Knowledge

Sediment–water interface

Source 📝

1398:
often the final scavenging process that takes trace chemicals and elements out of the water column. Sediments at this interface are more porous and can hold a larger volume of pore water in the interstitial sites due to high organic matter content and lack of settling. Therefore, chemical compounds in the water can undergo two main processes here: 1) diffusion and 2) biological mixing. Chemical diffusion into and out of the interstitial sites occurs primary through random molecular movement. While diffusion is the primary mode through which chemicals interact with the sediments, there are a number of physical mixing processes which facilitate this process (see Physical Processes section). Chemical fluxes are dependent on several gradients such as, pH and chemical potential. Based on a specific chemical's partitioning parameters, the chemical may stay suspended in the water column, partition to biota, partition to suspended solids, or partition into the sediment. In addition, Fick's first law of diffusion states that the rate of diffusion is a function of distance; as time goes on, the concentration profile becomes linear. The availability of a variety of lake contaminants is determined by which reactions are taking place within the freshwater system.
1262: 1270: 1286: 55: 1509:). These constituents, diffused from the overlying water or the underlying sediment, can be used and/or formed during bacterial metabolism by different organisms or be released back into the water column. The steep redox gradients present at/within the sediment-water interface allow for a variety of aerobic and anaerobic organisms to survive and a variety of redox transformations to take place. Here are just a few of the microbial-mediated redox reactions that can take place within the sediment water interface. 1170: 1276: 1275: 1272: 1271: 1277: 1274: 31: 1293:
Physical movement of water and sediments alter the thickness and topography of the sediment-water interface. Sediment resuspension by waves, tides, or other disturbing forces (e.g. human feet at a beach) allows sediment pore water and other dissolved components to diffuse out of the sediments and mix
1298:
that is greater than the bed shear stress. For example, a very consolidated bed would only be resuspended under a high critical shear stress, while a "fluff layer" of very loose particles could be resuspended under a low critical shear stress. Depending on the type of lake, there can be a number of
1397:
Chemical reactions can occur at the sediment-water interface, abiotically. Examples of this would include the oxygenation of lake sediments as a function of free iron content in the sediment (i.e. pyrite formation in sediments), as well as sulfur availability via the sulfur cycle. Sedimentation is
1344:
Interactions between sediments and organisms living within sediments can also alter the fluxes of oxygen and other dissolved components in and out of the sediment-water interface. Animals like worms, mollusks and echinoderms can enhance resuspension and mixing through movement and construction of
1464:
When moving from the overlying waters to the sediment-water interface there is a 3-5 order of magnitude increase in the number of bacteria. While bacteria are present at the interface throughout the lake basin, their distributions and function vary with substrate, vegetation, and sunlight. For
1230:
and the overlying water column. The term usually refers to a thin layer (approximately 1 cm deep, though variable) of water at the very surface of sediments on the seafloor. In the ocean, estuaries, and lakes, this layer interacts with the water above it through physical flow and chemical
1252:
The location of the top of the sediment-water interface in the water column is defined as the break in the vertical gradient of some dissolved component, such as oxygen, where the concentration transitions from higher concentration in the well-mixed water above to a lower concentration at the
1273: 1389:) reactions can occur simply through the reactions of elements, or by oxidizing/reducing bacteria. The transformations and turnover of elements between sediments and water occur through abiotic chemical processes and microbiological chemical processes. 1303:
lakes do not mix. Polymictic lakes undergo frequent mixing and dimictic lakes mix twice a year. This type of lake mixing is a physical process that can be driven by overlaying winds, temperature differences, or shear stress within the lake.
1243:
generating mounds or trenches). Physical, biological, and chemical processes occur at the sediment-water interface as a result of a number of gradients such as chemical potential gradients, pore water gradients, and oxygen gradients.
1488:
Even though basin morphometry plays a role in the partitioning of bacteria within the lake, bacterial populations and functions are primarily driven by the availability of specific oxidants/electron acceptors
1385:
There are several chemical processes that happen abiotically (chemical reactions), as well as biotically (microbial or enzyme mediated reactions). For example, oxidation-reduction (
1194: 34:
The flux of oxygenated water into and out of the sediments is mediated by bioturbation or mixing of the sediments, for example, via the construction of worm tubes.
1265:
Waves and tidal currents can alter the topography of the sediment-water interface by forming sand ripples, like the ones shown here that are exposed at low tide.
1281:
Bioturbation mixes sediments and changes the topography of the sediment-water interface, as shown by time lapse photography of lugworms moving through sediment.
1349:. These microalgal mats' stabilizing effect is in part due to the stickiness of the exopolymeric substances (EPS) or biochemical "glue" that they secrete. 2026: 1473:, due to higher organic matter content in the former. And, a functional artifact of heavy vegetation at the interface might be a greater number of 1345:
burrows. Microorganisms such as benthic algae can stabilize sediments and keep the sediment-water interface in a more stable condition by building
1289:
The sulfur cycle is a great example of lake nutrient cycling that occurs via biologically mediated processes as well as chemical redox reactions.
582: 1930:
Tolhurst, T.J.; Gust, G.; Paterson, D.M. (2002). "The influence of an extracellular polymeric substance (EPS) on cohesive sediment stability".
1733:
Gundersen, Jens K.; Jorgensen, Bo Barker (June 1990). "Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor".
1784:
Phillips, Matthew C.; Solo-Gabriele, Helena M.; Reniers, Adrianus J. H. M.; Wang, John D.; Kiger, Russell T.; Abdel-Mottaleb, Noha (2011).
1201: 899: 483: 17: 1611:; Höhener, Patrick; Benoit, Gaboury; Brink, Marilyn Buchholtz-ten (1990). "Chemical processes at the sediment-water interface". 1231:
reactions mediated by the micro-organisms, animals, and plants living at the bottom of the water body. The topography of this
2120: 2085: 1909: 473: 1294:
with the water above. For resuspension to occur the movement of water has to be powerful enough to have a strong critical
1099: 1299:
mixing events each year that can influence the sediment interface. Amictic lakes are permanently stratified, similarly,
1261: 2154: 1947: 1866: 1709: 2172:"The Modulating Role of Dissolved Organic Matter on Spatial Patterns of Microbial Metabolism in Lake Erie Sediments" 1094: 1026: 769: 577: 1089: 1064: 1021: 638: 451: 663: 276: 1849:
Mehta, Ashish J.; Partheniades, Emmanuel (1982). "Resuspension of Deposited Cohesive Sediment Beds".
1187: 1141: 774: 1964: 2240: 1074: 1069: 668: 1653:
Santschi, Peter; Höhener, Patrick; Benoit, Gaboury; Buchholtz-ten Brink, Marilyn (1990-01-01).
1564: 1352:
Biological processes that affect the sediment-water interface include, but are not limited to:
967: 619: 389: 381: 230: 2230: 2040: 2020: 1324: 1307:
Physical processes that affect the sediment-water interface include, but are not limited to:
1232: 518: 2001: 1976: 1797: 1742: 1666: 1620: 1569: 1513: 1314: 1106: 721: 695: 316: 70: 1253:
sediment surface. This can include less than 1 mm to several mm of the water column.
8: 851: 105: 1980: 1801: 1746: 1670: 1624: 2235: 2207: 1826: 1785: 1766: 1589: 1320: 1174: 1059: 821: 800: 756: 513: 367: 341: 271: 262: 110: 75: 1939: 1654: 1285: 2199: 2191: 2150: 2116: 2081: 1943: 1862: 1831: 1813: 1758: 1715: 1705: 1682: 1678: 1632: 1518: 1330: 861: 737: 690: 468: 331: 302: 297: 221: 145: 2211: 1809: 2183: 2142: 2073: 1935: 1854: 1821: 1805: 1770: 1750: 1674: 1628: 1373: 928: 706: 683: 648: 129: 54: 2077: 1465:
example, the bacterial population at the sediment-water interface in a vegetative
2110: 1579: 1574: 1523: 1300: 1111: 1081: 951: 875: 790: 764: 596: 525: 431: 2065: 1885: 1608: 1537: 1470: 1148: 1036: 941: 841: 795: 785: 732: 436: 426: 409: 326: 2187: 2109:
Schwarzenbach, René P.; Gschwend, Philip M.; Imboden, Dieter M. (2016-10-12).
1858: 2224: 2195: 1817: 1762: 1686: 1549: 1466: 1346: 1236: 1131: 1116: 856: 658: 643: 614: 572: 567: 547: 446: 399: 357: 257: 249: 2171: 2146: 1719: 2203: 1835: 1559: 1356: 1295: 1240: 1215: 1153: 1136: 1121: 962: 846: 742: 552: 530: 478: 441: 421: 414: 336: 307: 2136: 1401:
Chemical reactions at the sediment water interface are listed here below:
1474: 1031: 904: 891: 870: 816: 805: 678: 631: 604: 508: 458: 346: 1652: 1126: 716: 540: 535: 321: 287: 119: 1754: 1219: 1016: 1001: 985: 946: 711: 673: 609: 362: 1227: 936: 394: 235: 46: 1908:
Gingras, Murray K.; Pemberton, S. George; Smith, Michael (2015).
1704:. Gruber, Nicolas, 1968-. Princeton: Princeton University Press. 1554: 1361: 1239:
causing rippling or resuspension) and biological processes (e.g.
990: 980: 653: 626: 292: 175: 124: 1934:. Proceedings in Marine Science. Vol. 5. pp. 409–425. 1783: 1235:
is often dynamic, as it is affected by physical processes (e.g.
27:
The boundary between bed sediment and the overlying water column
1584: 189: 140: 135: 1386: 1367: 1011: 1006: 562: 557: 404: 194: 2108: 1999: 1786:"Pore Water Transport of Enterococci out of Beach Sediments" 914: 909: 503: 199: 170: 165: 160: 30: 1607: 1910:"Bioturbation: Reworking Sediments for Better or Worse" 1699: 2070:
Encyclopedia of Sustainability Science and Technology
1907: 1469:
tends to be larger than the population of the deeper
1929: 1655:"Chemical processes at the sediment-water interface" 2170:Hoostal, Matthew J.; Bouzat, Juan L. (2008-02-01). 1732: 2063: 1848: 2222: 2009:International Journal of Air and Water Pollution 1932:Fine Sediment Dynamics in the Marine Environment 1366:Bacterial use of different chemical "food" (see 2064:Thibodeaux, Louis J.; Germano, Joseph (2012), 2169: 2066:"Sediment–Water Interfaces, Chemical Flux at" 1195: 2025:: CS1 maint: multiple names: authors list ( 1202: 1188: 2041:"NetLogo Models Library: Solid Diffusion" 1825: 1454: 1284: 1268: 1260: 29: 1339: 14: 2223: 2104: 2102: 2000:Gardner, Wayne, Lee, G. Fred (1965). 1380: 1256: 1962: 1880: 1878: 1648: 1646: 1644: 1642: 1477:, a genus of bacteria that can fix N 24: 2099: 1919:. Oilfield Review. pp. 46–58. 25: 2252: 1875: 1639: 1426:Manganese reduction- Mn --> Mn 2072:, Springer, pp. 9128–9145, 1169: 1168: 53: 2163: 2129: 2112:Environmental Organic Chemistry 2057: 2033: 2002:"Oxygenation of Lake Sediments" 1993: 1956: 1810:10.1016/j.marpolbul.2011.08.049 1700:Sarmiento, Jorge Louis (2006). 583:Microbial calcite precipitation 2068:, in Meyers, Robert A. (ed.), 1923: 1901: 1842: 1777: 1726: 1693: 1601: 1376:of organic carbon and detritus 13: 1: 2078:10.1007/978-1-4419-0851-3_645 1940:10.1016/s1568-2692(02)80030-4 1702:Ocean biogeochemical dynamics 1595: 1247: 298:Aeolian (windborne) transport 1679:10.1016/0304-4203(90)90076-O 1633:10.1016/0304-4203(90)90076-o 1429:Iron reduction- Fe --> Fe 1226:is the boundary between bed 7: 1543: 1090:cross-cutting relationships 639:Amorphous calcium carbonate 10: 2257: 1969:AGU Fall Meeting Abstracts 1392: 664:Coastal sediment transport 2188:10.1007/s00248-007-9281-7 2115:. John Wiley & Sons. 1859:10.1061/9780872623736.095 1790:Marine Pollution Bulletin 474:Soft-sediment deformation 71:Terrigenous (lithogenous) 1851:Coastal Engineering 1982 1459: 1224:sediment–water interface 775:calcareous nannoplankton 464:Sediment–water interface 18:Sediment-water interface 2147:10.1016/c2009-0-02112-6 1319:Rippling (either small 669:Coastal sediment supply 442:Paleocurrent indicators 1565:Benthic boundary layer 1290: 1282: 1266: 1100:original horizontality 770:biogenic calcification 620:oolitic aragonite sand 390:Sedimentary structures 231:Oolitic aragonite sand 35: 1481:to ionic ammonium (NH 1455:Biologically mediated 1439:Methane formation- CH 1432:Sulfate reduction- SO 1405:Oxygen consumption- O 1325:giant current ripples 1288: 1280: 1264: 33: 2045:ccl.northwestern.edu 1963:Bada, J. L. (2001). 1570:Biogeochemical cycle 1340:Biological processes 1981:2001AGUFM.U51A..11B 1802:2011MarPB..62.2293P 1747:1990Natur.345..604G 1671:1990MarCh..30..269S 1625:1990MarCh..30..269S 1528:Manganese reduction 1514:Aerobic respiration 1416:Denitrification- NO 900:Soil carbon storage 835:Sedimentary ecology 757:Biogenous sediments 41:Part of a series on 1590:Sediment transport 1381:Chemical processes 1331:Turbidity currents 1291: 1283: 1267: 1257:Physical processes 1142:carbonate-silicate 1112:Sedimentary record 1095:lateral continuity 892:Sedimentary carbon 822:Reverse weathering 801:diatomaceous earth 484:Vegetation-induced 368:Turbidity currents 342:ice-sheet dynamics 272:Sediment transport 263:Sedimentary budget 36: 2176:Microbial Ecology 2122:978-1-118-76704-7 2087:978-1-4419-0851-3 1796:(11): 2293–2298. 1741:(6276): 604–607. 1534:Sulfate reduction 1519:Nitrogen fixation 1335:Bed consolidation 1278: 1212: 1211: 862:Soil biodiversity 738:Sedimentary basin 691:Marine regression 469:Sedimentary basin 332:Fluvial processes 303:Biomineralization 222:Manganese nodules 16:(Redirected from 2248: 2216: 2215: 2167: 2161: 2160: 2133: 2127: 2126: 2106: 2097: 2096: 2095: 2094: 2061: 2055: 2054: 2052: 2051: 2037: 2031: 2030: 2024: 2016: 2006: 1997: 1991: 1990: 1988: 1987: 1960: 1954: 1953: 1927: 1921: 1920: 1914: 1905: 1899: 1898: 1897: 1896: 1882: 1873: 1872: 1846: 1840: 1839: 1829: 1781: 1775: 1774: 1755:10.1038/345604a0 1730: 1724: 1723: 1697: 1691: 1690: 1659:Marine Chemistry 1650: 1637: 1636: 1613:Marine Chemistry 1605: 1374:Remineralization 1279: 1204: 1197: 1190: 1177: 1172: 1171: 929:Sedimentary rock 684:pelagic red clay 649:Continental rise 57: 38: 37: 21: 2256: 2255: 2251: 2250: 2249: 2247: 2246: 2245: 2221: 2220: 2219: 2168: 2164: 2157: 2135: 2134: 2130: 2123: 2107: 2100: 2092: 2090: 2088: 2062: 2058: 2049: 2047: 2039: 2038: 2034: 2018: 2017: 2004: 1998: 1994: 1985: 1983: 1961: 1957: 1950: 1928: 1924: 1912: 1906: 1902: 1894: 1892: 1884: 1883: 1876: 1869: 1847: 1843: 1782: 1778: 1731: 1727: 1712: 1698: 1694: 1651: 1640: 1609:Santschi, Peter 1606: 1602: 1598: 1580:Nepheloid layer 1575:Marine sediment 1546: 1524:Denitrification 1508: 1504: 1500: 1496: 1484: 1480: 1462: 1457: 1450: 1446: 1442: 1435: 1423: 1419: 1412: 1408: 1395: 1383: 1342: 1269: 1259: 1250: 1208: 1167: 1160: 1159: 1158: 1082:Legacy sediment 1051: 1043: 1042: 1041: 997: 974: 958: 931: 921: 920: 919: 894: 884: 883: 882: 876:root microbiome 866: 836: 828: 827: 826: 812: 791:biogenic silica 781: 765:Calcareous ooze 759: 749: 748: 747: 728: 702: 599: 597:Marine sediment 589: 588: 587: 498: 490: 489: 488: 384: 374: 373: 372: 353: 312: 283: 267: 252: 242: 241: 240: 226: 216: 208: 207: 206: 182: 154: 132: 115: 100: 92: 91: 90: 80: 65: 28: 23: 22: 15: 12: 11: 5: 2254: 2244: 2243: 2241:Marine geology 2238: 2233: 2218: 2217: 2182:(2): 358–368. 2162: 2155: 2128: 2121: 2098: 2086: 2056: 2032: 1992: 1955: 1948: 1922: 1900: 1886:"Book sources" 1874: 1867: 1841: 1776: 1725: 1710: 1692: 1638: 1599: 1597: 1594: 1593: 1592: 1587: 1582: 1577: 1572: 1567: 1562: 1557: 1552: 1545: 1542: 1541: 1540: 1538:Methanogenesis 1535: 1532: 1531:Iron reduction 1529: 1526: 1521: 1516: 1506: 1502: 1498: 1494: 1482: 1478: 1471:profundal zone 1461: 1458: 1456: 1453: 1452: 1451: 1448: 1444: 1440: 1437: 1433: 1430: 1427: 1424: 1421: 1417: 1414: 1410: 1406: 1394: 1391: 1382: 1379: 1378: 1377: 1371: 1364: 1359: 1341: 1338: 1337: 1336: 1333: 1328: 1317: 1312: 1258: 1255: 1249: 1246: 1210: 1209: 1207: 1206: 1199: 1192: 1184: 1181: 1180: 1179: 1178: 1162: 1161: 1157: 1156: 1151: 1149:Paleolimnology 1146: 1145: 1144: 1139: 1134: 1124: 1119: 1114: 1109: 1104: 1103: 1102: 1097: 1092: 1084: 1079: 1078: 1077: 1072: 1067: 1062: 1053: 1052: 1049: 1048: 1045: 1044: 1040: 1039: 1034: 1029: 1024: 1019: 1014: 1009: 1004: 998: 996: 995: 994: 993: 988: 983: 975: 973: 972: 971: 970: 959: 957: 956: 955: 954: 949: 939: 933: 932: 927: 926: 923: 922: 918: 917: 912: 907: 902: 896: 895: 890: 889: 886: 885: 881: 880: 879: 878: 867: 865: 864: 859: 854: 852:soil pathogens 849: 844: 842:Soil biomantle 838: 837: 834: 833: 830: 829: 825: 824: 819: 813: 811: 810: 809: 808: 803: 798: 796:silicification 793: 786:Siliceous ooze 782: 780: 779: 778: 777: 772: 761: 760: 755: 754: 751: 750: 746: 745: 740: 735: 733:Salt tectonics 729: 727: 726: 725: 724: 719: 714: 703: 701: 700: 699: 698: 688: 687: 686: 676: 671: 666: 661: 656: 651: 646: 641: 636: 635: 634: 624: 623: 622: 617: 607: 601: 600: 595: 594: 591: 590: 586: 585: 580: 578:Mineralization 575: 570: 565: 560: 555: 550: 545: 544: 543: 538: 533: 523: 522: 521: 516: 511: 500: 499: 496: 495: 492: 491: 487: 486: 481: 476: 471: 466: 461: 456: 455: 454: 449: 439: 434: 429: 427:Alluvial river 424: 419: 418: 417: 412: 410:graded bedding 407: 402: 392: 386: 385: 380: 379: 376: 375: 371: 370: 365: 360: 354: 352: 351: 350: 349: 344: 334: 329: 327:Exner equation 324: 319: 313: 311: 310: 305: 300: 295: 290: 284: 282: 281: 280: 279: 268: 266: 265: 260: 254: 253: 248: 247: 244: 243: 239: 238: 233: 227: 225: 224: 218: 217: 215:By composition 214: 213: 210: 209: 205: 204: 203: 202: 197: 192: 183: 181: 180: 179: 178: 173: 168: 163: 155: 153: 152: 151: 150: 149: 148: 143: 133: 127: 116: 114: 113: 108: 102: 101: 98: 97: 94: 93: 89: 88: 85: 81: 79: 78: 73: 67: 66: 63: 62: 59: 58: 50: 49: 43: 42: 26: 9: 6: 4: 3: 2: 2253: 2242: 2239: 2237: 2234: 2232: 2229: 2228: 2226: 2213: 2209: 2205: 2201: 2197: 2193: 2189: 2185: 2181: 2177: 2173: 2166: 2158: 2156:9780127447605 2152: 2148: 2144: 2140: 2139: 2132: 2124: 2118: 2114: 2113: 2105: 2103: 2089: 2083: 2079: 2075: 2071: 2067: 2060: 2046: 2042: 2036: 2028: 2022: 2014: 2010: 2003: 1996: 1982: 1978: 1974: 1970: 1966: 1959: 1951: 1949:9780444511362 1945: 1941: 1937: 1933: 1926: 1918: 1911: 1904: 1891: 1887: 1881: 1879: 1870: 1868:9780872623736 1864: 1860: 1856: 1853:: 1569–1588. 1852: 1845: 1837: 1833: 1828: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1780: 1772: 1768: 1764: 1760: 1756: 1752: 1748: 1744: 1740: 1736: 1729: 1721: 1717: 1713: 1711:9780691017075 1707: 1703: 1696: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1649: 1647: 1645: 1643: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1604: 1600: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1553: 1551: 1550:Anoxic waters 1548: 1547: 1539: 1536: 1533: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1511: 1510: 1492: 1486: 1476: 1472: 1468: 1467:littoral zone 1438: 1431: 1428: 1425: 1415: 1404: 1403: 1402: 1399: 1390: 1388: 1375: 1372: 1369: 1365: 1363: 1360: 1358: 1355: 1354: 1353: 1350: 1348: 1334: 1332: 1329: 1326: 1322: 1318: 1316: 1313: 1310: 1309: 1308: 1305: 1302: 1297: 1287: 1263: 1254: 1245: 1242: 1238: 1234: 1229: 1225: 1221: 1217: 1205: 1200: 1198: 1193: 1191: 1186: 1185: 1183: 1182: 1176: 1166: 1165: 1164: 1163: 1155: 1152: 1150: 1147: 1143: 1140: 1138: 1135: 1133: 1130: 1129: 1128: 1125: 1123: 1120: 1118: 1117:Sedimentology 1115: 1113: 1110: 1108: 1105: 1101: 1098: 1096: 1093: 1091: 1088: 1087: 1085: 1083: 1080: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1057: 1055: 1054: 1047: 1046: 1038: 1035: 1033: 1030: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 1000: 999: 992: 989: 987: 984: 982: 979: 978: 977: 976: 969: 966: 965: 964: 961: 960: 953: 950: 948: 945: 944: 943: 940: 938: 935: 934: 930: 925: 924: 916: 913: 911: 908: 906: 903: 901: 898: 897: 893: 888: 887: 877: 874: 873: 872: 869: 868: 863: 860: 858: 857:Pedodiversity 855: 853: 850: 848: 845: 843: 840: 839: 832: 831: 823: 820: 818: 815: 814: 807: 804: 802: 799: 797: 794: 792: 789: 788: 787: 784: 783: 776: 773: 771: 768: 767: 766: 763: 762: 758: 753: 752: 744: 741: 739: 736: 734: 731: 730: 723: 720: 718: 715: 713: 710: 709: 708: 705: 704: 697: 696:transgression 694: 693: 692: 689: 685: 682: 681: 680: 677: 675: 672: 670: 667: 665: 662: 660: 659:Bioirrigation 657: 655: 652: 650: 647: 645: 644:Calcification 642: 640: 637: 633: 630: 629: 628: 625: 621: 618: 616: 615:aragonite sea 613: 612: 611: 608: 606: 603: 602: 598: 593: 592: 584: 581: 579: 576: 574: 573:Hydropedology 571: 569: 568:Soil salinity 566: 564: 561: 559: 556: 554: 551: 549: 546: 542: 539: 537: 534: 532: 529: 528: 527: 524: 520: 517: 515: 512: 510: 507: 506: 505: 502: 501: 497:Soil sediment 494: 493: 485: 482: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 453: 450: 448: 447:sole markings 445: 444: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 416: 413: 411: 408: 406: 403: 401: 400:cross-bedding 398: 397: 396: 393: 391: 388: 387: 383: 378: 377: 369: 366: 364: 361: 359: 358:Lithification 356: 355: 348: 345: 343: 340: 339: 338: 335: 333: 330: 328: 325: 323: 320: 318: 315: 314: 309: 306: 304: 301: 299: 296: 294: 291: 289: 286: 285: 278: 275: 274: 273: 270: 269: 264: 261: 259: 258:Sedimentation 256: 255: 251: 246: 245: 237: 234: 232: 229: 228: 223: 220: 219: 212: 211: 201: 198: 196: 193: 191: 188: 187: 185: 184: 177: 174: 172: 169: 167: 164: 162: 159: 158: 157: 156: 147: 144: 142: 139: 138: 137: 134: 131: 128: 126: 123: 122: 121: 118: 117: 112: 109: 107: 104: 103: 96: 95: 86: 83: 82: 77: 74: 72: 69: 68: 61: 60: 56: 52: 51: 48: 45: 44: 40: 39: 32: 19: 2231:Oceanography 2179: 2175: 2165: 2137: 2131: 2111: 2091:, retrieved 2069: 2059: 2048:. Retrieved 2044: 2035: 2021:cite journal 2012: 2008: 1995: 1984:. Retrieved 1972: 1968: 1958: 1931: 1925: 1917:Schlumberger 1916: 1903: 1893:, retrieved 1889: 1850: 1844: 1793: 1789: 1779: 1738: 1734: 1728: 1701: 1695: 1662: 1658: 1616: 1612: 1603: 1560:Benthic zone 1490: 1487: 1463: 1400: 1396: 1384: 1357:Bioturbation 1351: 1343: 1321:wave ripples 1311:Resuspension 1306: 1296:shear stress 1292: 1251: 1241:bioturbation 1223: 1216:oceanography 1213: 1154:Biosignature 1122:Stratigraphy 1075:soil science 1070:paleontology 1027:Organic-rich 968:conglomerate 847:Soil zoology 743:Tidal bundle 722:hemipelagite 553:Soil horizon 519:permeability 479:Unconformity 463: 422:Alluvial fan 415:ripple marks 382:By structure 337:Glacier flow 308:Bioturbation 1665:: 269–315. 1619:: 269–315. 1475:Azotobacter 1443:O --> CO 1086:Principles 1032:Phosphorite 905:Soil carbon 871:Rhizosphere 817:Microfossil 806:radiolarite 679:Marine clay 632:calcite sea 605:Abyssal fan 459:River delta 452:imbrication 347:ice rafting 87:Hydrogenous 84:Cosmogenous 2225:Categories 2093:2020-05-15 2050:2020-05-15 2015:: 553–564. 1986:2020-05-15 1965:"NASA/ADS" 1895:2020-05-15 1596:References 1370:reactions) 1315:Deposition 1301:meromictic 1248:Definition 1127:Rock cycle 1107:Provenance 1065:geological 942:Carbonates 717:contourite 674:Evaporites 526:morphology 514:pore space 322:Concretion 317:Compaction 288:Weathering 250:By process 120:Grain size 99:By texture 2236:Sediments 2196:1432-184X 2138:Limnology 1890:Knowledge 1818:0025-326X 1763:1476-4687 1687:0304-4203 1436:--> HS 1233:interface 1220:limnology 1037:Siliceous 1022:Iron-rich 1017:Greywacke 1002:Evaporite 986:sandstone 947:limestone 712:turbidite 610:Aragonite 363:Siltation 106:Roundness 76:Biogenous 64:By origin 47:Sediments 2212:25154731 2204:17607503 2141:. 2001. 1836:21945015 1720:60651167 1544:See also 1420:--> N 1409:--> H 1362:Biofilms 1237:currents 1228:sediment 1175:Category 1056:History 952:dolomite 937:Badlands 395:Bedforms 236:Tektites 1977:Bibcode 1827:3202074 1798:Bibcode 1771:4324203 1743:Bibcode 1667:Bibcode 1621:Bibcode 1555:Benthos 1393:Abiotic 1132:calcium 1060:geology 1050:Related 991:mudrock 981:breccia 963:Clastic 707:Pelagic 654:Bay mud 627:Calcite 531:texture 293:Erosion 277:coastal 176:colloid 146:granule 125:boulder 111:Sorting 2210:  2202:  2194:  2153:  2119:  2084:  1946:  1865:  1834:  1824:  1816:  1769:  1761:  1735:Nature 1718:  1708:  1685:  1585:Seabed 1222:, the 1173:  1137:silica 548:Catena 509:matrix 405:duness 190:oolite 186:Other 141:pebble 136:gravel 130:cobble 2208:S2CID 2005:(PDF) 1913:(PDF) 1767:S2CID 1460:Lakes 1387:redox 1368:Redox 1012:Chert 1007:Chalk 563:Humin 558:Humus 541:color 536:value 432:Fault 195:scree 2200:PMID 2192:ISSN 2151:ISBN 2117:ISBN 2082:ISBN 2027:link 1973:2001 1944:ISBN 1863:ISBN 1832:PMID 1814:ISSN 1759:ISSN 1716:OCLC 1706:ISBN 1683:ISSN 1505:, CO 1501:, SO 1497:, NO 1491:e.g. 1447:, CH 1347:mats 1218:and 915:Peat 910:Coal 504:Soil 437:Fold 200:till 171:clay 166:silt 161:sand 2184:doi 2143:doi 2074:doi 1936:doi 1855:doi 1822:PMC 1806:doi 1751:doi 1739:345 1675:doi 1629:doi 1493:, O 1485:). 1323:or 1214:In 2227:: 2206:. 2198:. 2190:. 2180:55 2178:. 2174:. 2149:. 2101:^ 2080:, 2043:. 2023:}} 2019:{{ 2011:. 2007:. 1975:. 1971:. 1967:. 1942:. 1915:. 1888:, 1877:^ 1861:. 1830:. 1820:. 1812:. 1804:. 1794:62 1792:. 1788:. 1765:. 1757:. 1749:. 1737:. 1714:. 1681:. 1673:. 1663:30 1661:. 1657:. 1641:^ 1627:. 1617:30 1615:. 2214:. 2186:: 2159:. 2145:: 2125:. 2076:: 2053:. 2029:) 2013:9 1989:. 1979:: 1952:. 1938:: 1871:. 1857:: 1838:. 1808:: 1800:: 1773:. 1753:: 1745:: 1722:. 1689:. 1677:: 1669:: 1635:. 1631:: 1623:: 1507:2 1503:4 1499:3 1495:2 1489:( 1483:4 1479:2 1449:4 1445:2 1441:2 1434:4 1422:2 1418:3 1413:O 1411:2 1407:2 1327:) 1203:e 1196:t 1189:v 20:)

Index

Sediment-water interface

Sediments

Terrigenous (lithogenous)
Biogenous
Roundness
Sorting
Grain size
boulder
cobble
gravel
pebble
granule
sand
silt
clay
colloid
oolite
scree
till
Manganese nodules
Oolitic aragonite sand
Tektites
By process
Sedimentation
Sedimentary budget
Sediment transport
coastal
Weathering

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.