 124:
The RER can exceed 1.0 during intense exercise. A value above 1.0 cannot be attributed to the substrate metabolism, but rather to the aforementioned factors regarding bicarbonate buffering. Calculation of RER is commonly done in conjunction with exercise tests such as the
39:(BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state. Such measurements, like measurements of oxygen uptake, are forms of indirect 313: 603:
be fully metabolized and, therefore, have higher respiratory quotients. Conversely, molecules that are less oxidized (e.g., fatty acids) require more oxygen for their complete metabolism and have lower respiratory quotients. See
647:, in which patients spend a significant amount of energy on respiratory effort. By increasing the proportion of fats in the diet, the respiratory quotient is driven down, causing a relative decrease in the amount of CO 634:
Insulin, which increases lipid storage and decreases fat oxidation, is positively associated with increases in the respiratory quotient. A positive energy balance will also lead to an increased respiratory quotient.
458: 1301:
McClave, Stephen A.; Lowen, Cynthia C.; Kleber, Melissa J.; McConnell, J. Wesley; Jung, Laura Y.; Goldsmith, Linda J. (2003-01-01). "Clinical use of the respiratory quotient obtained from indirect calorimetry".
1478:
Vachon, Dominic; Sadro, Steven; Bogard, Matthew J.; Lapierre, Jean-François; Baulch, Helen M.; Rusak, James A.; Denfeld, Blaize A.; Laas, Alo; Klaus, Marcus; Karlsson, Jan; Weyhenmeyer, Gesa A. (August 2020).
658:
Respiratory Quotient can be used as an indicator of over or underfeeding. Underfeeding, which forces the body to utilize fat stores, will lower the respiratory quotient, while overfeeding, which causes
627:
as measured includes a contribution from the energy produced from protein. However, due to the complexity of the various ways in which different amino acids can be metabolized, no single
1026:
Ramos-Jiménez, Arnulfo; Hernández-Torres, Rosa P.; Torres-Durán, Patricia V.; Romero-Gonzalez, Jaime; Mascher, Dieter; Posadas-Romero, Carlos; Juárez-Oropeza, Marco A. (2008-02-01).
1255:
Kuo, C. D.; Shiao, G. M.; Lee, J. D. (1993-07-01). "The effects of high-fat and high-carbohydrate diet loads on gas exchange and ventilation in COPD patients and normal subjects".
1028:"The Respiratory Exchange Ratio is Associated with Fitness Indicators Both in Trained and Untrained Men: A Possible Application for People with Reduced Exercise Tolerance" 1350:
Nishikawa, Hiroki; Enomoto, Hirayuki; Iwata, Yoshinori; Kishino, Kyohei; Shimono, Yoshihiro; Hasegawa, Kunihiro; Nakano, Chikage; Takata, Ryo; Ishii, Akio (2017-01-01).
447:{\displaystyle 23\ \mathrm {O} _{2}+\mathrm {C} _{16}\mathrm {H} _{32}\mathrm {O} _{2}\to 16\ \mathrm {CO} _{2}+16\ \mathrm {H} _{2}\mathrm {O} +129\ \mathrm {ATP} } 677:
Recently the respiratory quotient is also used from aquatic scientists to illuminate its environmental applications. Experimental studies with natural
1807: 670:
Because of its role in metabolism, respiratory quotient can be used in analysis of liver function and diagnosis of liver disease. In patients with
1190: 710:. Using this quotient we could shed light on the metabolic behavior and the simultaneous roles of chemical and physical forcing that shape the 572:{\displaystyle \mathrm {RER} ={\frac {\mathrm {VCO} _{2}}{\mathrm {VO} _{2}}}={\frac {16\ \mathrm {CO} _{2}}{23\ \mathrm {O} _{2}}}\approx 0.7} 137:
and the limits of their cardio-respiratory system. An RER greater than or equal to 1.0 is often used as a secondary endpoint criterion of a VO
97:
The ratio is determined by comparing exhaled gases to room air. Measuring this ratio is equal to RQ only at rest or during mild to moderate
621:
consumption numbers are available, they are usually used directly, since they are more direct and reliable estimates of energy production.
607:
for a discussion of how these numbers are derived. A mixed diet of fat and carbohydrate results in an average value between these numbers.
2173: 1530:"Using O<sub>2</sub> to study the relationships between soil CO<sub>2</sub> efflux and soil respiration" 113:. The body tries to compensate for the accumulation of lactate and minimize the acidification of the blood by expelling more CO 184:
must be given in the same units, and in quantities proportional to the number of molecules. Acceptable inputs would be either
2302: 644: 1800: 1677:
Phinney, Stephen D.; Horton, Edward S.; Sims, Ethan A. H.; Hanson, John S.; Danforth, Elliot; Lagrange, Betty M. (1980).
733:) can be used to derive an apparent respiratory quotient (ARQ). This value reflects a cumulative effect of not only the 2244: 2099: 1166: 1133: 1097: 1010: 923: 2297: 1793: 717:
Moving from a molecular and cellular level to an ecosystem level, various processes account for the exchange of O
686:
functioning. Based on the stoichiometry of the different metabolized substrates, the scientists can predict that
2163: 2282: 1890: 1412:"Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients" 1636:
Johnston, Carol S; Tjonn, Sherrie L; Swan, Pamela D; White, Andrea; Hutchins, Heather; Sears, Barry (2006).
2012: 2182: 2131: 1982: 1092:(4th ed.). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health. pp. 219–223. 2287: 2136: 1638:"Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets" 2044: 1975: 1956: 725:
between the biosphere and atmosphere. Field measurements of the concurrent consumption of oxygen (-ΔO
110: 1679:"Capacity for Moderate Exercise in Obese Subjects after Adaptation to a Hypocaloric, Ketogenic Diet" 2120: 1987: 1951: 1845: 707: 2153: 2022: 1637: 1726:
Owen, O. E.; Morgan, A. P.; Kemp, H. G.; Sullivan, J. M.; Herrera, M. G.; Cahill, G. F. (1967).
1970: 1917: 1907: 1816: 1528:
Angert, A.; Yakir, D.; Rodeghiero, M.; Preisler, Y.; Davidson, E. A.; Weiner, T. (2015-04-07).
32: 1204:
Price, E. R.; Mager, E. M. (2020). "Respiratory quotient: Effects of fatty acid composition".
2158: 2094: 1352:"Prognostic significance of nonprotein respiratory quotient in patients with liver cirrhosis" 737:
of all organisms (microorganisms and higher consumers) in the sample, but also all the other
51: 2068: 2032: 1867: 1862: 1541: 1492: 1423: 1213: 882: 738: 604: 596: 36: 8: 2292: 1895: 1481:"Paired O 2 –CO 2 measurements provide emergent insights into aquatic ecosystem function" 734: 1589:"Ketogenic diet treatment in adults with refractory epilepsy: A prospective pilot study" 1545: 1496: 1427: 1217: 1025: 2223: 2218: 2198: 2056: 1932: 1618: 1587:
Mosek, Amnon; Natour, Haitham; Neufeld, Miri Y.; Shiff, Yaffa; Vaisman, Nachum (2009).
1452: 1411: 1384: 1351: 1237: 1184: 1060: 1027: 978: 945: 118: 106: 1752: 1727: 1703: 1678: 2261: 2177: 2143: 1945: 1900: 1882: 1757: 1708: 1659: 1610: 1569: 1510: 1457: 1439: 1389: 1371: 1327: 1319: 1280: 1272: 1241: 1229: 1172: 1162: 1139: 1129: 1103: 1093: 1065: 1047: 1006: 983: 965: 919: 683: 2078: 2027: 1937: 1852: 1747: 1739: 1698: 1690: 1649: 1622: 1600: 1559: 1549: 1529: 1500: 1447: 1431: 1379: 1363: 1311: 1264: 1221: 1055: 1039: 973: 957: 687: 678: 643:
Practical applications of the respiratory quotient can be found in severe cases of
98: 1605: 1588: 2256: 2104: 2073: 711: 1367: 2202: 2192: 2049: 2007: 1872: 1315: 888: 703: 695: 79: 1176: 1157:
Widmaier, Eric P.; Vander, Arthur J.; Raff, Hershel; Strang, Kevin T. (2018).
2276: 2208: 1964: 1877: 1654: 1573: 1514: 1443: 1375: 1323: 1276: 1143: 1107: 1051: 969: 944:
Ellis, Amy C; Hyatt, Tanya C; Gower, Barbara A; Hunter, Gary R (2017-05-02).
853: 768: 304: 212: 1554: 1268: 16:
Ratio of carbon dioxide produced by the body to oxygen consumed by the body
2148: 2017: 1999: 1857: 1663: 1614: 1461: 1435: 1410:
Berggren, Martin; Lapierre, Jean-François; del Giorgio, Paul A (May 2012).
1393: 1331: 1233: 1069: 987: 664: 592: 587: 44: 1761: 1712: 1284: 885: â€“ Measurement of the heat of living organisms through indirect means 2187: 1785: 863: 832: 702:) in aquatic ecosystems should covary inversely due to the processing of 660: 216: 204: 185: 102: 40: 1564: 961: 2249: 2168: 2063: 1840: 1835: 1505: 1480: 1043: 843: 821: 253:
and thus metabolism of this compound gives an RQ of x/(x + y/4 - z/2).
191:
Many metabolized substances are compounds containing only the elements
75: 1743: 1694: 891: â€“ Principle applied to the measurement of blood flow to an organ 2125: 1225: 671: 223:. For complete oxidation of such compounds, the chemical equation is 133:. This can be used as an indicator that the participants are nearing 946:"Respiratory Quotient Predicts Fat Mass Gain in Premenopausal Women" 810: 778: 208: 196: 1032:
Clinical Medicine. Circulatory, Respiratory and Pulmonary Medicine
1128:(5th ed.). Champaign, IL: Human Kinetics. pp. 117–118. 799: 788: 220: 134: 126: 586:
is the predominant fuel source, a value of 1.0 is indicative of
1830: 1124:
Kenney, W. Larry.; Wilmore, Jack H.; Costill, David L. (2012).
1088:
Katch, Victor L.; McArdle, William D.; Katch, Frank I. (2011).
655:, thereby reducing the amount of energy spent on respirations. 200: 192: 188:, or else volumes of gas at standard temperature and pressure. 87: 1527: 651:
produced. This reduces the respiratory burden to eliminate CO
613:
value corresponds to a caloric value for each liter (L) of CO
71: 1349: 2227: 1926: 1409: 1300: 914:
Widmaier, Eric P.; Raff, Hershel; Strang, Kevin T. (2016).
752: 1159:
Vander's human physiology: the mechanisms of body function
1005:. Cambridge, UK: Cambridge University Press. p. 171. 916:
Vander's Human Physiology: The Mechanisms of Body Function
1477: 631:
can be assigned to the oxidation of protein in the diet.
583: 1156: 169:
where the term "eliminated" refers to carbon dioxide (CO
1676: 1586: 749:
production and vice versa influencing the observed RQ.
1725: 1635: 667:, placing compromised patients at a significant risk. 943: 461: 316: 1123: 913: 571: 446: 1087: 2274: 1000: 303:For oxidation of a fatty acid molecule, namely 1774:Telugu Academi, Botany text book, 2007 Version 1801: 109:is among others due to factors including the 57: 1161:(15th ed.). New York, NY. p. 460. 1083: 1081: 1079: 1304:Journal of Parenteral and Enteral Nutrition 1254: 173:) removed from the body in a steady state. 105:. The loss of accuracy during more intense 1815: 1808: 1794: 1642:The American Journal of Clinical Nutrition 1203: 1189:: CS1 maint: location missing publisher ( 256:For glucose, with the molecular formula, C 1751: 1702: 1653: 1604: 1563: 1553: 1504: 1451: 1383: 1076: 1059: 977: 918:(14th ed.). New York: McGraw Hill. 753:Respiratory quotients of some substances 729:) and production of carbon dioxide (ΔCO 2275: 268:, the complete oxidation equation is C 1789: 1473: 1471: 1405: 1403: 1345: 1343: 1341: 1296: 1294: 1119: 1117: 645:chronic obstructive pulmonary disease 2174:oxygen–hemoglobin dissociation curve 939: 937: 935: 909: 907: 905: 13: 2100:hypoxic pulmonary vasoconstriction 1728:"Brain Metabolism during Fasting*" 1485:Limnology and Oceanography Letters 1468: 1400: 1338: 1291: 1114: 682:provides unique information about 550: 530: 527: 501: 498: 486: 483: 480: 469: 466: 463: 440: 437: 434: 420: 409: 388: 385: 364: 352: 340: 325: 14: 2314: 1781: 1732:Journal of Clinical Investigation 1683:Journal of Clinical Investigation 1090:Essentials of exercise physiology 932: 902: 1126:Physiology of sport and exercise 1768: 1719: 1670: 1629: 1580: 1521: 1206:Journal of Experimental Zoology 638: 1248: 1197: 1150: 1019: 1001:Schmidt-Nielsen, Knut (1997). 994: 374: 144: 1: 1606:10.1016/j.seizure.2008.06.001 895: 582:A RQ near 0.7 indicates that 2303:Underwater diving physiology 101:without the accumulation of 7: 2132:Ventilation/perfusion ratio 1983:pulmonary stretch receptors 1368:10.1097/MD.0000000000005800 876: 176:In this calculation, the CO 10: 2319: 2164:alveolar–arterial gradient 1316:10.1177/014860710302700121 1072:– via SAGE journals. 745:without a corresponding CO 149:The respiratory quotient ( 64:respiratory exchange ratio 58:Respiratory exchange ratio 2237: 2113: 2087: 2045:respiratory minute volume 1998: 1957:ventral respiratory group 1916: 1823: 741:processes which consume O 111:bicarbonate buffer system 43:. It is measured using a 1952:dorsal respiratory group 1846:obligate nasal breathing 35:used in calculations of 2154:pulmonary gas pressures 1555:10.5194/bg-12-2089-2015 1269:10.1378/chest.104.1.189 714:of aquatic ecosystems. 595:) to as high as 0.759 ( 29:respiratory coefficient 2298:Respiratory physiology 1908:mechanical ventilation 1817:Respiratory physiology 1655:10.1093/ajcn/83.5.1055 1436:10.1038/ismej.2011.157 760:Name of the substance 591:RQ varies from 0.692 ( 573: 448: 50:It can be used in the 2159:alveolar gas equation 2095:pulmonary circulation 763:Respiratory Quotient 574: 449: 292:O. Thus, the RQ= 6 CO 52:alveolar gas equation 2283:Biochemistry methods 2214:respiratory quotient 2069:body plethysmography 1988:Hering–Breuer reflex 1863:pulmonary surfactant 883:Indirect calorimetry 597:docosahexaenoic acid 459: 314: 86:) and the uptake of 37:basal metabolic rate 33:dimensionless number 21:respiratory quotient 2057:Lung function tests 1891:hyperresponsiveness 1546:2015BGeo...12.2089A 1497:2020LimOL...5..287V 1428:2012ISMEJ...6..984B 1218:2020JEZA..333..613P 962:10.1038/oby.2010.96 735:aerobic respiration 238:+ (x + y/4 - z/2) O 203:. Examples include 2224:diffusion capacity 2219:arterial blood gas 2199:carbonic anhydrase 1933:pneumotaxic center 1506:10.1002/lol2.10135 1044:10.4137/CCRPM.S449 569: 444: 119:respiratory system 107:anaerobic exercise 2288:Energy conversion 2270: 2269: 2178:Oxygen saturation 2144:zones of the lung 1883:airway resistance 1744:10.1172/JCI105650 1695:10.1172/JCI109945 1003:Animal Physiology 956:(12): 2255–2259. 872: 871: 684:aquatic ecosystem 561: 547: 524: 511: 432: 406: 382: 322: 2310: 2079:nitrogen washout 1938:apneustic center 1853:respiratory rate 1810: 1803: 1796: 1787: 1786: 1775: 1772: 1766: 1765: 1755: 1723: 1717: 1716: 1706: 1674: 1668: 1667: 1657: 1633: 1627: 1626: 1608: 1584: 1578: 1577: 1567: 1557: 1540:(7): 2089–2099. 1525: 1519: 1518: 1508: 1475: 1466: 1465: 1455: 1416:The ISME Journal 1407: 1398: 1397: 1387: 1347: 1336: 1335: 1298: 1289: 1288: 1252: 1246: 1245: 1226:10.1002/jez.2422 1201: 1195: 1194: 1188: 1180: 1154: 1148: 1147: 1121: 1112: 1111: 1085: 1074: 1073: 1063: 1023: 1017: 1016: 998: 992: 991: 981: 941: 930: 929: 911: 757: 756: 688:dissolved oxygen 679:bacterioplankton 578: 576: 575: 570: 562: 560: 559: 558: 553: 545: 540: 539: 538: 533: 522: 517: 512: 510: 509: 504: 495: 494: 489: 477: 472: 453: 451: 450: 445: 443: 430: 423: 418: 417: 412: 404: 397: 396: 391: 380: 373: 372: 367: 361: 360: 355: 349: 348: 343: 334: 333: 328: 320: 153:) is the ratio: 99:aerobic exercise 2318: 2317: 2313: 2312: 2311: 2309: 2308: 2307: 2273: 2272: 2271: 2266: 2257:oxygen toxicity 2233: 2121:ventilation (V) 2109: 2105:pulmonary shunt 2083: 2074:peak flow meter 1994: 1912: 1819: 1814: 1784: 1779: 1778: 1773: 1769: 1738:(10): 1589–95. 1724: 1720: 1675: 1671: 1634: 1630: 1585: 1581: 1526: 1522: 1476: 1469: 1408: 1401: 1348: 1339: 1299: 1292: 1253: 1249: 1202: 1198: 1182: 1181: 1169: 1155: 1151: 1136: 1122: 1115: 1100: 1086: 1077: 1024: 1020: 1013: 999: 995: 942: 933: 926: 912: 903: 898: 879: 755: 748: 744: 732: 728: 724: 720: 712:biogeochemistry 701: 693: 672:liver cirrhosis 654: 650: 641: 620: 616: 554: 549: 548: 541: 534: 526: 525: 518: 516: 505: 497: 496: 490: 479: 478: 476: 462: 460: 457: 456: 433: 419: 413: 408: 407: 392: 384: 383: 368: 363: 362: 356: 351: 350: 344: 339: 338: 329: 324: 323: 315: 312: 311: 299: 295: 291: 287: 283: 279: 275: 271: 267: 263: 259: 249: 245: 241: 237: 233: 229: 183: 179: 172: 166: 162: 147: 140: 130: 116: 93: 85: 60: 17: 12: 11: 5: 2316: 2306: 2305: 2300: 2295: 2290: 2285: 2268: 2267: 2265: 2264: 2259: 2254: 2253: 2252: 2241: 2239: 2235: 2234: 2232: 2231: 2221: 2216: 2211: 2206: 2203:chloride shift 2196: 2193:Haldane effect 2190: 2185: 2180: 2171: 2166: 2161: 2156: 2151: 2146: 2141: 2140: 2139: 2134: 2123: 2117: 2115: 2111: 2110: 2108: 2107: 2102: 2097: 2091: 2089: 2085: 2084: 2082: 2081: 2076: 2071: 2066: 2061: 2059: 2053: 2052: 2050:FEV1/FVC ratio 2047: 2042: 2040: 2036: 2035: 2030: 2025: 2020: 2015: 2010: 2004: 2002: 1996: 1995: 1993: 1992: 1991: 1990: 1980: 1979: 1978: 1973: 1965:chemoreceptors 1961: 1960: 1959: 1954: 1942: 1941: 1940: 1935: 1922: 1920: 1914: 1913: 1911: 1910: 1905: 1904: 1903: 1898: 1893: 1885: 1880: 1875: 1873:elastic recoil 1870: 1865: 1860: 1855: 1850: 1849: 1848: 1843: 1838: 1827: 1825: 1821: 1820: 1813: 1812: 1805: 1798: 1790: 1783: 1782:External links 1780: 1777: 1776: 1767: 1718: 1689:(5): 1152–61. 1669: 1648:(5): 1055–61. 1628: 1579: 1534:Biogeosciences 1520: 1491:(4): 287–294. 1467: 1422:(5): 984–993. 1399: 1337: 1290: 1263:(1): 189–196. 1247: 1212:(9): 613–618. 1196: 1167: 1149: 1134: 1113: 1098: 1075: 1018: 1011: 993: 931: 924: 900: 899: 897: 894: 893: 892: 889:Fick principle 886: 878: 875: 870: 869: 866: 860: 859: 856: 850: 849: 846: 840: 839: 836: 829: 828: 825: 818: 817: 814: 807: 806: 803: 802:(hypocaloric) 796: 795: 792: 785: 784: 781: 775: 774: 771: 765: 764: 761: 754: 751: 746: 742: 739:biogeochemical 730: 726: 722: 718: 704:photosynthesis 699: 696:carbon dioxide 691: 652: 648: 640: 637: 618: 617:produced. If O 614: 580: 579: 568: 565: 557: 552: 544: 537: 532: 529: 521: 515: 508: 503: 500: 493: 488: 485: 482: 475: 471: 468: 465: 454: 442: 439: 436: 429: 426: 422: 416: 411: 403: 400: 395: 390: 387: 379: 376: 371: 366: 359: 354: 347: 342: 337: 332: 327: 319: 297: 293: 289: 285: 281: 277: 273: 269: 265: 261: 257: 247: 243: 239: 235: 231: 227: 219:products, and 181: 177: 170: 164: 160: 146: 143: 138: 128: 114: 91: 83: 80:carbon dioxide 78:production of 59: 56: 15: 9: 6: 4: 3: 2: 2315: 2304: 2301: 2299: 2296: 2294: 2291: 2289: 2286: 2284: 2281: 2280: 2278: 2263: 2260: 2258: 2255: 2251: 2248: 2247: 2246: 2245:high altitude 2243: 2242: 2240: 2238:Insufficiency 2236: 2229: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2209:oxyhemoglobin 2207: 2204: 2200: 2197: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2175: 2172: 2170: 2167: 2165: 2162: 2160: 2157: 2155: 2152: 2150: 2147: 2145: 2142: 2138: 2135: 2133: 2130: 2129: 2127: 2124: 2122: 2119: 2118: 2116: 2112: 2106: 2103: 2101: 2098: 2096: 2093: 2092: 2090: 2086: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2058: 2055: 2054: 2051: 2048: 2046: 2043: 2041: 2038: 2037: 2034: 2031: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2009: 2006: 2005: 2003: 2001: 1997: 1989: 1986: 1985: 1984: 1981: 1977: 1974: 1972: 1969: 1968: 1967: 1966: 1962: 1958: 1955: 1953: 1950: 1949: 1948: 1947: 1943: 1939: 1936: 1934: 1931: 1930: 1929: 1928: 1924: 1923: 1921: 1919: 1915: 1909: 1906: 1902: 1899: 1897: 1894: 1892: 1889: 1888: 1886: 1884: 1881: 1879: 1878:hysteresivity 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1859: 1856: 1854: 1851: 1847: 1844: 1842: 1839: 1837: 1834: 1833: 1832: 1829: 1828: 1826: 1822: 1818: 1811: 1806: 1804: 1799: 1797: 1792: 1791: 1788: 1771: 1763: 1759: 1754: 1749: 1745: 1741: 1737: 1733: 1729: 1722: 1714: 1710: 1705: 1700: 1696: 1692: 1688: 1684: 1680: 1673: 1665: 1661: 1656: 1651: 1647: 1643: 1639: 1632: 1624: 1620: 1616: 1612: 1607: 1602: 1598: 1594: 1590: 1583: 1575: 1571: 1566: 1561: 1556: 1551: 1547: 1543: 1539: 1535: 1531: 1524: 1516: 1512: 1507: 1502: 1498: 1494: 1490: 1486: 1482: 1474: 1472: 1463: 1459: 1454: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1406: 1404: 1395: 1391: 1386: 1381: 1377: 1373: 1369: 1365: 1361: 1357: 1353: 1346: 1344: 1342: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1305: 1297: 1295: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1251: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1200: 1192: 1186: 1178: 1174: 1170: 1168:9781259903885 1164: 1160: 1153: 1145: 1141: 1137: 1135:9780736094092 1131: 1127: 1120: 1118: 1109: 1105: 1101: 1099:9781608312672 1095: 1091: 1084: 1082: 1080: 1071: 1067: 1062: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1022: 1014: 1012:0-521-57098-0 1008: 1004: 997: 989: 985: 980: 975: 971: 967: 963: 959: 955: 951: 947: 940: 938: 936: 927: 925:9781259294099 921: 917: 910: 908: 906: 901: 890: 887: 884: 881: 880: 874: 867: 865: 862: 861: 857: 855: 854:Tartaric acid 852: 851: 847: 845: 842: 841: 837: 834: 831: 830: 826: 823: 820: 819: 815: 812: 809: 808: 804: 801: 798: 797: 793: 790: 787: 786: 782: 780: 777: 776: 772: 770: 769:Carbohydrates 767: 766: 762: 759: 758: 750: 740: 736: 715: 713: 709: 705: 697: 689: 685: 680: 675: 673: 668: 666: 662: 656: 646: 636: 632: 630: 626: 622: 612: 608: 606: 600: 598: 594: 589: 585: 566: 563: 555: 542: 535: 519: 513: 506: 491: 473: 455: 427: 424: 414: 401: 398: 393: 377: 369: 357: 345: 335: 330: 317: 310: 309: 308: 306: 305:palmitic acid 301: 254: 251: 224: 222: 218: 214: 213:carbohydrates 210: 206: 202: 198: 194: 189: 187: 174: 167: 158: 154: 152: 142: 136: 132: 122: 120: 112: 108: 104: 100: 95: 89: 81: 77: 73: 69: 65: 55: 53: 48: 46: 42: 38: 34: 30: 26: 22: 2213: 2149:gas exchange 2114:Interactions 2039:calculations 2000:Lung volumes 1963: 1944: 1925: 1896:constriction 1858:respirometer 1770: 1735: 1731: 1721: 1686: 1682: 1672: 1645: 1641: 1631: 1596: 1592: 1582: 1565:11572/225681 1537: 1533: 1523: 1488: 1484: 1419: 1415: 1362:(3): e5800. 1359: 1355: 1310:(1): 21–26. 1307: 1303: 1260: 1256: 1250: 1209: 1205: 1199: 1158: 1152: 1125: 1089: 1035: 1031: 1021: 1002: 996: 953: 949: 915: 873: 791:(eucaloric) 716: 676: 669: 665:tidal volume 657: 642: 639:Applications 633: 628: 624: 623: 610: 609: 601: 593:stearic acid 588:carbohydrate 581: 302: 255: 252: 225: 190: 175: 168: 161:2 eliminated 156: 155: 150: 148: 123: 117:through the 96: 74:between the 67: 63: 61: 49: 45:respirometer 28: 24: 20: 18: 2188:Bohr effect 2088:Circulation 1824:Respiration 1599:(1): 30–3. 864:Oxalic acid 833:Tripalmitin 708:respiration 661:lipogenesis 217:deamination 205:fatty acids 145:Calculation 41:calorimetry 2293:Metabolism 2277:Categories 2250:death zone 2169:hemoglobin 2064:spirometry 2023:dead space 1976:peripheral 1901:dilatation 1887:bronchial 1868:compliance 1841:exhalation 1836:inhalation 1177:1006516790 896:References 844:Malic acid 822:Oleic acid 783:0.8 - 0.9 165:2 consumed 141:max test. 135:exhaustion 2126:Perfusion 1574:1726-4189 1515:2378-2242 1444:1751-7362 1376:1536-5964 1324:0148-6071 1277:0012-3692 1242:222833275 1185:cite book 1144:747903364 1108:639161214 1052:1178-1157 970:1930-7381 564:≈ 375:→ 246:+ (y/2) H 76:metabolic 70:) is the 2137:V/Q scan 1664:16685046 1615:18675556 1462:22094347 1394:28099336 1356:Medicine 1332:12549594 1234:33063463 1070:21157516 988:20448540 877:See also 811:Triolein 779:Proteins 209:glycerol 197:hydrogen 131:max test 2262:hypoxia 2183:2,3-BPG 1971:central 1946:medulla 1918:Control 1762:6061736 1713:7000826 1623:2393385 1593:Seizure 1542:Bibcode 1493:Bibcode 1453:3329109 1424:Bibcode 1385:5279081 1285:8325067 1214:Bibcode 1061:2990231 1038:: 1–9. 979:3075532 950:Obesity 800:Ketones 789:Ketones 221:ethanol 103:lactate 31:) is a 1831:breath 1760:  1753:292907 1750:  1711:  1704:371554 1701:  1662:  1621:  1613:  1572:  1513:  1460:  1450:  1442:  1392:  1382:  1374:  1330:  1322:  1283:  1275:  1240:  1232:  1175:  1165:  1142:  1132:  1106:  1096:  1068:  1058:  1050:  1009:  986:  976:  968:  922:  835:(Fat) 824:(Fat) 813:(Fat) 721:and CO 694:) and 546:  523:  431:  405:  381:  321:  284:→ 6 CO 242:→ x CO 201:oxygen 199:, and 193:carbon 88:oxygen 1619:S2CID 1257:Chest 1238:S2CID 848:1.33 827:0.71 816:0.71 805:0.66 794:0.73 296:/ 6 O 288:+ 6 H 280:+ 6 O 186:moles 180:and O 72:ratio 2228:DLCO 2128:(Q) 1927:pons 1758:PMID 1709:PMID 1660:PMID 1611:PMID 1570:ISSN 1511:ISSN 1458:PMID 1440:ISSN 1390:PMID 1372:ISSN 1328:PMID 1320:ISSN 1281:PMID 1273:ISSN 1230:PMID 1191:link 1173:OCLC 1163:ISBN 1140:OCLC 1130:ISBN 1104:OCLC 1094:ISBN 1066:PMID 1048:ISSN 1007:ISBN 984:PMID 966:ISSN 920:ISBN 868:4.0 858:1.6 838:0.7 706:and 300:=1. 159:= CO 62:The 19:The 2033:PEF 2013:FRC 1748:PMC 1740:doi 1699:PMC 1691:doi 1650:doi 1601:doi 1560:hdl 1550:doi 1501:doi 1448:PMC 1432:doi 1380:PMC 1364:doi 1312:doi 1265:doi 1261:104 1222:doi 1210:333 1056:PMC 1040:doi 974:PMC 958:doi 698:(CO 605:BMR 584:fat 567:0.7 428:129 163:/ O 94:). 82:(CO 68:RER 27:or 2279:: 2028:CC 2018:Vt 2008:VC 1756:. 1746:. 1736:46 1734:. 1730:. 1707:. 1697:. 1687:66 1685:. 1681:. 1658:. 1646:83 1644:. 1640:. 1617:. 1609:. 1597:18 1595:. 1591:. 1568:. 1558:. 1548:. 1538:12 1536:. 1532:. 1509:. 1499:. 1487:. 1483:. 1470:^ 1456:. 1446:. 1438:. 1430:. 1418:. 1414:. 1402:^ 1388:. 1378:. 1370:. 1360:96 1358:. 1354:. 1340:^ 1326:. 1318:. 1308:27 1306:. 1293:^ 1279:. 1271:. 1259:. 1236:. 1228:. 1220:. 1208:. 1187:}} 1183:{{ 1171:. 1138:. 1116:^ 1102:. 1078:^ 1064:. 1054:. 1046:. 1034:. 1030:. 982:. 972:. 964:. 954:18 952:. 948:. 934:^ 904:^ 773:1 690:(O 629:RQ 625:RQ 611:RQ 543:23 520:16 402:16 378:16 358:32 346:16 318:23 307:: 274:12 262:12 250:O 215:, 211:, 207:, 195:, 157:RQ 151:RQ 127:VO 121:. 90:(O 54:. 25:RQ 2230:) 2226:( 2205:) 2201:( 2195:) 2176:( 1809:e 1802:t 1795:v 1764:. 1742:: 1715:. 1693:: 1666:. 1652:: 1625:. 1603:: 1576:. 1562:: 1552:: 1544:: 1517:. 1503:: 1495:: 1489:5 1464:. 1434:: 1426:: 1420:6 1396:. 1366:: 1334:. 1314:: 1287:. 1267:: 1244:. 1224:: 1216:: 1193:) 1179:. 1146:. 1110:. 1042:: 1036:2 1015:. 990:. 960:: 928:. 747:2 743:2 731:2 727:2 723:2 719:2 700:2 692:2 653:2 649:2 619:2 615:2 556:2 551:O 536:2 531:O 528:C 514:= 507:2 502:O 499:V 492:2 487:O 484:C 481:V 474:= 470:R 467:E 464:R 441:P 438:T 435:A 425:+ 421:O 415:2 410:H 399:+ 394:2 389:O 386:C 370:2 365:O 353:H 341:C 336:+ 331:2 326:O 298:2 294:2 290:2 286:2 282:2 278:6 276:O 272:H 270:6 266:6 264:O 260:H 258:6 248:2 244:2 240:2 236:z 234:O 232:y 230:H 228:x 226:C 182:2 178:2 171:2 139:2 129:2 115:2 92:2 84:2 66:( 23:(

Index

dimensionless number
basal metabolic rate
calorimetry
respirometer
alveolar gas equation
ratio
metabolic
carbon dioxide
oxygen
aerobic exercise
lactate
anaerobic exercise
bicarbonate buffer system
respiratory system
VO2 max test
exhaustion
moles
carbon
hydrogen
oxygen
fatty acids
glycerol
carbohydrates
deamination
ethanol
palmitic acid
fat
carbohydrate
stearic acid
docosahexaenoic acid

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑