Knowledge

Viète's formula

Source 📝

2851: 724: 1392: 33: 1210: 175: 1371: 1003: 903: 1083: 1681: 668: 75: 569: 1215: 258: 758:
of a limit governs the number of terms of the expression needed to achieve a given number of digits of accuracy. In Viète's formula, the numbers of terms and digits are proportional to each other: the product of the first
1071: 1554: 921: 391: 282:, but other methods before and since have led to greater accuracy. It has also been used in calculations of the behavior of systems of springs and masses and as a motivating example for the concept of 712:
gets arbitrarily large, these finite products have values that approach the value of Viète's formula arbitrarily closely. Viète did his work long before the concepts of limits and rigorous proofs of
813: 1220: 579: 1567: 574: 487: 1475:-gon). Alternatively, the terms in the product may be instead interpreted as ratios of perimeters of the same sequence of polygons, starting with the ratio of perimeters of a 1758: 1457: 180: 1205:{\displaystyle \pi =\lim _{k\to \infty }2^{k}\underbrace {\sqrt {2-{\sqrt {2+{\sqrt {2+{\sqrt {2+{\sqrt {2+\cdots +{\sqrt {2}}}}}}}}}}}} _{k{\text{ square roots}}},} 2203: 710: 690: 170:{\displaystyle {\frac {2}{\pi }}={\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdots } 1487: 1014: 1492: 1366:{\displaystyle {\begin{aligned}\pi &=\lim _{k\to \infty }2^{k}{\sqrt {2-a_{k}}},\\a_{1}&=0,\\a_{k}&={\sqrt {2+a_{k-1}}}.\end{aligned}}} 347: 266:, who published it in 1593. As the first formula of European mathematics to represent an infinite process, it can be given a rigorous meaning as a 403:. As the first representation in European mathematics of a number as the result of an infinite process rather than of a finite calculation, 1403:, inscribed in a circle. The ratios between areas or perimeters of consecutive polygons in the sequence give the terms of Viète's formula. 313:, that has Viète's formula as a special case. Many similar formulas involving nested roots or infinite products are now known. 2021:
Maths for the Mystified: An Exploration of the History of Mathematics and Its Relationship to Modern-day Science and Computing
2549: 2285: 2233: 2170: 1888: 1856: 1815: 336:
to (in principle) arbitrary accuracy had long been known. Viète's own method can be interpreted as a variation of an idea of
2344: 1701:
goes to infinity, from which Euler's formula follows. Viète's formula may be obtained from this formula by the substitution
2029: 1383:
are now known, similar to Viète's in their use of either nested radicals or infinite products of trigonometric functions.
1971:
Cullerne, J. P.; Goekjian, M. C. Dunn (December 2011). "Teaching wave propagation and the emergence of Viète's formula".
998:{\displaystyle {\frac {2}{\pi }}=\cos {\frac {\pi }{4}}\cdot \cos {\frac {\pi }{8}}\cdot \cos {\frac {\pi }{16}}\cdots } 2802: 2588: 2500: 2479: 2098: 1765: 1479:(the diameter of the circle, counted twice) and a square, the ratio of perimeters of a square and an octagon, etc. 2054: 1471:
to give the ratio of areas of a square (the initial polygon in the sequence) to a circle (the limiting case of a
898:{\displaystyle {\frac {\sin x}{x}}=\cos {\frac {x}{2}}\cdot \cos {\frac {x}{4}}\cdot \cos {\frac {x}{8}}\cdots } 2718: 2318: 431: 2321:. Vol. 12. New York: John Wiley & Sons for the Mathematical Association of America. pp. 1–12. 1883:. Translated by Wilson, Stephen S. Providence, Rhode Island: American Mathematical Society. pp. 44–46. 472:, equal to the integral of products of the same functions, provides a motivating example for the concept of 2223: 1676:{\displaystyle \sin x=2^{n}\sin {\frac {x}{2^{n}}}\left(\prod _{i=1}^{n}\cos {\frac {x}{2^{i}}}\right).} 2887: 2586:
Levin, Aaron (2006). "A geometric interpretation of an infinite product for the lemniscate constant".
716:
were developed in mathematics; the first proof that this limit exists was not given until the work of
663:{\displaystyle {\begin{aligned}a_{1}&={\sqrt {2}}\\a_{n}&={\sqrt {2+a_{n-1}}}.\end{aligned}}} 464:
in the limiting behavior of these speeds. Additionally, a derivation of this formula as a product of
1727: 2757: 1430: 473: 344:
of a circle by the perimeter of a many-sided polygon, used by Archimedes to find the approximation
283: 434: 2210: 564:{\displaystyle \lim _{n\rightarrow \infty }\prod _{i=1}^{n}{\frac {a_{i}}{2}}={\frac {2}{\pi }},} 2631:
Levin, Aaron (2005). "A new class of infinite products generalizing Viète's product formula for
1007:
Then, expressing each term of the product on the right as a function of earlier terms using the
2892: 1557: 1483: 63: 2219: 2019: 395:
By publishing his method as a mathematical formula, Viète formulated the first instance of an
330: 325:
to two French kings, and amateur mathematician. He published this formula in 1593 in his work
2637: 2433:
Translated into English by Thomas W. Polaski. See final formula. The same formula is also in
2423:[On various methods for expressing the quadrature of a circle with verging numbers]. 2152: 1876: 1807: 408: 271: 456:
Beyond its mathematical and historical significance, Viète's formula can be used to explain
2831: 2741: 2698: 2658: 2617: 2572: 2529: 2326: 2137: 2077: 1925: 1898: 1825: 2360: 2188: 399:
known in mathematics, and the first example of an explicit formula for the exact value of
8: 2685: 787: 755: 457: 267: 263: 24: 2439: 2377:(2007). "A simple geometric method of estimating the error in using Vieta's product for 2856: 2819: 2782: 2774: 2662: 2605: 2517: 2453: 2420: 2398: 2265: 2206: 2125: 2107: 1988: 1950: 1942: 1468: 1008: 713: 695: 675: 446: 302: 275: 2850: 2786: 2666: 2475: 2402: 2345:"Ueber die Convergenz einer von Vieta herrührenden eigentümlichen Produktentwicklung" 2281: 2229: 2166: 2025: 1992: 1954: 1884: 1852: 1811: 469: 253:{\displaystyle {\frac {2}{\pi }}=\prod _{n=1}^{\infty }\cos {\frac {\pi }{2^{n+1}}}.} 1984: 2811: 2766: 2727: 2683:(2007). "Vieta-like products of nested radicals with Fibonacci and Lucas numbers". 2646: 2597: 2558: 2509: 2390: 2356: 2273: 2258: 2254: 2158: 2117: 2063: 1980: 1938: 1934: 412: 396: 322: 55: 2713: 2096:
Morrison, Kent E. (1995). "Cosine products, Fourier transforms, and random sums".
1080:
that still involves nested square roots of two, but uses only one multiplication:
750:
terms. Each subsequent subplot magnifies the shaded area horizontally by 10 times.
445:
digits and 16 decimal digits in 1424. Not long after Viète published his formula,
2865: 2827: 2737: 2694: 2680: 2654: 2613: 2568: 2525: 2474:(1st ed.). Oxford, United Kingdom: Oxford University Press. pp. 57–58. 2442:[Various observations about angles proceeding in geometric progression]. 2374: 2340: 2322: 2277: 2133: 2073: 1894: 1821: 1798: 1721: 1412: 1396: 717: 2714:"Mapping properties, growth, and uniqueness of Vieta (infinite cosine) products" 723: 2435: 2416: 807: 775: 310: 59: 2650: 2563: 2544: 2394: 2162: 2068: 2049: 2881: 2545:"Some closed-form evaluations of infinite products involving nested radicals" 2440:"Variae observationes circa angulos in progressione geometrica progredientes" 1794: 1391: 803: 423: 341: 2732: 2349:
Historisch-litterarische Abteilung der Zeitschrift für Mathematik und Physik
2871: 2313:(1959). "Chapter 1: From Vieta to the notion of statistical independence". 1400: 1380: 306: 289:
The formula can be derived as a telescoping product of either the areas or
2347:[On the convergence of a special product expansion due to Vieta]. 2383:
International Journal of Mathematical Education in Science and Technology
2215: 1464: 1076:
It is also possible to derive from Viète's formula a related formula for
442: 47: 32: 2609: 1946: 2823: 2778: 2521: 2228:. Princeton, New Jersey: Princeton University Press. pp. 221–234. 2129: 1851:. Princeton, New Jersey: Princeton University Press. pp. 50, 140. 802:
Viète's formula may be obtained as a special case of a formula for the
337: 2472:
Euler's pioneering equation: the most beautiful theorem in mathematics
2213:(c. 1340 – 1425), but were not known in Europe until much later. See: 484:
Viète's formula may be rewritten and understood as a limit expression
2601: 2112: 290: 2815: 2770: 2513: 2121: 2315:
Statistical Independence in Probability, Analysis and Number Theory
2310: 1844: 465: 449:
used a method closely related to Viète's to calculate 35 digits of
404: 2457: 2154:
An Atlas of Functions: with Equator, the Atlas Function Calculator
460:
in an infinite chain of springs and masses, and the appearance of
1460: 1066:{\displaystyle \cos {\frac {x}{2}}={\sqrt {\frac {1+\cos x}{2}}}} 294: 2421:"De variis modis circuli quadraturam numeris proxime exprimendi" 1549:{\displaystyle \sin x=2\sin {\frac {x}{2}}\cos {\frac {x}{2}},} 1424: 774:
digits. This convergence rate compares very favorably with the
298: 453:, which were published only after van Ceulen's death in 1610. 2800:
Rummler, Hansklaus (1993). "Squaring the circle with holes".
1806:(2nd ed.). Boulder, Colorado: The Golem Press. pp.  1476: 386:{\displaystyle {\frac {223}{71}}<\pi <{\frac {22}{7}}.} 1463:, the second term is the ratio of areas of an octagon and a 2220:"7.3.1 Mādhava on the circumference and arcs of the circle" 1408: 426:. However, this was not the most accurate approximation to 2151:
Oldham, Keith B.; Myland, Jan C.; Spanier, Jerome (2010).
692:, the expression in the limit is a finite product, and as 23:. For formulas for symmetric functions of the roots, see 2272:. Berlin & Heidelberg: Springer. pp. 531–561. 2048:
Moreno, Samuel G.; García-Caballero, Esther M. (2013).
782:. Although Viète himself used his formula to calculate 415:
calls its appearance "the dawn of modern mathematics".
407:
highlights Viète's formula as marking the beginning of
67: 2867:
Variorum de rebus mathematicis responsorum, liber VIII
2047: 458:
the different speeds of waves of different frequencies
327:
Variorum de rebus mathematicis responsorum, liber VIII
39:
Variorum de rebus mathematicis responsorum, liber VIII
2259:"The life of Pi: From Archimedes to ENIAC and beyond" 2191: 1999: 1730: 1570: 1495: 1433: 1218: 1086: 1017: 924: 816: 698: 678: 577: 490: 350: 183: 78: 2846: 2150: 2874:. The formula is on the second half of p. 30. 2197: 1752: 1675: 1548: 1451: 1365: 1204: 1065: 997: 897: 790:version of his formula has been used to calculate 727:Comparison of the convergence of Viète's formula ( 704: 684: 662: 563: 385: 252: 169: 2498:Servi, L. D. (2003). "Nested square roots of 2". 479: 2879: 2425:Commentarii Academiae Scientiarum Petropolitanae 1970: 1234: 1094: 492: 321:François Viète (1540–1603) was a French lawyer, 2755:Allen, Edward J. (1985). "Continued radicals". 2185:Very similar infinite trigonometric series for 1923:to thousands of digits from Vieta's formula". 309:leads to a generalized formula, discovered by 1486:and Euler's formula. Repeatedly applying the 733:) and several historical infinite series for 1407:Viète obtained his formula by comparing the 1914: 1912: 1910: 1908: 1875:Eymard, Pierre; Lafon, Jean Pierre (2004). 1874: 1459:, is the ratio of areas of a square and an 763:terms in the limit gives an expression for 37: 2460:. See the formula in numbered paragraph 3. 2249: 2247: 2245: 2091: 2089: 2087: 1966: 1964: 1789: 1787: 1785: 1783: 1781: 2731: 2711: 2705: 2562: 2111: 2067: 1918: 2493: 2491: 2452:Translated into English by Jordan Bell, 2095: 2017: 2005: 1905: 1870: 1868: 1793: 1482:Another derivation is possible based on 1390: 722: 31: 2799: 2793: 2253: 2242: 2214: 2179: 2084: 1961: 1778: 778:, a later infinite product formula for 36:Viète's formula, as printed in Viète's 2880: 2673: 2624: 2542: 2536: 2469: 2305: 2303: 2011: 1839: 1837: 1835: 270:expression and marks the beginning of 2754: 2748: 2679: 2630: 2585: 2579: 2550:Rocky Mountain Journal of Mathematics 2497: 2488: 2434: 2415: 2409: 2373: 2367: 2339: 2333: 2043: 2041: 1865: 301:. Alternatively, repeated use of the 1843: 1212:which can be rewritten compactly as 794:to hundreds of thousands of digits. 418:Using his formula, Viète calculated 278:and can be used for calculations of 19:This article is about a formula for 2309: 2300: 2144: 2024:. Leicester: Matador. p. 165. 1832: 797: 13: 2157:. New York: Springer. p. 15. 2038: 1244: 1104: 806:that has often been attributed to 786:only with nine-digit accuracy, an 767:that is accurate to approximately 746:is the approximation after taking 502: 213: 16:Infinite product converging to 2/π 14: 2904: 2842: 2803:The American Mathematical Monthly 2589:The American Mathematical Monthly 2501:The American Mathematical Monthly 2099:The American Mathematical Monthly 1427:. The first term in the product, 2849: 2270:From Alexandria, Through Baghdad 1766:List of trigonometric identities 1560:that, for all positive integers 1379:and other constants such as the 2463: 2055:Journal of Approximation Theory 1399:with numbers of sides equal to 316: 2719:Pacific Journal of Mathematics 2712:Stolarsky, Kenneth B. (1980). 1939:10.1080/0025570X.2008.11953549 1877:"2.1 Viète's infinite product" 1753:{\displaystyle x=2^{n}\alpha } 1241: 1101: 810:, more than a century later: 499: 480:Interpretation and convergence 177:It can also be represented as 1: 2319:Carus Mathematical Monographs 2018:De Smith, Michael J. (2006). 1771: 1452:{\displaystyle {\sqrt {2}}/2} 1386: 66:of the mathematical constant 2278:10.1007/978-3-642-36736-6_24 329:. At this time, methods for 7: 1715: 262:The formula is named after 10: 2909: 430:known at the time, as the 18: 2651:10.1007/s11139-005-4852-z 2564:10.1216/RMJ-2012-42-2-751 2470:Wilson, Robin J. (2018). 2395:10.1080/00207390601002799 2163:10.1007/978-0-387-48807-3 2069:10.1016/j.jat.2013.06.006 1985:10.1088/0031-9120/47/1/87 1919:Kreminski, Rick (2008). " 1467:, etc. Thus, the product 2758:The Mathematical Gazette 2050:"On Viète-like formulas" 1724:, same identity taking 1484:trigonometric identities 474:statistical independence 284:statistical independence 2733:10.2140/pjm.1980.89.209 2211:Madhava of Sangamagrama 1073:gives Viète's formula. 918:in this formula yields 441:to an accuracy of nine 422:to an accuracy of nine 62:representing twice the 2543:Nyblom, M. A. (2012). 2199: 1849:Trigonometric Delights 1754: 1677: 1641: 1558:mathematical induction 1550: 1453: 1404: 1367: 1206: 1067: 999: 899: 751: 706: 686: 664: 565: 527: 387: 254: 217: 171: 43: 38: 2638:The Ramanujan Journal 2264:. In Sidoli, Nathan; 2200: 1755: 1678: 1621: 1551: 1454: 1423:sides inscribed in a 1394: 1368: 1207: 1068: 1000: 900: 726: 707: 687: 665: 566: 507: 432:Persian mathematician 409:mathematical analysis 388: 340:of approximating the 272:mathematical analysis 255: 197: 172: 35: 2255:Borwein, Jonathan M. 2225:Mathematics in India 2205:appeared earlier in 2198:{\displaystyle \pi } 2189: 1926:Mathematics Magazine 1728: 1568: 1556:leads to a proof by 1493: 1488:double-angle formula 1431: 1216: 1084: 1015: 922: 814: 696: 676: 575: 488: 348: 181: 76: 2686:Fibonacci Quarterly 2266:Van Brummelen, Glen 756:rate of convergence 672:For each choice of 2857:Mathematics portal 2444:Opuscula Analytica 2207:Indian mathematics 2195: 1760:on Viète's formula 1750: 1673: 1546: 1449: 1405: 1375:Many formulae for 1363: 1361: 1248: 1202: 1198: 1194: square roots 1186: 1108: 1063: 1009:half-angle formula 995: 895: 752: 702: 682: 660: 658: 561: 506: 447:Ludolph van Ceulen 383: 303:half-angle formula 276:linear convergence 250: 167: 44: 2888:Infinite products 2287:978-3-642-36735-9 2235:978-0-691-12067-6 2209:, in the work of 2172:978-0-387-48807-3 1973:Physics Education 1890:978-0-8218-3246-2 1858:978-1-4008-4282-7 1817:978-0-88029-418-8 1663: 1614: 1541: 1525: 1439: 1354: 1277: 1233: 1195: 1182: 1180: 1178: 1176: 1174: 1172: 1121: 1119: 1093: 1061: 1060: 1032: 990: 971: 952: 933: 890: 871: 852: 833: 705:{\displaystyle n} 685:{\displaystyle n} 651: 604: 556: 543: 491: 470:Rademacher system 378: 359: 245: 192: 162: 158: 156: 154: 127: 123: 121: 102: 98: 87: 54:is the following 2900: 2859: 2854: 2853: 2836: 2835: 2797: 2791: 2790: 2765:(450): 261–263. 2752: 2746: 2745: 2735: 2709: 2703: 2702: 2681:Osler, Thomas J. 2677: 2671: 2670: 2634: 2628: 2622: 2621: 2602:10.2307/27641976 2583: 2577: 2576: 2566: 2540: 2534: 2533: 2495: 2486: 2485: 2467: 2461: 2451: 2432: 2413: 2407: 2406: 2380: 2375:Osler, Thomas J. 2371: 2365: 2364: 2337: 2331: 2330: 2307: 2298: 2297: 2295: 2294: 2263: 2251: 2240: 2239: 2204: 2202: 2201: 2196: 2183: 2177: 2176: 2148: 2142: 2141: 2115: 2093: 2082: 2081: 2071: 2045: 2036: 2035: 2031:978-1905237-81-4 2015: 2009: 2003: 1997: 1996: 1968: 1959: 1958: 1922: 1916: 1903: 1902: 1872: 1863: 1862: 1841: 1830: 1829: 1803: 1791: 1759: 1757: 1756: 1751: 1746: 1745: 1711: 1709: 1700: 1697:in the limit as 1696: 1692: 1682: 1680: 1679: 1674: 1669: 1665: 1664: 1662: 1661: 1649: 1640: 1635: 1615: 1613: 1612: 1600: 1592: 1591: 1563: 1555: 1553: 1552: 1547: 1542: 1534: 1526: 1518: 1474: 1458: 1456: 1455: 1450: 1445: 1440: 1435: 1422: 1418: 1413:regular polygons 1397:regular polygons 1378: 1372: 1370: 1369: 1364: 1362: 1355: 1353: 1352: 1331: 1322: 1321: 1295: 1294: 1278: 1276: 1275: 1260: 1258: 1257: 1247: 1211: 1209: 1208: 1203: 1197: 1196: 1193: 1187: 1181: 1179: 1177: 1175: 1173: 1168: 1154: 1146: 1138: 1130: 1122: 1118: 1117: 1107: 1079: 1072: 1070: 1069: 1064: 1062: 1056: 1039: 1038: 1033: 1025: 1004: 1002: 1001: 996: 991: 983: 972: 964: 953: 945: 934: 926: 917: 915: 904: 902: 901: 896: 891: 883: 872: 864: 853: 845: 834: 829: 818: 798:Related formulas 793: 785: 781: 773: 766: 762: 749: 745: 736: 732: 711: 709: 708: 703: 691: 689: 688: 683: 669: 667: 666: 661: 659: 652: 650: 649: 628: 619: 618: 605: 600: 591: 590: 570: 568: 567: 562: 557: 549: 544: 539: 538: 529: 526: 521: 505: 463: 452: 440: 435:Jamshīd al-Kāshī 429: 421: 413:Jonathan Borwein 402: 397:infinite product 392: 390: 389: 384: 379: 371: 360: 352: 334: 323:privy councillor 297:converging to a 281: 259: 257: 256: 251: 246: 244: 243: 225: 216: 211: 193: 185: 176: 174: 173: 168: 163: 157: 155: 150: 142: 134: 133: 128: 122: 117: 109: 108: 103: 94: 93: 88: 80: 70: 56:infinite product 41: 25:Vieta's formulas 22: 2908: 2907: 2903: 2902: 2901: 2899: 2898: 2897: 2878: 2877: 2855: 2848: 2845: 2840: 2839: 2816:10.2307/2324662 2798: 2794: 2771:10.2307/3617569 2753: 2749: 2710: 2706: 2678: 2674: 2632: 2629: 2625: 2584: 2580: 2541: 2537: 2514:10.2307/3647881 2496: 2489: 2482: 2468: 2464: 2436:Euler, Leonhard 2417:Euler, Leonhard 2414: 2410: 2378: 2372: 2368: 2338: 2334: 2308: 2301: 2292: 2290: 2288: 2261: 2252: 2243: 2236: 2190: 2187: 2186: 2184: 2180: 2173: 2149: 2145: 2122:10.2307/2974641 2094: 2085: 2046: 2039: 2032: 2016: 2012: 2004: 2000: 1969: 1962: 1920: 1917: 1906: 1891: 1873: 1866: 1859: 1842: 1833: 1818: 1801: 1792: 1779: 1774: 1741: 1737: 1729: 1726: 1725: 1718: 1707: 1702: 1698: 1694: 1686: 1657: 1653: 1648: 1636: 1625: 1620: 1616: 1608: 1604: 1599: 1587: 1583: 1569: 1566: 1565: 1561: 1533: 1517: 1494: 1491: 1490: 1472: 1441: 1434: 1432: 1429: 1428: 1420: 1416: 1389: 1376: 1360: 1359: 1342: 1338: 1330: 1323: 1317: 1313: 1310: 1309: 1296: 1290: 1286: 1283: 1282: 1271: 1267: 1259: 1253: 1249: 1237: 1226: 1219: 1217: 1214: 1213: 1192: 1188: 1167: 1153: 1145: 1137: 1129: 1120: 1113: 1109: 1097: 1085: 1082: 1081: 1077: 1040: 1037: 1024: 1016: 1013: 1012: 982: 963: 944: 925: 923: 920: 919: 913: 908: 882: 863: 844: 819: 817: 815: 812: 811: 800: 791: 783: 779: 768: 764: 760: 747: 743: 738: 734: 728: 718:Ferdinand Rudio 697: 694: 693: 677: 674: 673: 657: 656: 639: 635: 627: 620: 614: 610: 607: 606: 599: 592: 586: 582: 578: 576: 573: 572: 548: 534: 530: 528: 522: 511: 495: 489: 486: 485: 482: 461: 450: 438: 437:had calculated 427: 419: 400: 370: 351: 349: 346: 345: 332: 319: 279: 233: 229: 224: 212: 201: 184: 182: 179: 178: 149: 141: 132: 116: 107: 92: 79: 77: 74: 73: 68: 60:nested radicals 52:Viète's formula 28: 20: 17: 12: 11: 5: 2906: 2896: 2895: 2890: 2876: 2875: 2861: 2860: 2844: 2843:External links 2841: 2838: 2837: 2810:(9): 858–860. 2792: 2747: 2726:(1): 209–227. 2704: 2693:(3): 202–204. 2672: 2645:(3): 305–324. 2623: 2596:(6): 510–520. 2578: 2557:(2): 751–758. 2535: 2508:(4): 326–330. 2487: 2480: 2462: 2408: 2389:(1): 136–142. 2366: 2332: 2299: 2286: 2241: 2234: 2194: 2178: 2171: 2143: 2106:(8): 716–724. 2083: 2037: 2030: 2010: 1998: 1960: 1933:(3): 201–207. 1904: 1889: 1864: 1857: 1831: 1816: 1795:Beckmann, Petr 1776: 1775: 1773: 1770: 1769: 1768: 1762: 1761: 1749: 1744: 1740: 1736: 1733: 1717: 1714: 1672: 1668: 1660: 1656: 1652: 1647: 1644: 1639: 1634: 1631: 1628: 1624: 1619: 1611: 1607: 1603: 1598: 1595: 1590: 1586: 1582: 1579: 1576: 1573: 1545: 1540: 1537: 1532: 1529: 1524: 1521: 1516: 1513: 1510: 1507: 1504: 1501: 1498: 1448: 1444: 1438: 1395:A sequence of 1388: 1385: 1358: 1351: 1348: 1345: 1341: 1337: 1334: 1329: 1326: 1324: 1320: 1316: 1312: 1311: 1308: 1305: 1302: 1299: 1297: 1293: 1289: 1285: 1284: 1281: 1274: 1270: 1266: 1263: 1256: 1252: 1246: 1243: 1240: 1236: 1232: 1229: 1227: 1225: 1222: 1221: 1201: 1191: 1185: 1171: 1166: 1163: 1160: 1157: 1152: 1149: 1144: 1141: 1136: 1133: 1128: 1125: 1116: 1112: 1106: 1103: 1100: 1096: 1092: 1089: 1059: 1055: 1052: 1049: 1046: 1043: 1036: 1031: 1028: 1023: 1020: 994: 989: 986: 981: 978: 975: 970: 967: 962: 959: 956: 951: 948: 943: 940: 937: 932: 929: 894: 889: 886: 881: 878: 875: 870: 867: 862: 859: 856: 851: 848: 843: 840: 837: 832: 828: 825: 822: 808:Leonhard Euler 799: 796: 776:Wallis product 741: 701: 681: 655: 648: 645: 642: 638: 634: 631: 626: 623: 621: 617: 613: 609: 608: 603: 598: 595: 593: 589: 585: 581: 580: 560: 555: 552: 547: 542: 537: 533: 525: 520: 517: 514: 510: 504: 501: 498: 494: 481: 478: 468:involving the 424:decimal digits 382: 377: 374: 369: 366: 363: 358: 355: 331:approximating 318: 315: 311:Leonhard Euler 264:François Viète 249: 242: 239: 236: 232: 228: 223: 220: 215: 210: 207: 204: 200: 196: 191: 188: 166: 161: 153: 148: 145: 140: 137: 131: 126: 120: 115: 112: 106: 101: 97: 91: 86: 83: 15: 9: 6: 4: 3: 2: 2905: 2894: 2893:Pi algorithms 2891: 2889: 2886: 2885: 2883: 2873: 2869: 2868: 2863: 2862: 2858: 2852: 2847: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2805: 2804: 2796: 2788: 2784: 2780: 2776: 2772: 2768: 2764: 2760: 2759: 2751: 2743: 2739: 2734: 2729: 2725: 2721: 2720: 2715: 2708: 2700: 2696: 2692: 2688: 2687: 2682: 2676: 2668: 2664: 2660: 2656: 2652: 2648: 2644: 2640: 2639: 2627: 2619: 2615: 2611: 2607: 2603: 2599: 2595: 2591: 2590: 2582: 2574: 2570: 2565: 2560: 2556: 2552: 2551: 2546: 2539: 2531: 2527: 2523: 2519: 2515: 2511: 2507: 2503: 2502: 2494: 2492: 2483: 2481:9780198794929 2477: 2473: 2466: 2459: 2455: 2449: 2445: 2441: 2437: 2430: 2426: 2422: 2418: 2412: 2404: 2400: 2396: 2392: 2388: 2384: 2376: 2370: 2362: 2358: 2354: 2351:(in German). 2350: 2346: 2342: 2336: 2328: 2324: 2320: 2316: 2312: 2306: 2304: 2289: 2283: 2279: 2275: 2271: 2267: 2260: 2256: 2250: 2248: 2246: 2237: 2231: 2227: 2226: 2221: 2217: 2212: 2208: 2192: 2182: 2174: 2168: 2164: 2160: 2156: 2155: 2147: 2139: 2135: 2131: 2127: 2123: 2119: 2114: 2109: 2105: 2101: 2100: 2092: 2090: 2088: 2079: 2075: 2070: 2065: 2061: 2057: 2056: 2051: 2044: 2042: 2033: 2027: 2023: 2022: 2014: 2008:, p. 67. 2007: 2006:Beckmann 1971 2002: 1994: 1990: 1986: 1982: 1978: 1974: 1967: 1965: 1956: 1952: 1948: 1944: 1940: 1936: 1932: 1928: 1927: 1915: 1913: 1911: 1909: 1900: 1896: 1892: 1886: 1882: 1881:The Number pi 1878: 1871: 1869: 1860: 1854: 1850: 1846: 1840: 1838: 1836: 1827: 1823: 1819: 1813: 1809: 1805: 1804: 1800:A History of 1796: 1790: 1788: 1786: 1784: 1782: 1777: 1767: 1764: 1763: 1747: 1742: 1738: 1734: 1731: 1723: 1720: 1719: 1713: 1705: 1690: 1683: 1670: 1666: 1658: 1654: 1650: 1645: 1642: 1637: 1632: 1629: 1626: 1622: 1617: 1609: 1605: 1601: 1596: 1593: 1588: 1584: 1580: 1577: 1574: 1571: 1559: 1543: 1538: 1535: 1530: 1527: 1522: 1519: 1514: 1511: 1508: 1505: 1502: 1499: 1496: 1489: 1485: 1480: 1478: 1470: 1466: 1462: 1446: 1442: 1436: 1426: 1414: 1410: 1402: 1401:powers of two 1398: 1393: 1384: 1382: 1373: 1356: 1349: 1346: 1343: 1339: 1335: 1332: 1327: 1325: 1318: 1314: 1306: 1303: 1300: 1298: 1291: 1287: 1279: 1272: 1268: 1264: 1261: 1254: 1250: 1238: 1230: 1228: 1223: 1199: 1189: 1183: 1169: 1164: 1161: 1158: 1155: 1150: 1147: 1142: 1139: 1134: 1131: 1126: 1123: 1114: 1110: 1098: 1090: 1087: 1074: 1057: 1053: 1050: 1047: 1044: 1041: 1034: 1029: 1026: 1021: 1018: 1010: 1005: 992: 987: 984: 979: 976: 973: 968: 965: 960: 957: 954: 949: 946: 941: 938: 935: 930: 927: 911: 907:Substituting 905: 892: 887: 884: 879: 876: 873: 868: 865: 860: 857: 854: 849: 846: 841: 838: 835: 830: 826: 823: 820: 809: 805: 804:sinc function 795: 789: 777: 772: 757: 744: 731: 725: 721: 719: 715: 699: 679: 670: 653: 646: 643: 640: 636: 632: 629: 624: 622: 615: 611: 601: 596: 594: 587: 583: 558: 553: 550: 545: 540: 535: 531: 523: 518: 515: 512: 508: 496: 477: 475: 471: 467: 459: 454: 448: 444: 436: 433: 425: 416: 414: 410: 406: 398: 393: 380: 375: 372: 367: 364: 361: 356: 353: 343: 342:circumference 339: 335: 328: 324: 314: 312: 308: 304: 300: 296: 292: 287: 285: 277: 273: 269: 265: 260: 247: 240: 237: 234: 230: 226: 221: 218: 208: 205: 202: 198: 194: 189: 186: 164: 159: 151: 146: 143: 138: 135: 129: 124: 118: 113: 110: 104: 99: 95: 89: 84: 81: 71: 65: 61: 57: 53: 49: 40: 34: 30: 26: 2872:Google Books 2866: 2807: 2801: 2795: 2762: 2756: 2750: 2723: 2717: 2707: 2690: 2684: 2675: 2642: 2636: 2626: 2593: 2587: 2581: 2554: 2548: 2538: 2505: 2499: 2471: 2465: 2447: 2446:(in Latin). 2443: 2428: 2427:(in Latin). 2424: 2411: 2386: 2382: 2369: 2352: 2348: 2335: 2314: 2291:. Retrieved 2269: 2224: 2216:Plofker, Kim 2181: 2153: 2146: 2113:math/0411380 2103: 2097: 2059: 2053: 2020: 2013: 2001: 1979:(1): 87–91. 1976: 1972: 1930: 1924: 1880: 1848: 1799: 1722:Morrie's law 1703: 1688: 1684: 1481: 1406: 1381:golden ratio 1374: 1075: 1006: 909: 906: 801: 770: 753: 739: 729: 671: 483: 455: 417: 394: 326: 320: 317:Significance 307:trigonometry 288: 261: 51: 45: 29: 2355:: 139–140. 1465:hexadecagon 788:accelerated 714:convergence 443:sexagesimal 48:mathematics 2882:Categories 2870:(1593) on 2450:: 345–352. 2431:: 222–236. 2361:23.0263.02 2293:2024-08-20 2062:: 90–112. 1772:References 1469:telescopes 1387:Derivation 338:Archimedes 293:of nested 291:perimeters 64:reciprocal 2787:250441699 2667:123023282 2458:1009.1439 2403:120145020 2341:Rudio, F. 2311:Kac, Mark 2193:π 1993:122368450 1955:125362227 1845:Maor, Eli 1748:α 1685:The term 1646:⁡ 1623:∏ 1597:⁡ 1575:⁡ 1531:⁡ 1515:⁡ 1500:⁡ 1347:− 1265:− 1245:∞ 1242:→ 1224:π 1184:⏟ 1162:⋯ 1127:− 1105:∞ 1102:→ 1088:π 1051:⁡ 1022:⁡ 993:⋯ 985:π 980:⁡ 974:⋅ 966:π 961:⁡ 955:⋅ 947:π 942:⁡ 931:π 893:⋯ 880:⁡ 874:⋅ 861:⁡ 855:⋅ 842:⁡ 824:⁡ 720:in 1891. 644:− 554:π 509:∏ 503:∞ 500:→ 466:integrals 365:π 274:. It has 227:π 222:⁡ 214:∞ 199:∏ 190:π 165:⋯ 130:⋅ 105:⋅ 85:π 2864:Viète's 2610:27641976 2438:(1783). 2419:(1738). 2343:(1891). 2268:(eds.). 2257:(2014). 2218:(2009). 1947:27643107 1847:(2011). 1797:(1971). 1716:See also 1693:goes to 405:Eli Maor 295:polygons 2832:1247533 2824:2324662 2779:3617569 2742:0596932 2699:2437033 2659:2193382 2618:2231136 2573:2915517 2530:1984573 2522:3647881 2327:0110114 2138:1357488 2130:2974641 2078:3090772 1899:2036595 1826:0449960 1461:octagon 2830:  2822:  2785:  2777:  2740:  2697:  2665:  2657:  2616:  2608:  2571:  2528:  2520:  2478:  2401:  2359:  2325:  2284:  2232:  2169:  2136:  2128:  2076:  2028:  1991:  1953:  1945:  1897:  1887:  1855:  1824:  1814:  1687:2 sin( 1425:circle 571:where 299:circle 42:(1593) 2820:JSTOR 2783:S2CID 2775:JSTOR 2663:S2CID 2606:JSTOR 2518:JSTOR 2454:arXiv 2399:S2CID 2262:(PDF) 2126:JSTOR 2108:arXiv 1989:S2CID 1951:S2CID 1943:JSTOR 1808:94–95 1477:digon 1415:with 1409:areas 305:from 268:limit 2476:ISBN 2282:ISBN 2230:ISBN 2167:ISBN 2026:ISBN 1885:ISBN 1853:ISBN 1812:ISBN 1419:and 754:The 411:and 368:< 362:< 2812:doi 2808:100 2767:doi 2728:doi 2647:doi 2635:". 2598:doi 2594:113 2559:doi 2510:doi 2506:110 2391:doi 2381:". 2357:JFM 2274:doi 2159:doi 2118:doi 2104:102 2064:doi 2060:174 1981:doi 1935:doi 1691:/2) 1643:cos 1594:sin 1572:sin 1528:cos 1512:sin 1497:sin 1411:of 1235:lim 1095:lim 1048:cos 1019:cos 977:cos 958:cos 939:cos 877:cos 858:cos 839:cos 821:sin 769:0.6 493:lim 354:223 219:cos 58:of 46:In 2884:: 2828:MR 2826:. 2818:. 2806:. 2781:. 2773:. 2763:69 2761:. 2738:MR 2736:. 2724:89 2722:. 2716:. 2695:MR 2691:45 2689:. 2661:. 2655:MR 2653:. 2643:10 2641:. 2614:MR 2612:. 2604:. 2592:. 2569:MR 2567:. 2555:42 2553:. 2547:. 2526:MR 2524:. 2516:. 2504:. 2490:^ 2397:. 2387:38 2385:. 2353:36 2323:MR 2317:. 2302:^ 2280:. 2244:^ 2222:. 2165:. 2134:MR 2132:. 2124:. 2116:. 2102:. 2086:^ 2074:MR 2072:. 2058:. 2052:. 2040:^ 1987:. 1977:47 1975:. 1963:^ 1949:. 1941:. 1931:81 1929:. 1907:^ 1895:MR 1893:. 1879:. 1867:^ 1834:^ 1822:MR 1820:. 1810:. 1780:^ 1712:. 1710:/2 1706:= 1564:, 1011:: 988:16 916:/2 912:= 737:. 476:. 373:22 357:71 286:. 72:: 50:, 2834:. 2814:: 2789:. 2769:: 2744:. 2730:: 2701:. 2669:. 2649:: 2633:π 2620:. 2600:: 2575:. 2561:: 2532:. 2512:: 2484:. 2456:: 2448:1 2429:9 2405:. 2393:: 2379:π 2363:. 2329:. 2296:. 2276:: 2238:. 2175:. 2161:: 2140:. 2120:: 2110:: 2080:. 2066:: 2034:. 1995:. 1983:: 1957:. 1937:: 1921:π 1901:. 1861:. 1828:. 1802:π 1743:n 1739:2 1735:= 1732:x 1708:π 1704:x 1699:n 1695:x 1689:x 1671:. 1667:) 1659:i 1655:2 1651:x 1638:n 1633:1 1630:= 1627:i 1618:( 1610:n 1606:2 1602:x 1589:n 1585:2 1581:= 1578:x 1562:n 1544:, 1539:2 1536:x 1523:2 1520:x 1509:2 1506:= 1503:x 1473:2 1447:2 1443:/ 1437:2 1421:2 1417:2 1377:π 1357:. 1350:1 1344:k 1340:a 1336:+ 1333:2 1328:= 1319:k 1315:a 1307:, 1304:0 1301:= 1292:1 1288:a 1280:, 1273:k 1269:a 1262:2 1255:k 1251:2 1239:k 1231:= 1200:, 1190:k 1170:2 1165:+ 1159:+ 1156:2 1151:+ 1148:2 1143:+ 1140:2 1135:+ 1132:2 1124:2 1115:k 1111:2 1099:k 1091:= 1078:π 1058:2 1054:x 1045:+ 1042:1 1035:= 1030:2 1027:x 969:8 950:4 936:= 928:2 914:π 910:x 888:8 885:x 869:4 866:x 850:2 847:x 836:= 831:x 827:x 792:π 784:π 780:π 771:n 765:π 761:n 748:n 742:n 740:S 735:π 730:× 700:n 680:n 654:. 647:1 641:n 637:a 633:+ 630:2 625:= 616:n 612:a 602:2 597:= 588:1 584:a 559:, 551:2 546:= 541:2 536:i 532:a 524:n 519:1 516:= 513:i 497:n 462:π 451:π 439:π 428:π 420:π 401:π 381:. 376:7 333:π 280:π 248:. 241:1 238:+ 235:n 231:2 209:1 206:= 203:n 195:= 187:2 160:2 152:2 147:+ 144:2 139:+ 136:2 125:2 119:2 114:+ 111:2 100:2 96:2 90:= 82:2 69:π 27:. 21:π

Index

Vieta's formulas

mathematics
infinite product
nested radicals
reciprocal
π
François Viète
limit
mathematical analysis
linear convergence
statistical independence
perimeters
polygons
circle
half-angle formula
trigonometry
Leonhard Euler
privy councillor
approximating π
Archimedes
circumference
infinite product
Eli Maor
mathematical analysis
Jonathan Borwein
decimal digits
Persian mathematician
Jamshīd al-Kāshī
sexagesimal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.