Knowledge

Thermodynamic databases for pure substances

Source 📝

3342:. Internal consistency requires that all values of the thermodynamic functions are correctly calculated by application of the appropriate thermodynamic equations. For example, values of the Gibbs energy obtained from high-temperature equilibrium emf methods must be identical to those calculated from calorimetric measurements of the enthalpy and entropy values. The database provider must use recognized data analysis procedures to resolve differences between data obtained by different types of experiments. 31: 1601: 3315:
to reproduce the tabular values. More recently, computerized databases are used which consist of the equation parameters and subroutines to calculate specific values at any temperature and prepare tables for printing. Computerized databases often include subroutines for calculating reaction properties and displaying the data as charts.
4099: 3345:
All thermodynamic data is a non-linear function of temperature (and pressure), but there is no universal equation format for expressing the various functions. Here we describe a commonly used polynomial equation to express the temperature dependence of the heat content. A common six-term equation for
3314:
consists of sets of critically evaluated values for the major thermodynamic functions. Originally, data was presented as printed tables at 1 atm and at certain temperatures, usually 100° intervals and at phase transition temperatures. Some compilations included polynomial equations that could be used
1850:
function of temperature. The heat content of an ideal gas is independent of pressure (or volume), but the heat content of real gases varies with pressure, hence the need to define the state for the gas (real or ideal) and the pressure. Note that for some thermodynamic databases such as for steam, the
1731:
standard state is one whose properties are obtained by extrapolation from a physical state (for example, a solid superheated above the normal melting point, or an ideal gas at a condition where the real gas is non-ideal). Metastable liquids and solids are important because some substances can persist
4642:
The table format is a common way to display thermodynamic data. The FREED table gives additional information in the top rows, such as the mass and amount composition and transition temperatures of the constituent elements. Transition temperatures for the constituent elements have dashes ------- in
1716:
standard state is one that exists for a time sufficient to allow measurements of its properties. The most common physical standard state is one that is stable thermodynamically (i.e., the normal one). It has no tendency to transform into any other physical state. If a substance can exist but is not
1689:
is a set of equation parameters from which the numerical data values can be calculated. Tables and datafiles are usually presented at a standard pressure of 1 bar or 1 atm, but in the case of steam and other industrially important gases, pressure may be included as a variable. Function values depend
3858: 4296:
Depending on the accuracy of the data and the length of the temperature span, the heat content equation may require more or fewer terms. Over a very long temperature span, two equations may be used instead of one. It is unwise to extrapolate the equations to obtain values outside the range of
4305:
The equation parameters and all other information required to calculate values of the important thermodynamic functions are stored in a thermodynamic datafile. The values are organized in a format that makes them readable by a thermodynamic calculation program or for use in a spreadsheet. For
1986: 2385:
at phase transitions between substances in their standard states. Hence, the main functional application of Gibbs energy from a thermodynamic database is its change in value during the formation of a compound from the standard-state elements, or for any standard chemical reaction
1836:
means the reference temperature (usually 298.15 K, but abbreviated in heat content symbols as 298). All of these terms mean the molar heat content for a substance in its normal standard state above a reference temperature of 298.15 K. Data for gases is for the hypothetical
4643:
the first column in a blank row, such as at 922 K, the melting point of Mg. Transition temperatures for the substance have two blank rows with dashes, and a center row with the defined transition and the enthalpy change, such as the melting point of MgCl
1732:
and be used in that state indefinitely. Thermodynamic functions that refer to conditions in the normal standard state are designated with a small superscript °. The relationship between certain physical and thermodynamic properties may be described by an
3899: 4196: 3657: 3033: 2817: 4208:
deviates only slightly from linearity with temperature, so over a short temperature span, the seven-term equation can be replaced by a three-term equation, whose parameter values are obtained by regression of tabular values.
3179: 2042:
takes place. The amount of substance that transforms is a function of the amount of heat added. After the transition is complete, adding more heat increases the temperature. In other words, the enthalpy of a substance changes
3301: 3673: 3499: 2276:
of a system is another thermodynamic quantity that is not easily measured. However, using a combination of theoretical and experimental techniques, entropy can in fact be accurately estimated. At low temperatures, the
4628: 2303:/T are plotted against T for the whole range of temperatures where the substance exists in the same physical state. The data are extrapolated from the lowest experimental temperature to 0 K using the Debye model. The 4292: 1865: 4317: 1662:. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the 2253: 2517: 1845:
unit for enthalpy is J/mol, and is a positive number above the reference temperature. The heat content has been measured and tabulated for virtually all known substances, and is commonly expressed as a
4647:
at 980 K. The datafile equations are at the bottom of the table, and the entire table is in an Excel worksheet. This is particularly useful when the data is intended for making specific calculations.
2406: 1752:), since the internal energy of a substance can take many forms, each of which has its own typical temperature at which it begins to become important in thermodynamic reactions. It is therefore the 2015: 1320: 2000: 2347: 2184: 2654: 3338:
measurements of reversible reactions. A proper database takes all available information about the elements and compounds in the database, and assures that the presented results are
2894: 2353:. The solid line refers to the entropy of strontium in its normal standard state at 1 atm pressure. The dashed line refers to the entropy of strontium vapor in a non-physical state. 1996:
is therefore the slope of a plot of temperature vs. isobaric heat content (or the derivative of a temperature/heat content equation). The SI units for heat capacity are J/(mol·K).
2006:
of four substances in their designated states above 298.15 K and at 1 atm pressure. CaO(c) and Rh(c) are in their normal standard state of crystalline solid at all temperatures. S
4094:{\displaystyle \Delta G_{form}^{\circ }=(\Delta A-\Delta F')T-\Delta A(T\ln T)-\Delta B(T^{2})+\textstyle {\frac {1}{2}}\Delta C(T^{-1})+2\Delta D(T^{\textstyle {\frac {1}{2}}})} 2373:. The entropy change is obtained by summing the absolute entropies of the products minus the sum of the absolute entropies of the reactants. Like enthalpy, the Gibbs energy 2241:
undergoes discontinuities at a phase transition temperatures of the constituent element(s) and the compound. The enthalpy change for any standard reaction is designated Δ
1155: 1100: 1045: 852: 805: 720: 673: 585: 538: 756: 624: 2078: 990: 4105: 489: 2343:°) at the normal phase transition temperature is equal to the heat of transition divided by the transition temperature. The SI units for entropy are J/(mol·K). 2021:
of four substances in their designated states at 1 atm pressure. CaO(c) and Rh(c) are in their normal standard state of crystalline solid at all temperatures. S
828: 781: 696: 649: 561: 514: 3523: 2903: 2687: 2038:
substance, its temperature increases until a phase change temperature is reached. With further addition of heat, the temperature remains constant while the
1712:
and a pressure of 1 bar or 1 atm. However, since any non-normal condition could be chosen as a standard state, it must be defined in the context of use. A
3062: 4877:
Gurvich, L.V., Veitz, I.V., et al. (1989) Thermodynamic Properties of Individual Substances. Fourth edition, Hemisphere Pub Co. NY, L., Vol.1 in 2 parts.
3853:{\displaystyle S_{T}^{\circ }=A(\ln T)+2B(T)+\textstyle {\frac {1}{2}}C(T^{-2})-D(T^{\textstyle -{\frac {1}{2}}})+1\textstyle {\frac {1}{2}}E(T^{2})+F'} 3205: 3351: 2165:
are usually given for the transition at the normal standard state temperature for the two states, and if so, are designated with a superscript °. Δ
1630: 3183:
The Gibbs energy function has the same units as entropy, but unlike entropy, exhibits no discontinuity at normal phase transition temperatures.
1331: 2549:
Compilers of thermochemical databases may contain some additional thermodynamic functions. For example, the absolute enthalpy of a substance
1219: 4214: 3511:
at 298.15 K, plus the sum of the heat content parameters of the products minus the sum of the heat content parameters of the reactants. The
2540:
is not discontinuous at these phase transition temperatures, but does undergo a change in slope, which is almost imperceptible on the chart.
2314:
is zero, the area under the curve from 0 K to any temperature gives the entropy at that temperature. Even though the Debye model contains
1981:{\displaystyle C_{P}(T)=\left\{\lim _{\Delta T\to 0}{\frac {\Delta H}{\Delta T}}\right\}=\left({\frac {\partial H}{\partial T}}\right)_{p}} 4327:(c,l,g) from FREED. Some values have truncated significant figures for display purposes. The explanation for the values is shown below. 1694:
of the substance, which must be defined for the value to have any meaning. The state of aggregation for thermodynamic purposes is the
1309: 4893: 2416: 1342: 2060:. This applies to the transformations from one solid phase to another, such as the transformation from α-Fe (bcc ferrite) to 912: 2357:
The standard entropy change for the formation of a compound from the elements, or for any standard reaction is designated Δ
2331:
The absolute value of entropy for a substance in its standard state at the reference temperature of 298.15 K is designated
1623: 1210: 879: 446: 324: 262: 2562: 2296:. Experimentally, the heat capacity is measured at temperature intervals to as low a temperature as possible. Values of 1394: 1368: 889: 343: 4932:
A chemical database based on Quantum Mechanics and QSPR, providing thermodynamic properties for millions of compounds.
4914:
Critically evaluated thermophysical property database useful for chemical process design and equilibrium calculations.
4945: 4871: 4792: 4773: 4754: 4735: 4714: 4682: 4620:
Most computerized databases will create a table of thermodynamic values using the values from the datafile. For MgCl
2339:. Entropy increases with temperature, and is discontinuous at phase transition temperatures. The change in entropy (Δ 1696: 1663: 295: 2169:
for a phase transition is a weak function of temperature. In some texts, the heats of phase transitions are called
1647: 1447: 918: 317: 2229:
are usually given where the elements and compound are in their normal standard states, and as such are designated
1616: 4493:
equations required. Here five; three for species phases and two because one of the elements has a phase change.
1681:
is usually presented as a table or chart of function values for one mole of a substance (or in the case of the
1547: 79: 1442: 2263:(c,l) from the elements, showing discontinuities at transition temperatures of the elements and the compound. 1522: 1295: 272: 2834: 907: 110: 100: 4861: 4841:
Pankratz, L. B. (1994). "Thermodynamic Properties of Carbides, Nitrides, and Other Selected Substances".
2304: 115: 105: 2047:
as it undergoes a physical change. The enthalpy change resulting from a phase transition is designated Δ
1860:
C is the ratio of heat added to the temperature increase. For an incremental isobaric addition of heat:
1399: 1363: 141: 75: 4638:(c,l,g), from the FREED datafile. Some values have truncated significant figures for display purposes. 2190:
above 298.15 K and at 1 atm pressure, showing discontinuities at the melting and boiling points. The Δ
1708:
standard state is commonly defined as the most stable physical form of the substance at the specified
1437: 2025:(g) is a non-physical state below about 882 K and NiO(g) is a non-physical state at all temperatures. 2010:(g) is a non-physical state below about 882 K and NiO(g) is a non-physical state at all temperatures. 1192: 940: 386: 199: 189: 4627: 4657: 2124: 1604: 1432: 1229: 1110: 1055: 1000: 932: 871: 407: 396: 62: 1744:
It is very difficult to measure the absolute amount of any thermodynamic quantity involving the
834: 787: 702: 655: 567: 520: 4672: 2147:
is infinite at phase transition temperatures because the enthalpy changes isothermally. At the
1537: 1254: 338: 92: 67: 4191:{\displaystyle -\textstyle {\frac {1}{2}}\Delta E(T^{3})+\Delta F+\Delta H_{form298}^{\circ }} 3503:
Regardless of the equation format, the heat of formation of a compound at any temperature is Δ
1457: 738: 603: 2063: 1472: 1049: 362: 208: 57: 960: 4926:
Various on-line tools for obtaining thermodynamic data and making equilibrium calculations.
4905: 3331: 3191: 2405: 2328:, the difference between the two at temperatures near 0 K is so small as to be negligible. 2252: 1667: 1552: 1477: 1467: 267: 129: 4316: 8: 4828:
Pankratz, L. B.; A. D. Mah; S. W. Watson (1987). "Thermodynamic Properties of Sulfides".
3335: 1497: 1259: 281: 247: 242: 155: 3652:{\displaystyle C_{P}=A+2B(T)-C(T^{-2})+\textstyle {\frac {1}{2}}D(T^{-0.5})+3E(T^{2})\,} 1492: 471: 4890:
A gateway to the data collection of the National Institute of Standards and Technology.
4687: 4662: 2014: 1586: 1249: 1244: 1197: 813: 766: 681: 634: 546: 499: 429: 413: 300: 252: 237: 227: 36: 30: 3870:. The Gibbs energy of formation of a compound is obtained from the defining equation Δ 3028:{\displaystyle \Delta G_{form}^{\circ }=G(T)compound-\sum \left\{G(T)elements\right\}} 2812:{\displaystyle \Delta H_{form}^{\circ }=H(T)compound-\sum \left\{H(T)elements\right\}} 2307:
states that the entropy of a perfect crystalline substance becomes zero at 0 K. When
2051:. There are four types of enthalpy changes resulting from a phase transition. To wit: 1999: 4867: 4788: 4769: 4750: 4731: 4710: 4667: 3323: 2208: 2148: 1733: 1659: 1581: 1542: 1532: 1104: 902: 730: 232: 222: 164: 3174:{\displaystyle (H_{298}^{\circ }-G_{T}^{\circ })/T=S_{T}^{\circ }-(H_{T}-H_{298})/T} 4692: 2212: 2039: 1502: 1487: 1427: 1422: 1239: 1234: 884: 352: 217: 3296:{\displaystyle \log _{10}\left(K_{eq}\right)=-\Delta G_{form}^{\circ }/(19.1448T)} 2557:) is defined in terms of its formation enthalpy and its heat content as follows: 4725: 4677: 4307: 1745: 1452: 1300: 954: 595: 418: 179: 146: 2346: 4313:
creates the following type of datafile, here for a standard pressure of 1 atm.
3200:
is often listed, which is calculated from the defining thermodynamic equation.
2035: 1719: 1691: 1507: 1277: 377: 257: 194: 184: 52: 22: 4764:
Hummel, Wolfgang; Urs Berner; Enzo Curti; F. J. Pearson; Tres Thoenen (2002).
1666:
of 101.325 kPa (1 atm), or 100 kPa (1 bar). Both of these definitions for the
4939: 3494:{\displaystyle H_{T}-H_{298}=A(T)+B(T^{2})+C(T^{-1})+D(T^{0.5})+E(T^{3})+F\,} 2293: 1856: 1766: 1756:
in these functions that is of most interest. The isobaric change in enthalpy
1717:
thermodynamically stable (for example, a supercooled liquid), it is called a
1576: 894: 463: 424: 136: 3518:
equation is obtained by taking the derivative of the heat content equation.
2183: 4802:
Pankratz, L. B. (1982). "Thermodynamic Properties of Elements and Oxides".
3327: 2112:. This applies to the transition of a liquid to a vapor and is designated Δ 2108: 2096:. This applies to the transition of a solid to a liquid and is designated Δ 1527: 1512: 1462: 945: 4923: 4863:
Yaws Handbook of Thermodynamic Properties for Hydrocarbons & Chemicals
2128:. This applies to the transition of a solid to a vapor and is designated Δ 3319: 2278: 2170: 1778:. Different databases designate this term in different ways; for example 1760:
above the common reference temperature of 298.15 K (25 °C) is called the
1709: 1482: 290: 4763: 2402:). The SI units of Gibbs energy are the same as for enthalpy (J/mol). 1847: 1571: 1517: 4287:{\displaystyle \Delta G_{form}^{\circ }=\alpha T+\beta (T\ln T)+\chi } 2158:
shows a sharp discontinuity while the enthalpy has a change in slope.
2528:
shows discontinuities at the melting points of Pb (600.65 K) and PbCl
1842: 1838: 169: 4899: 4730:(Fourth ed.). Journal of Physical and Chemical Reference Data. 4917: 2292:, and that for perfect crystalline solids it should become zero at 1749: 1651: 1285: 1202: 994: 402: 174: 2829:) is defined by the absolute enthalpy and entropy of a substance: 4855:
Thermodynamic Properties of Minerals . . . at Higher Temperatures
4360:
equations required. Here, three because of three species phases.
3318:
Thermodynamic data comes from many types of experiments, such as
2273: 2092: 1655: 391: 4815:
Pankratz, L. B. (1984). "Thermodynamic Properties of Halides".
2211:. For the special case of the formation of a compound from the 4827: 1682: 2512:{\displaystyle Pb(c,l)+2HCl(g)\Rightarrow PbCl_{2}+H_{2}(g)} 4887: 3057:
which is defined in terms of the entropy and heat content.
1739: 367: 4745:
Cox, J. D.; Wagman, Donald D.; Medvedev, Vadim A. (1989).
4311: 4297:
experimental data used to derive the equation parameters.
2202: 4896:
A web interface to generate tabulated thermodynamic data.
2381:
that is of interest. Furthermore, there is no change in
4929: 3037:
Some tables may also contain the Gibbs energy function (
4911: 4595:
Row 20. Values of the seven parameters for the fourth Δ
4573:
Row 18. Values of the seven parameters for the second Δ
2080:-Fe (fcc austenite). The transformation is designated Δ 2029: 4785:
CRC Handbook of Thermophysical and Thermochemical Data
4606:
Row 21. Values of the seven parameters for the fifth Δ
4584:
Row 19. Values of the seven parameters for the third Δ
4562:
Row 17. Values of the seven parameters for the first Δ
4112: 4073: 4017: 3862:
F' is a constant of integration obtained by inserting
3807: 3781: 3734: 3589: 2233:
of formation, as designated by a superscript °. The Δ
4782: 4529:
Row 14. Values of the six parameters for the fourth Δ
4507:
Row 12. Values of the six parameters for the second Δ
4217: 4108: 3902: 3676: 3526: 3354: 3208: 3065: 2906: 2837: 2690: 2565: 2419: 2066: 1868: 1113: 1058: 1003: 963: 837: 816: 790: 769: 741: 705: 684: 658: 637: 606: 570: 549: 523: 502: 474: 4540:
Row 15. Values of the six parameters for the fifth Δ
4518:
Row 13. Values of the six parameters for the third Δ
4496:
Row 11. Values of the six parameters for the first Δ
4373:
Row 4. Values of the five parameters for the second
4334:
Row 1. Molar mass of species, density at 298.15 K, Δ
3661:
The entropy equation is obtained by integrating the
1704:, and defined by specifying certain conditions. The 4853:Robie, Richard A., and Bruce S. Hemingway (1995). 4787:(book & disk ed.). Boca Raton: CRC Press. 4474:
equation; temperature limit for the equation, and Δ
4449:
equation; temperature limit for the equation, and Δ
4435:Row 8. Values of the six parameters for the second 4424:
equation; temperature limit for the equation, and Δ
4383:Row 5. Values of the five parameters for the third 4363:Row 3. Values of the five parameters for the first 4460:Row 9. Values of the six parameters for the third 4410:Row 7. Values of the six parameters for the first 4286: 4190: 4093: 3852: 3651: 3493: 3295: 3173: 3027: 2888: 2811: 2666:) and are identical at all temperatures because Δ 2649:{\displaystyle H(T)=\Delta H_{form,298}^{\circ }+} 2648: 2511: 2281:leads to the result that the atomic heat capacity 2222:and is a weak function of temperature. Values of Δ 2072: 1980: 1149: 1094: 1039: 984: 846: 822: 799: 775: 750: 714: 690: 667: 643: 618: 579: 555: 532: 508: 483: 4744: 4937: 1897: 4350:. and the upper temperature limit for the file. 2377:has no intrinsic value, so it is the change in 4902:Database for more than 3,000 chemical species. 4614:equation; temperature limit for the equation. 4603:equation; temperature limit for the equation. 4592:equation; temperature limit for the equation. 4581:equation; temperature limit for the equation. 4570:equation; temperature limit for the equation. 4548:equation; temperature limit for the equation. 4537:equation; temperature limit for the equation. 4526:equation; temperature limit for the equation. 4515:equation; temperature limit for the equation. 4504:equation; temperature limit for the equation. 4390:equation; temperature limit for the equation. 4380:equation; temperature limit for the equation. 4370:equation; temperature limit for the equation. 1624: 4908:The Design Institute for Physical Properties 2267: 4783:Lide, David R.; Henry V. Kehiaian (1994). 4766:Nagra/Psi Chemical Thermodynamic Data Base 4300: 3305: 1851:reference temperature is 273.15 K (0 °C). 1631: 1617: 29: 3647: 3490: 1841:at the designated standard pressure. The 1650:for substances, the most important being 4857:, U. S. Geological Survey Bulletin 2131. 4840: 4814: 4801: 4626: 4315: 2404: 2345: 2251: 2182: 2013: 1998: 1740:Enthalpy, heat content and heat capacity 2544: 2203:Enthalpy change for a chemical reaction 4938: 4707:Thermochemical Data of Pure Substances 2889:{\displaystyle G(T)=H(T)-T\times S(T)} 4723: 4704: 2821:Similarly, the absolute Gibbs energy 2410:Standard heat and Gibbs energy change 2288:for solids should be proportional to 1673: 4747:CODATA Key Values for Thermodynamics 4310:-based thermodynamic database FREED 2674:is zero, and of course at 298.15 K, 2030:Enthalpy change of phase transitions 2207:An enthalpy change occurs during a 2194:°m of zinc is 7323 J/mol, and the Δ 13: 4727:NIST - JANAF Thermochemical Tables 4218: 4157: 4148: 4123: 4059: 4028: 3992: 3965: 3945: 3936: 3903: 3249: 2907: 2691: 2581: 1959: 1951: 1926: 1918: 1901: 1772:relative high-temperature enthalpy 838: 791: 706: 659: 571: 524: 344:Intensive and extensive properties 14: 4957: 4881: 4683:Standard temperature and pressure 4749:. John Benjamins Publishing Co. 2257:Standard molar heat of formation 1600: 1599: 919:Table of thermodynamic equations 4900:Burcat's Thermodynamic Database 1668:standard condition for pressure 1395:Maxwell's thermodynamic surface 4920:calculator based on IAPWS-IF97 4843:U. S. Bureau of Mines Bulletin 4830:U. S. Bureau of Mines Bulletin 4817:U. S. Bureau of Mines Bulletin 4804:U. S. Bureau of Mines Bulletin 4632:Thermodynamic properties table 4275: 4260: 4142: 4129: 4087: 4065: 4050: 4034: 4011: 3998: 3986: 3971: 3956: 3933: 3834: 3821: 3798: 3773: 3764: 3748: 3728: 3722: 3710: 3698: 3644: 3631: 3619: 3603: 3583: 3567: 3558: 3552: 3481: 3468: 3459: 3446: 3437: 3421: 3412: 3399: 3390: 3384: 3346:the isobaric heat content is: 3330:, composition measurements of 3290: 3281: 3160: 3134: 3102: 3066: 2993: 2987: 2946: 2940: 2883: 2877: 2862: 2856: 2847: 2841: 2777: 2771: 2730: 2724: 2643: 2617: 2575: 2569: 2506: 2500: 2465: 2462: 2456: 2438: 2426: 1907: 1885: 1879: 1129: 1117: 1074: 1062: 1019: 1007: 979: 967: 1: 4698: 4624:(c,l,g) at 1 atm pressure: 4211: 4102: 3896: 3670: 3520: 3348: 3202: 3059: 2900: 2831: 2684: 2559: 2413: 2351:Absolute entropy of strontium 1862: 1762:high temperature heat content 1296:Mechanical equivalent of heat 16:Thermodynamic properties list 4866:, Gulf Publishing Company. 4457:for the second phase change. 2215:, the change is designated Δ 1774:, and called henceforth the 908:Onsager reciprocal relations 7: 4651: 4482:for the third phase change. 4432:for the first phase change. 2305:third law of thermodynamics 1400:Entropy as energy dispersal 1211:"Perpetual motion" machines 1150:{\displaystyle G(T,p)=H-TS} 1095:{\displaystyle A(T,V)=U-TS} 1040:{\displaystyle H(S,p)=U+pV} 10: 4962: 2058:Enthalpy of transformation 1646:contain information about 847:{\displaystyle \partial T} 800:{\displaystyle \partial V} 715:{\displaystyle \partial p} 668:{\displaystyle \partial V} 580:{\displaystyle \partial T} 533:{\displaystyle \partial S} 1321:An Inquiry Concerning the 4946:Thermodynamics databases 4918:Free Steam Tables Online 4768:. Universal Publishers. 2682:) = 0. For a compound: 2268:Entropy and Gibbs energy 2034:When heat is added to a 1648:thermodynamic properties 1334:Heterogeneous Substances 751:{\displaystyle \alpha =} 619:{\displaystyle \beta =-} 4860:Yaws, Carl L. (2007). 4658:Chemical thermodynamics 4301:Thermodynamic datafiles 3894:), and is expressed as 3306:Thermodynamic databases 2073:{\displaystyle \gamma } 1700:, sometimes called the 1644:Thermodynamic databases 4894:NASA Glenn ThermoBuild 4673:Laws of thermodynamics 4639: 4328: 4321:Thermodynamic datafile 4288: 4200:For most substances, Δ 4192: 4095: 3854: 3653: 3495: 3312:thermodynamic database 3297: 3175: 3029: 2890: 2813: 2650: 2541: 2513: 2354: 2264: 2199: 2188:Molar enthalpy of zinc 2091:Enthalpy of fusion or 2074: 2026: 2011: 1982: 1687:thermodynamic datafile 1151: 1096: 1041: 986: 985:{\displaystyle U(S,V)} 848: 824: 801: 777: 752: 716: 692: 669: 645: 620: 581: 557: 534: 510: 485: 464:Specific heat capacity 68:Quantum thermodynamics 4724:Chase, M. W. (1998). 4705:Barin, Ihsan (2004). 4630: 4319: 4289: 4193: 4096: 3866:° at any temperature 3855: 3654: 3496: 3340:internally consistent 3298: 3176: 3030: 2891: 2814: 2651: 2514: 2408: 2349: 2255: 2186: 2178:latent heat of fusion 2075: 2017: 2002: 1983: 1332:On the Equilibrium of 1152: 1097: 1050:Helmholtz free energy 1042: 987: 849: 825: 802: 778: 753: 717: 693: 670: 646: 621: 582: 558: 535: 511: 486: 4215: 4106: 3900: 3674: 3524: 3352: 3332:chemical equilibrium 3206: 3192:equilibrium constant 3063: 2904: 2835: 2688: 2563: 2545:Additional functions 2417: 2198:°v is 115 330 J/mol. 2064: 1866: 1692:state of aggregation 1345:Motive Power of Fire 1111: 1056: 1001: 961: 913:Bridgman's equations 890:Fundamental relation 835: 814: 788: 767: 739: 703: 682: 656: 635: 604: 568: 547: 521: 500: 472: 4559:equations required. 4551:Row 16. Number of Δ 4485:Row 10. Number of Δ 4407:equations required. 4244: 4186: 3929: 3691: 3275: 3130: 3101: 3083: 2933: 2717: 2613: 2019:Molar heat capacity 1685:tables, one kg). A 1323:Source ... Friction 1255:Loschmidt's paradox 447:Material properties 325:Conjugate variables 4688:Dortmund Data Bank 4663:Physical chemistry 4640: 4329: 4284: 4221: 4188: 4187: 4160: 4091: 4090: 4084: 3906: 3850: 3849: 3848: 3795: 3677: 3649: 3648: 3491: 3293: 3252: 3171: 3116: 3087: 3069: 3025: 2910: 2886: 2809: 2694: 2646: 2584: 2542: 2509: 2412:for the reaction: 2355: 2265: 2200: 2070: 2027: 2012: 2004:Molar heat content 1978: 1914: 1679:Thermodynamic data 1674:Thermodynamic data 1587:Order and disorder 1343:Reflections on the 1250:Heat death paradox 1147: 1092: 1037: 982: 844: 820: 797: 773: 748: 712: 688: 665: 641: 616: 577: 553: 530: 506: 484:{\displaystyle c=} 481: 454:Property databases 430:Reduced properties 414:Chemical potential 378:Functions of state 301:Thermal efficiency 37:Carnot heat engine 4924:FACT-Web programs 4668:Materials science 4393:Row 6. Number of 4353:Row 2. Number of 4121: 4082: 4026: 3816: 3793: 3743: 3598: 2209:chemical reaction 2149:Curie temperature 1966: 1933: 1896: 1734:equation of state 1664:standard pressure 1660:Gibbs free energy 1641: 1640: 1582:Self-organization 1407: 1406: 1105:Gibbs free energy 903:Maxwell relations 861: 860: 857: 856: 823:{\displaystyle V} 776:{\displaystyle 1} 731:Thermal expansion 725: 724: 691:{\displaystyle V} 644:{\displaystyle 1} 590: 589: 556:{\displaystyle N} 509:{\displaystyle T} 437: 436: 353:Process functions 339:Property diagrams 318:System properties 308: 307: 273:Endoreversibility 165:Equation of state 4953: 4850: 4837: 4824: 4811: 4798: 4779: 4760: 4741: 4720: 4693:CALPHAD (method) 4293: 4291: 4290: 4285: 4243: 4238: 4197: 4195: 4194: 4189: 4185: 4180: 4141: 4140: 4122: 4114: 4100: 4098: 4097: 4092: 4086: 4085: 4083: 4075: 4049: 4048: 4027: 4019: 4010: 4009: 3955: 3928: 3923: 3859: 3857: 3856: 3851: 3847: 3833: 3832: 3817: 3809: 3797: 3796: 3794: 3786: 3763: 3762: 3744: 3736: 3690: 3685: 3658: 3656: 3655: 3650: 3643: 3642: 3618: 3617: 3599: 3591: 3582: 3581: 3536: 3535: 3500: 3498: 3497: 3492: 3480: 3479: 3458: 3457: 3436: 3435: 3411: 3410: 3377: 3376: 3364: 3363: 3324:phase equilibria 3302: 3300: 3299: 3294: 3280: 3274: 3269: 3242: 3238: 3237: 3218: 3217: 3180: 3178: 3177: 3172: 3167: 3159: 3158: 3146: 3145: 3129: 3124: 3109: 3100: 3095: 3082: 3077: 3034: 3032: 3031: 3026: 3024: 3020: 2932: 2927: 2898:For a compound: 2895: 2893: 2892: 2887: 2818: 2816: 2815: 2810: 2808: 2804: 2716: 2711: 2658:For an element, 2655: 2653: 2652: 2647: 2642: 2641: 2629: 2628: 2612: 2607: 2518: 2516: 2515: 2510: 2499: 2498: 2486: 2485: 2079: 2077: 2076: 2071: 2040:phase transition 1987: 1985: 1984: 1979: 1977: 1976: 1971: 1967: 1965: 1957: 1949: 1939: 1935: 1934: 1932: 1924: 1916: 1913: 1878: 1877: 1633: 1626: 1619: 1603: 1602: 1310:Key publications 1291: 1290:("living force") 1240:Brownian ratchet 1235:Entropy and life 1230:Entropy and time 1181: 1180: 1156: 1154: 1153: 1148: 1101: 1099: 1098: 1093: 1046: 1044: 1043: 1038: 991: 989: 988: 983: 885:Clausius theorem 880:Carnot's theorem 853: 851: 850: 845: 829: 827: 826: 821: 806: 804: 803: 798: 782: 780: 779: 774: 761: 760: 757: 755: 754: 749: 721: 719: 718: 713: 697: 695: 694: 689: 674: 672: 671: 666: 650: 648: 647: 642: 629: 628: 625: 623: 622: 617: 586: 584: 583: 578: 562: 560: 559: 554: 539: 537: 536: 531: 515: 513: 512: 507: 494: 493: 490: 488: 487: 482: 460: 459: 333: 332: 152: 151: 33: 19: 18: 4961: 4960: 4956: 4955: 4954: 4952: 4951: 4950: 4936: 4935: 4884: 4795: 4776: 4757: 4738: 4717: 4701: 4678:Thermochemistry 4654: 4646: 4637: 4623: 4613: 4602: 4591: 4580: 4569: 4558: 4547: 4536: 4525: 4514: 4503: 4492: 4481: 4473: 4466: 4456: 4448: 4441: 4431: 4423: 4416: 4406: 4399: 4389: 4379: 4369: 4359: 4349: 4341: 4326: 4303: 4294: 4239: 4225: 4216: 4213: 4212: 4207: 4198: 4181: 4164: 4136: 4132: 4113: 4107: 4104: 4103: 4101: 4074: 4072: 4068: 4041: 4037: 4018: 4005: 4001: 3948: 3924: 3910: 3901: 3898: 3897: 3893: 3885: 3877: 3860: 3840: 3828: 3824: 3808: 3785: 3780: 3776: 3755: 3751: 3735: 3686: 3681: 3675: 3672: 3671: 3667: 3659: 3638: 3634: 3610: 3606: 3590: 3574: 3570: 3531: 3527: 3525: 3522: 3521: 3517: 3510: 3501: 3475: 3471: 3453: 3449: 3428: 3424: 3406: 3402: 3372: 3368: 3359: 3355: 3353: 3350: 3349: 3308: 3303: 3276: 3270: 3256: 3230: 3226: 3222: 3213: 3209: 3207: 3204: 3203: 3199: 3189: 3181: 3163: 3154: 3150: 3141: 3137: 3125: 3120: 3105: 3096: 3091: 3078: 3073: 3064: 3061: 3060: 3052: 3044: 3035: 2983: 2979: 2928: 2914: 2905: 2902: 2901: 2896: 2836: 2833: 2832: 2819: 2767: 2763: 2712: 2698: 2689: 2686: 2685: 2673: 2656: 2637: 2633: 2624: 2620: 2608: 2588: 2564: 2561: 2560: 2547: 2539: 2531: 2527: 2519: 2494: 2490: 2481: 2477: 2418: 2415: 2414: 2401: 2393: 2372: 2364: 2338: 2327: 2320: 2313: 2302: 2287: 2270: 2262: 2248: 2240: 2228: 2221: 2205: 2156: 2145: 2134: 2118: 2102: 2086: 2065: 2062: 2061: 2036:condensed-phase 2032: 2024: 2009: 1994: 1988: 1972: 1958: 1950: 1948: 1944: 1943: 1925: 1917: 1915: 1900: 1895: 1891: 1873: 1869: 1867: 1864: 1863: 1835: 1831: 1819: 1811: 1803: 1791: 1784: 1746:internal energy 1742: 1702:reference state 1676: 1637: 1592: 1591: 1567: 1559: 1558: 1557: 1417: 1409: 1408: 1387: 1373: 1348: 1344: 1337: 1333: 1326: 1322: 1289: 1282: 1264: 1245:Maxwell's demon 1207: 1178: 1177: 1161: 1160: 1159: 1112: 1109: 1108: 1107: 1057: 1054: 1053: 1052: 1002: 999: 998: 997: 962: 959: 958: 957: 955:Internal energy 950: 935: 925: 924: 899: 874: 864: 863: 862: 836: 833: 832: 815: 812: 811: 789: 786: 785: 768: 765: 764: 740: 737: 736: 704: 701: 700: 683: 680: 679: 657: 654: 653: 636: 633: 632: 605: 602: 601: 596:Compressibility 569: 566: 565: 548: 545: 544: 522: 519: 518: 501: 498: 497: 473: 470: 469: 449: 439: 438: 419:Particle number 372: 331: 320: 310: 309: 268:Irreversibility 180:State of matter 147:Isolated system 132: 122: 121: 120: 95: 85: 84: 80:Non-equilibrium 72: 47: 39: 17: 12: 11: 5: 4959: 4949: 4948: 4934: 4933: 4927: 4921: 4915: 4909: 4903: 4897: 4891: 4883: 4882:External links 4880: 4879: 4878: 4875: 4858: 4851: 4838: 4825: 4812: 4799: 4793: 4780: 4774: 4761: 4755: 4742: 4736: 4721: 4715: 4700: 4697: 4696: 4695: 4690: 4685: 4680: 4675: 4670: 4665: 4660: 4653: 4650: 4644: 4635: 4621: 4618: 4617: 4616: 4615: 4611: 4604: 4600: 4593: 4589: 4582: 4578: 4571: 4567: 4560: 4556: 4549: 4545: 4538: 4534: 4527: 4523: 4516: 4512: 4505: 4501: 4494: 4490: 4483: 4479: 4471: 4464: 4458: 4454: 4446: 4439: 4433: 4429: 4421: 4414: 4408: 4404: 4397: 4391: 4387: 4381: 4377: 4371: 4367: 4361: 4357: 4351: 4347: 4339: 4324: 4302: 4299: 4283: 4280: 4277: 4274: 4271: 4268: 4265: 4262: 4259: 4256: 4253: 4250: 4247: 4242: 4237: 4234: 4231: 4228: 4224: 4220: 4205: 4184: 4179: 4176: 4173: 4170: 4167: 4163: 4159: 4156: 4153: 4150: 4147: 4144: 4139: 4135: 4131: 4128: 4125: 4120: 4117: 4111: 4089: 4081: 4078: 4071: 4067: 4064: 4061: 4058: 4055: 4052: 4047: 4044: 4040: 4036: 4033: 4030: 4025: 4022: 4016: 4013: 4008: 4004: 4000: 3997: 3994: 3991: 3988: 3985: 3982: 3979: 3976: 3973: 3970: 3967: 3964: 3961: 3958: 3954: 3951: 3947: 3944: 3941: 3938: 3935: 3932: 3927: 3922: 3919: 3916: 3913: 3909: 3905: 3891: 3883: 3875: 3846: 3843: 3839: 3836: 3831: 3827: 3823: 3820: 3815: 3812: 3806: 3803: 3800: 3792: 3789: 3784: 3779: 3775: 3772: 3769: 3766: 3761: 3758: 3754: 3750: 3747: 3742: 3739: 3733: 3730: 3727: 3724: 3721: 3718: 3715: 3712: 3709: 3706: 3703: 3700: 3697: 3694: 3689: 3684: 3680: 3665: 3646: 3641: 3637: 3633: 3630: 3627: 3624: 3621: 3616: 3613: 3609: 3605: 3602: 3597: 3594: 3588: 3585: 3580: 3577: 3573: 3569: 3566: 3563: 3560: 3557: 3554: 3551: 3548: 3545: 3542: 3539: 3534: 3530: 3515: 3508: 3489: 3486: 3483: 3478: 3474: 3470: 3467: 3464: 3461: 3456: 3452: 3448: 3445: 3442: 3439: 3434: 3431: 3427: 3423: 3420: 3417: 3414: 3409: 3405: 3401: 3398: 3395: 3392: 3389: 3386: 3383: 3380: 3375: 3371: 3367: 3362: 3358: 3334:mixtures, and 3307: 3304: 3292: 3289: 3286: 3283: 3279: 3273: 3268: 3265: 3262: 3259: 3255: 3251: 3248: 3245: 3241: 3236: 3233: 3229: 3225: 3221: 3216: 3212: 3197: 3187: 3170: 3166: 3162: 3157: 3153: 3149: 3144: 3140: 3136: 3133: 3128: 3123: 3119: 3115: 3112: 3108: 3104: 3099: 3094: 3090: 3086: 3081: 3076: 3072: 3068: 3050: 3042: 3023: 3019: 3016: 3013: 3010: 3007: 3004: 3001: 2998: 2995: 2992: 2989: 2986: 2982: 2978: 2975: 2972: 2969: 2966: 2963: 2960: 2957: 2954: 2951: 2948: 2945: 2942: 2939: 2936: 2931: 2926: 2923: 2920: 2917: 2913: 2909: 2885: 2882: 2879: 2876: 2873: 2870: 2867: 2864: 2861: 2858: 2855: 2852: 2849: 2846: 2843: 2840: 2807: 2803: 2800: 2797: 2794: 2791: 2788: 2785: 2782: 2779: 2776: 2773: 2770: 2766: 2762: 2759: 2756: 2753: 2750: 2747: 2744: 2741: 2738: 2735: 2732: 2729: 2726: 2723: 2720: 2715: 2710: 2707: 2704: 2701: 2697: 2693: 2671: 2645: 2640: 2636: 2632: 2627: 2623: 2619: 2616: 2611: 2606: 2603: 2600: 2597: 2594: 2591: 2587: 2583: 2580: 2577: 2574: 2571: 2568: 2546: 2543: 2537: 2529: 2525: 2508: 2505: 2502: 2497: 2493: 2489: 2484: 2480: 2476: 2473: 2470: 2467: 2464: 2461: 2458: 2455: 2452: 2449: 2446: 2443: 2440: 2437: 2434: 2431: 2428: 2425: 2422: 2399: 2391: 2370: 2362: 2336: 2325: 2318: 2311: 2300: 2285: 2269: 2266: 2260: 2246: 2238: 2231:standard heats 2226: 2219: 2204: 2201: 2176:(for example, 2154: 2143: 2139: 2138: 2137: 2136: 2132: 2120: 2116: 2104: 2100: 2088: 2084: 2069: 2031: 2028: 2022: 2007: 1992: 1975: 1970: 1964: 1961: 1956: 1953: 1947: 1942: 1938: 1931: 1928: 1923: 1920: 1912: 1909: 1906: 1903: 1899: 1894: 1890: 1887: 1884: 1881: 1876: 1872: 1833: 1829: 1817: 1809: 1801: 1789: 1782: 1741: 1738: 1697:standard state 1675: 1672: 1639: 1638: 1636: 1635: 1628: 1621: 1613: 1610: 1609: 1608: 1607: 1594: 1593: 1590: 1589: 1584: 1579: 1574: 1568: 1565: 1564: 1561: 1560: 1556: 1555: 1550: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1419: 1418: 1415: 1414: 1411: 1410: 1405: 1404: 1403: 1402: 1397: 1389: 1388: 1386: 1385: 1382: 1378: 1375: 1374: 1372: 1371: 1366: 1364:Thermodynamics 1360: 1357: 1356: 1352: 1351: 1350: 1349: 1340: 1338: 1329: 1327: 1318: 1313: 1312: 1306: 1305: 1304: 1303: 1298: 1293: 1281: 1280: 1278:Caloric theory 1274: 1271: 1270: 1266: 1265: 1263: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1226: 1223: 1222: 1216: 1215: 1214: 1213: 1206: 1205: 1200: 1195: 1189: 1186: 1185: 1179: 1176: 1175: 1172: 1168: 1167: 1166: 1163: 1162: 1158: 1157: 1146: 1143: 1140: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1102: 1091: 1088: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1047: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 992: 981: 978: 975: 972: 969: 966: 951: 949: 948: 943: 937: 936: 931: 930: 927: 926: 923: 922: 915: 910: 905: 898: 897: 892: 887: 882: 876: 875: 870: 869: 866: 865: 859: 858: 855: 854: 843: 840: 830: 819: 808: 807: 796: 793: 783: 772: 758: 747: 744: 734: 727: 726: 723: 722: 711: 708: 698: 687: 676: 675: 664: 661: 651: 640: 626: 615: 612: 609: 599: 592: 591: 588: 587: 576: 573: 563: 552: 541: 540: 529: 526: 516: 505: 491: 480: 477: 467: 458: 457: 456: 450: 445: 444: 441: 440: 435: 434: 433: 432: 427: 422: 411: 400: 381: 380: 374: 373: 371: 370: 365: 359: 356: 355: 349: 348: 347: 346: 341: 322: 321: 316: 315: 312: 311: 306: 305: 304: 303: 298: 293: 285: 284: 278: 277: 276: 275: 270: 265: 260: 258:Free expansion 255: 250: 245: 240: 235: 230: 225: 220: 212: 211: 205: 204: 203: 202: 197: 195:Control volume 192: 187: 185:Phase (matter) 182: 177: 172: 167: 159: 158: 150: 149: 144: 139: 133: 128: 127: 124: 123: 119: 118: 113: 108: 103: 97: 96: 91: 90: 87: 86: 83: 82: 71: 70: 65: 60: 55: 49: 48: 45: 44: 41: 40: 35:The classical 34: 26: 25: 23:Thermodynamics 15: 9: 6: 4: 3: 2: 4958: 4947: 4944: 4943: 4941: 4931: 4930:Mol-Instincts 4928: 4925: 4922: 4919: 4916: 4913: 4910: 4907: 4904: 4901: 4898: 4895: 4892: 4889: 4886: 4885: 4876: 4873: 4872:1-933762-07-1 4869: 4865: 4864: 4859: 4856: 4852: 4848: 4844: 4839: 4835: 4831: 4826: 4822: 4818: 4813: 4809: 4805: 4800: 4796: 4794:0-8493-0197-1 4790: 4786: 4781: 4777: 4775:1-58112-620-4 4771: 4767: 4762: 4758: 4756:0-89116-758-7 4752: 4748: 4743: 4739: 4737:1-56396-831-2 4733: 4729: 4728: 4722: 4718: 4716:3-527-30993-4 4712: 4709:. Wiley-VCH. 4708: 4703: 4702: 4694: 4691: 4689: 4686: 4684: 4681: 4679: 4676: 4674: 4671: 4669: 4666: 4664: 4661: 4659: 4656: 4655: 4649: 4633: 4629: 4625: 4609: 4605: 4598: 4594: 4587: 4583: 4576: 4572: 4565: 4561: 4554: 4550: 4543: 4539: 4532: 4528: 4521: 4517: 4510: 4506: 4499: 4495: 4488: 4484: 4477: 4470: 4463: 4459: 4452: 4445: 4438: 4434: 4427: 4420: 4413: 4409: 4403: 4396: 4392: 4386: 4382: 4376: 4372: 4366: 4362: 4356: 4352: 4345: 4337: 4333: 4332: 4331: 4330: 4322: 4318: 4314: 4312: 4309: 4306:example, the 4298: 4281: 4278: 4272: 4269: 4266: 4263: 4257: 4254: 4251: 4248: 4245: 4240: 4235: 4232: 4229: 4226: 4222: 4210: 4203: 4182: 4177: 4174: 4171: 4168: 4165: 4161: 4154: 4151: 4145: 4137: 4133: 4126: 4118: 4115: 4109: 4079: 4076: 4069: 4062: 4056: 4053: 4045: 4042: 4038: 4031: 4023: 4020: 4014: 4006: 4002: 3995: 3989: 3983: 3980: 3977: 3974: 3968: 3962: 3959: 3952: 3949: 3942: 3939: 3930: 3925: 3920: 3917: 3914: 3911: 3907: 3895: 3889: 3881: 3873: 3869: 3865: 3844: 3841: 3837: 3829: 3825: 3818: 3813: 3810: 3804: 3801: 3790: 3787: 3782: 3777: 3770: 3767: 3759: 3756: 3752: 3745: 3740: 3737: 3731: 3725: 3719: 3716: 3713: 3707: 3704: 3701: 3695: 3692: 3687: 3682: 3678: 3669: 3668:/T equation: 3664: 3639: 3635: 3628: 3625: 3622: 3614: 3611: 3607: 3600: 3595: 3592: 3586: 3578: 3575: 3571: 3564: 3561: 3555: 3549: 3546: 3543: 3540: 3537: 3532: 3528: 3519: 3514: 3506: 3487: 3484: 3476: 3472: 3465: 3462: 3454: 3450: 3443: 3440: 3432: 3429: 3425: 3418: 3415: 3407: 3403: 3396: 3393: 3387: 3381: 3378: 3373: 3369: 3365: 3360: 3356: 3347: 3343: 3341: 3337: 3333: 3329: 3325: 3321: 3316: 3313: 3287: 3284: 3277: 3271: 3266: 3263: 3260: 3257: 3253: 3246: 3243: 3239: 3234: 3231: 3227: 3223: 3219: 3214: 3210: 3201: 3196: 3193: 3184: 3168: 3164: 3155: 3151: 3147: 3142: 3138: 3131: 3126: 3121: 3117: 3113: 3110: 3106: 3097: 3092: 3088: 3084: 3079: 3074: 3070: 3058: 3056: 3048: 3040: 3021: 3017: 3014: 3011: 3008: 3005: 3002: 2999: 2996: 2990: 2984: 2980: 2976: 2973: 2970: 2967: 2964: 2961: 2958: 2955: 2952: 2949: 2943: 2937: 2934: 2929: 2924: 2921: 2918: 2915: 2911: 2899: 2880: 2874: 2871: 2868: 2865: 2859: 2853: 2850: 2844: 2838: 2830: 2828: 2824: 2805: 2801: 2798: 2795: 2792: 2789: 2786: 2783: 2780: 2774: 2768: 2764: 2760: 2757: 2754: 2751: 2748: 2745: 2742: 2739: 2736: 2733: 2727: 2721: 2718: 2713: 2708: 2705: 2702: 2699: 2695: 2683: 2681: 2677: 2669: 2665: 2661: 2638: 2634: 2630: 2625: 2621: 2614: 2609: 2604: 2601: 2598: 2595: 2592: 2589: 2585: 2578: 2572: 2566: 2558: 2556: 2552: 2535: 2523: 2503: 2495: 2491: 2487: 2482: 2478: 2474: 2471: 2468: 2459: 2453: 2450: 2447: 2444: 2441: 2435: 2432: 2429: 2423: 2420: 2411: 2407: 2403: 2397: 2389: 2384: 2380: 2376: 2368: 2360: 2352: 2348: 2344: 2342: 2334: 2329: 2324: 2317: 2310: 2306: 2299: 2295: 2294:absolute zero 2291: 2284: 2280: 2275: 2258: 2254: 2250: 2244: 2236: 2232: 2225: 2218: 2214: 2210: 2197: 2193: 2189: 2185: 2181: 2179: 2175: 2173: 2168: 2164: 2159: 2157: 2150: 2146: 2131: 2127: 2126: 2121: 2115: 2111: 2110: 2105: 2099: 2095: 2094: 2089: 2083: 2067: 2059: 2056: 2055: 2054: 2053: 2052: 2050: 2046: 2041: 2037: 2020: 2016: 2005: 2001: 1997: 1995: 1973: 1968: 1962: 1954: 1945: 1940: 1936: 1929: 1921: 1910: 1904: 1892: 1888: 1882: 1874: 1870: 1861: 1859: 1858: 1857:heat capacity 1852: 1849: 1844: 1840: 1827: 1823: 1815: 1807: 1799: 1795: 1788: 1781: 1777: 1773: 1769: 1768: 1767:sensible heat 1763: 1759: 1755: 1751: 1747: 1737: 1735: 1730: 1726: 1722: 1721: 1715: 1711: 1707: 1703: 1699: 1698: 1693: 1688: 1684: 1680: 1671: 1669: 1665: 1661: 1657: 1653: 1649: 1645: 1634: 1629: 1627: 1622: 1620: 1615: 1614: 1612: 1611: 1606: 1598: 1597: 1596: 1595: 1588: 1585: 1583: 1580: 1578: 1577:Self-assembly 1575: 1573: 1570: 1569: 1563: 1562: 1554: 1551: 1549: 1548:van der Waals 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1473:von Helmholtz 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1420: 1413: 1412: 1401: 1398: 1396: 1393: 1392: 1391: 1390: 1383: 1380: 1379: 1377: 1376: 1370: 1367: 1365: 1362: 1361: 1359: 1358: 1354: 1353: 1347: 1346: 1339: 1336: 1335: 1328: 1325: 1324: 1317: 1316: 1315: 1314: 1311: 1308: 1307: 1302: 1299: 1297: 1294: 1292: 1288: 1284: 1283: 1279: 1276: 1275: 1273: 1272: 1268: 1267: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1227: 1225: 1224: 1221: 1218: 1217: 1212: 1209: 1208: 1204: 1201: 1199: 1196: 1194: 1191: 1190: 1188: 1187: 1183: 1182: 1173: 1170: 1169: 1165: 1164: 1144: 1141: 1138: 1135: 1132: 1126: 1123: 1120: 1114: 1106: 1103: 1089: 1086: 1083: 1080: 1077: 1071: 1068: 1065: 1059: 1051: 1048: 1034: 1031: 1028: 1025: 1022: 1016: 1013: 1010: 1004: 996: 993: 976: 973: 970: 964: 956: 953: 952: 947: 944: 942: 939: 938: 934: 929: 928: 921: 920: 916: 914: 911: 909: 906: 904: 901: 900: 896: 895:Ideal gas law 893: 891: 888: 886: 883: 881: 878: 877: 873: 868: 867: 841: 831: 817: 810: 809: 794: 784: 770: 763: 762: 759: 745: 742: 735: 732: 729: 728: 709: 699: 685: 678: 677: 662: 652: 638: 631: 630: 627: 613: 610: 607: 600: 597: 594: 593: 574: 564: 550: 543: 542: 527: 517: 503: 496: 495: 492: 478: 475: 468: 465: 462: 461: 455: 452: 451: 448: 443: 442: 431: 428: 426: 425:Vapor quality 423: 421: 420: 415: 412: 410: 409: 404: 401: 398: 394: 393: 388: 385: 384: 383: 382: 379: 376: 375: 369: 366: 364: 361: 360: 358: 357: 354: 351: 350: 345: 342: 340: 337: 336: 335: 334: 330: 326: 319: 314: 313: 302: 299: 297: 294: 292: 289: 288: 287: 286: 283: 280: 279: 274: 271: 269: 266: 264: 263:Reversibility 261: 259: 256: 254: 251: 249: 246: 244: 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 215: 214: 213: 210: 207: 206: 201: 198: 196: 193: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 162: 161: 160: 157: 154: 153: 148: 145: 143: 140: 138: 137:Closed system 135: 134: 131: 126: 125: 117: 114: 112: 109: 107: 104: 102: 99: 98: 94: 89: 88: 81: 77: 74: 73: 69: 66: 64: 61: 59: 56: 54: 51: 50: 43: 42: 38: 32: 28: 27: 24: 21: 20: 4888:NIST WebBook 4862: 4854: 4846: 4842: 4833: 4829: 4820: 4816: 4807: 4803: 4784: 4765: 4746: 4726: 4706: 4641: 4631: 4619: 4607: 4596: 4585: 4574: 4563: 4552: 4541: 4530: 4519: 4508: 4497: 4486: 4475: 4468: 4461: 4450: 4443: 4436: 4425: 4418: 4411: 4401: 4394: 4384: 4374: 4364: 4354: 4343: 4335: 4320: 4304: 4295: 4201: 4199: 3887: 3879: 3871: 3867: 3863: 3861: 3662: 3660: 3512: 3504: 3502: 3344: 3339: 3328:spectroscopy 3317: 3311: 3309: 3194: 3185: 3182: 3054: 3046: 3038: 3036: 2897: 2826: 2822: 2820: 2679: 2675: 2667: 2663: 2659: 2657: 2554: 2550: 2548: 2533: 2521: 2409: 2395: 2387: 2382: 2378: 2374: 2366: 2358: 2356: 2350: 2340: 2332: 2330: 2322: 2315: 2308: 2297: 2289: 2282: 2271: 2256: 2242: 2234: 2230: 2223: 2216: 2206: 2195: 2191: 2187: 2177: 2171: 2166: 2162: 2160: 2152: 2141: 2140: 2129: 2123:Enthalpy of 2122: 2113: 2109:vaporization 2107:Enthalpy of 2106: 2097: 2090: 2081: 2057: 2048: 2045:isothermally 2044: 2033: 2018: 2003: 1990: 1989: 1855: 1853: 1825: 1821: 1813: 1805: 1797: 1793: 1786: 1779: 1776:heat content 1775: 1771: 1765: 1761: 1757: 1753: 1743: 1728: 1724: 1718: 1713: 1705: 1701: 1695: 1686: 1678: 1677: 1670:are in use. 1643: 1642: 1438:Carathéodory 1369:Heat engines 1341: 1330: 1319: 1301:Motive power 1286: 946:Free entropy 917: 453: 417: 416: / 406: 405: / 397:introduction 390: 389: / 328: 291:Heat engines 78: / 4340:form 298.15 3320:calorimetry 2321:instead of 2279:Debye model 2161:Values of Δ 2125:sublimation 1710:temperature 1260:Synergetics 941:Free energy 387:Temperature 248:Quasistatic 243:Isenthalpic 200:Instruments 190:Equilibrium 142:Open system 76:Equilibrium 58:Statistical 4699:References 2532:(771 K). Δ 1848:polynomial 1832:), where T 1723:state. A 1720:metastable 1572:Nucleation 1416:Scientists 1220:Philosophy 933:Potentials 296:Heat pumps 253:Polytropic 238:Isentropic 228:Isothermal 4912:DIPPR 801 4282:χ 4270:⁡ 4258:β 4249:α 4241:∘ 4219:Δ 4183:∘ 4158:Δ 4149:Δ 4124:Δ 4110:− 4060:Δ 4043:− 4029:Δ 3993:Δ 3990:− 3981:⁡ 3966:Δ 3963:− 3946:Δ 3943:− 3937:Δ 3926:∘ 3904:Δ 3783:− 3768:− 3757:− 3705:⁡ 3688:∘ 3612:− 3576:− 3562:− 3430:− 3366:− 3272:∘ 3250:Δ 3247:− 3220:⁡ 3148:− 3132:− 3127:∘ 3098:∘ 3085:− 3080:∘ 2977:∑ 2974:− 2930:∘ 2908:Δ 2872:× 2866:− 2761:∑ 2758:− 2714:∘ 2692:Δ 2631:− 2610:∘ 2582:Δ 2466:⇒ 2068:γ 1960:∂ 1952:∂ 1927:Δ 1919:Δ 1908:→ 1902:Δ 1839:ideal gas 1770:, or the 1553:Waterston 1503:von Mayer 1458:de Donder 1448:Clapeyron 1428:Boltzmann 1423:Bernoulli 1384:Education 1355:Timelines 1139:− 1084:− 872:Equations 839:∂ 792:∂ 743:α 707:∂ 660:∂ 614:− 608:β 572:∂ 525:∂ 233:Adiabatic 223:Isochoric 209:Processes 170:Ideal gas 53:Classical 4940:Category 4652:See also 4634:for MgCl 4323:for MgCl 3953:′ 3845:′ 2213:elements 1750:enthalpy 1729:physical 1714:physical 1652:enthalpy 1605:Category 1543:Thompson 1453:Clausius 1433:Bridgman 1287:Vis viva 1269:Theories 1203:Gas laws 995:Enthalpy 403:Pressure 218:Isobaric 175:Real gas 63:Chemical 46:Branches 3285:19.1448 3190:of the 3186:The log 2274:entropy 2259:of ZnBr 2093:melting 1690:on the 1656:entropy 1528:Smeaton 1523:Rankine 1513:Onsager 1498:Maxwell 1493:Massieu 1198:Entropy 1193:General 1184:History 1174:Culture 1171:History 395: ( 392:Entropy 329:italics 130:Systems 4870:  4791:  4772:  4753:  4734:  4713:  4348:298.15 3043:298.15 2172:latent 1764:, the 1754:change 1748:(e.g. 1706:normal 1658:, and 1518:Planck 1508:Nernst 1483:Kelvin 1443:Carnot 733:  598:  466:  408:Volume 323:Note: 282:Cycles 111:Second 101:Zeroth 4906:DIPPR 4480:trans 4455:trans 4430:trans 4308:Excel 3886:– T(Δ 2520:The Δ 2174:heats 1683:steam 1566:Other 1533:Stahl 1488:Lewis 1478:Joule 1468:Gibbs 1463:Duhem 156:State 116:Third 106:First 4868:ISBN 4789:ISBN 4770:ISBN 4751:ISBN 4732:ISBN 4711:ISBN 4612:form 4601:form 4590:form 4579:form 4568:form 4557:form 4546:form 4535:form 4524:form 4513:form 4502:form 4491:form 4206:form 3892:form 3884:form 3876:form 3509:form 2672:form 2394:or Δ 2392:form 2365:or Δ 2363:form 2272:The 2239:form 2227:form 2220:form 1854:The 1538:Tait 368:Heat 363:Work 93:Laws 4847:696 4834:689 4821:674 4808:672 4472:298 4447:298 4422:298 4405:298 4178:298 3878:= Δ 3615:0.5 3455:0.5 3374:298 3336:emf 3211:log 3156:298 3075:298 2639:298 2605:298 2337:298 2180:). 1898:lim 1828:°(T 1820:or 1818:298 1802:298 1790:298 1725:non 1381:Art 327:in 4942:: 4845:. 4832:. 4819:. 4806:. 4467:- 4442:- 4417:- 4400:- 4342:, 4267:ln 3978:ln 3702:ln 3326:, 3322:, 3310:A 3215:10 3198:eq 3188:10 3053:)/ 3045:– 2538:rx 2526:rx 2400:rx 2386:(Δ 2371:rx 2249:. 2247:rx 2151:, 2085:tr 1843:SI 1824:°- 1804:, 1796:°- 1792:, 1736:. 1654:, 4874:. 4849:. 4836:. 4823:. 4810:. 4797:. 4778:. 4759:. 4740:. 4719:. 4645:2 4636:2 4622:2 4610:° 4608:G 4599:° 4597:G 4588:° 4586:G 4577:° 4575:G 4566:° 4564:G 4555:° 4553:G 4544:° 4542:H 4533:° 4531:H 4522:° 4520:H 4511:° 4509:H 4500:° 4498:H 4489:° 4487:H 4478:° 4476:H 4469:H 4465:T 4462:H 4453:° 4451:H 4444:H 4440:T 4437:H 4428:° 4426:H 4419:H 4415:T 4412:H 4402:H 4398:T 4395:H 4388:p 4385:C 4378:p 4375:C 4368:p 4365:C 4358:p 4355:C 4346:° 4344:S 4338:° 4336:H 4325:2 4279:+ 4276:) 4273:T 4264:T 4261:( 4255:+ 4252:T 4246:= 4236:m 4233:r 4230:o 4227:f 4223:G 4204:° 4202:G 4175:m 4172:r 4169:o 4166:f 4162:H 4155:+ 4152:F 4146:+ 4143:) 4138:3 4134:T 4130:( 4127:E 4119:2 4116:1 4088:) 4080:2 4077:1 4070:T 4066:( 4063:D 4057:2 4054:+ 4051:) 4046:1 4039:T 4035:( 4032:C 4024:2 4021:1 4015:+ 4012:) 4007:2 4003:T 3999:( 3996:B 3987:) 3984:T 3975:T 3972:( 3969:A 3960:T 3957:) 3950:F 3940:A 3934:( 3931:= 3921:m 3918:r 3915:o 3912:f 3908:G 3890:° 3888:S 3882:° 3880:H 3874:° 3872:G 3868:T 3864:S 3842:F 3838:+ 3835:) 3830:2 3826:T 3822:( 3819:E 3814:2 3811:1 3805:1 3802:+ 3799:) 3791:2 3788:1 3778:T 3774:( 3771:D 3765:) 3760:2 3753:T 3749:( 3746:C 3741:2 3738:1 3732:+ 3729:) 3726:T 3723:( 3720:B 3717:2 3714:+ 3711:) 3708:T 3699:( 3696:A 3693:= 3683:T 3679:S 3666:p 3663:C 3645:) 3640:2 3636:T 3632:( 3629:E 3626:3 3623:+ 3620:) 3608:T 3604:( 3601:D 3596:2 3593:1 3587:+ 3584:) 3579:2 3572:T 3568:( 3565:C 3559:) 3556:T 3553:( 3550:B 3547:2 3544:+ 3541:A 3538:= 3533:P 3529:C 3516:p 3513:C 3507:° 3505:H 3488:F 3485:+ 3482:) 3477:3 3473:T 3469:( 3466:E 3463:+ 3460:) 3451:T 3447:( 3444:D 3441:+ 3438:) 3433:1 3426:T 3422:( 3419:C 3416:+ 3413:) 3408:2 3404:T 3400:( 3397:B 3394:+ 3391:) 3388:T 3385:( 3382:A 3379:= 3370:H 3361:T 3357:H 3291:) 3288:T 3282:( 3278:/ 3267:m 3264:r 3261:o 3258:f 3254:G 3244:= 3240:) 3235:q 3232:e 3228:K 3224:( 3195:K 3169:T 3165:/ 3161:) 3152:H 3143:T 3139:H 3135:( 3122:T 3118:S 3114:= 3111:T 3107:/ 3103:) 3093:T 3089:G 3071:H 3067:( 3055:T 3051:T 3049:° 3047:G 3041:° 3039:H 3022:} 3018:s 3015:t 3012:n 3009:e 3006:m 3003:e 3000:l 2997:e 2994:) 2991:T 2988:( 2985:G 2981:{ 2971:d 2968:n 2965:u 2962:o 2959:p 2956:m 2953:o 2950:c 2947:) 2944:T 2941:( 2938:G 2935:= 2925:m 2922:r 2919:o 2916:f 2912:G 2884:) 2881:T 2878:( 2875:S 2869:T 2863:) 2860:T 2857:( 2854:H 2851:= 2848:) 2845:T 2842:( 2839:G 2827:T 2825:( 2823:G 2806:} 2802:s 2799:t 2796:n 2793:e 2790:m 2787:e 2784:l 2781:e 2778:) 2775:T 2772:( 2769:H 2765:{ 2755:d 2752:n 2749:u 2746:o 2743:p 2740:m 2737:o 2734:c 2731:) 2728:T 2725:( 2722:H 2719:= 2709:m 2706:r 2703:o 2700:f 2696:H 2680:T 2678:( 2676:H 2670:° 2668:H 2664:T 2662:( 2660:H 2644:] 2635:H 2626:T 2622:H 2618:[ 2615:+ 2602:, 2599:m 2596:r 2593:o 2590:f 2586:H 2579:= 2576:) 2573:T 2570:( 2567:H 2555:T 2553:( 2551:H 2536:° 2534:G 2530:2 2524:° 2522:H 2507:) 2504:g 2501:( 2496:2 2492:H 2488:+ 2483:2 2479:l 2475:C 2472:b 2469:P 2463:) 2460:g 2457:( 2454:l 2451:C 2448:H 2445:2 2442:+ 2439:) 2436:l 2433:, 2430:c 2427:( 2424:b 2421:P 2398:° 2396:G 2390:° 2388:G 2383:G 2379:G 2375:G 2369:° 2367:S 2361:° 2359:S 2341:S 2335:° 2333:S 2326:p 2323:C 2319:v 2316:C 2312:0 2309:S 2301:p 2298:C 2290:T 2286:v 2283:C 2261:2 2245:° 2243:H 2237:° 2235:H 2224:H 2217:H 2196:H 2192:H 2167:H 2163:H 2155:p 2153:C 2144:p 2142:C 2135:. 2133:s 2130:H 2119:. 2117:v 2114:H 2103:. 2101:m 2098:H 2087:. 2082:H 2049:H 2023:2 2008:2 1993:p 1991:C 1974:p 1969:) 1963:T 1955:H 1946:( 1941:= 1937:} 1930:T 1922:H 1911:0 1905:T 1893:{ 1889:= 1886:) 1883:T 1880:( 1875:P 1871:C 1834:r 1830:r 1826:H 1822:H 1816:° 1814:H 1812:- 1810:T 1808:° 1806:H 1800:° 1798:H 1794:H 1787:H 1785:- 1783:T 1780:H 1758:H 1727:- 1632:e 1625:t 1618:v 1145:S 1142:T 1136:H 1133:= 1130:) 1127:p 1124:, 1121:T 1118:( 1115:G 1090:S 1087:T 1081:U 1078:= 1075:) 1072:V 1069:, 1066:T 1063:( 1060:A 1035:V 1032:p 1029:+ 1026:U 1023:= 1020:) 1017:p 1014:, 1011:S 1008:( 1005:H 980:) 977:V 974:, 971:S 968:( 965:U 842:T 818:V 795:V 771:1 746:= 710:p 686:V 663:V 639:1 611:= 575:T 551:N 528:S 504:T 479:= 476:c 399:)

Index

Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)
Equilibrium
Control volume
Instruments
Processes
Isobaric
Isochoric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.