Knowledge

1 + 2 + 4 + 8 + ⋯

Source 📝

2226: 20: 2535: 1122: 1386:
The above manipulation might be called on to produce −1 outside the context of a sufficiently powerful summation procedure. For the most well-known and straightforward sum concepts, including the fundamental convergent one, it is absurd that a series of positive terms could have a negative value. A
972:
shows that the general method is not totally regular. On the other hand, it possesses some other desirable qualities for a summation method, including stability and linearity. These latter two axioms actually force the sum to be −1, since they make the following manipulation valid:
979: 513: 866: 261: 1555: 314: 687: 177: 631: 1767: 1587: 1467: 1429: 970: 772: 373: 130: 544: 1251: 381: 1518: 1494: 1117:{\displaystyle {\begin{array}{rcl}s&=&\displaystyle 1+2+4+8+16+\cdots \\&=&\displaystyle 1+2(1+2+4+8+\cdots )\\&=&\displaystyle 1+2s\end{array}}} 1151: 1298: 728: 1209: 1189: 1969: 1714: 1353: 1382: 924: 892: 570: 1318: 1275: 590: 2417: 1863: 1609: 2060: 792: 2407: 2500: 182: 789:
An almost identical approach (the one taken by Euler himself) is to consider the power series whose coefficients are all 1, that is,
2341: 2351: 1980: 1600:. As a series of 2-adic numbers this series converges to the same sum, −1, as was derived above by analytic continuation. 2515: 2346: 2106: 2053: 1907:
Ferraro, Giovanni (2002). "Convergence and Formal Manipulation of Series from the Origins of Calculus to About 1730".
1596:
It is also possible to view this series as convergent in a number system different from the real numbers, namely, the
2495: 1841: 1788: 2505: 1829: 320: 2397: 2387: 1634: 1624: 1524: 271: 2510: 2412: 2046: 636: 2538: 1469:
These examples illustrate the potential danger in applying similar arguments to the series implied by such
68:
However, it can be manipulated to yield a number of mathematically interesting results. For example, many
2520: 2559: 2402: 135: 603: 2569: 2564: 2382: 2372: 1728: 1629: 1619: 1560: 1442: 1390: 1212: 931: 733: 334: 91: 522: 1783:. Graduate Texts in Mathematics, vol. 58. Springer-Verlag. pp. chapter I, exercise 16, p. 20. 1221: 1500: 1476: 1216: 50: 2574: 2487: 2309: 72:
are used in mathematics to assign numerical values even to a divergent series. For example, the
2149: 2096: 1130: 1280: 692: 2356: 2101: 1194: 1156: 593: 516: 1684: 1642:, a data convention for representing negative numbers where −1 is represented as if it were 1323: 2467: 2304: 2073: 1358: 897: 871: 549: 8: 2447: 2314: 1639: 73: 2001:(November 1987). "Humanities students and epistemological obstacles related to limits". 324: 2377: 2288: 2273: 2245: 2225: 2164: 2026: 2018: 1956: 1924: 1813: 1614: 1590: 1432: 1303: 1260: 575: 1998: 984: 508:{\displaystyle f(x)=1+2x+4x^{2}+8x^{3}+\cdots +2^{n}{}x^{n}+\cdots ={\frac {1}{1-2x}}} 2477: 2278: 2250: 2204: 2194: 2174: 2159: 2030: 1928: 1898: 1881: 1837: 1784: 1470: 1521:. The arguments are ultimately justified for these convergent series, implying that 2462: 2283: 2209: 2199: 2179: 2081: 2010: 1948: 1916: 1893: 1859: 69: 58: 46: 2240: 2169: 775: 38: 19: 2472: 2457: 2452: 2131: 2116: 1809: 1254: 783: 328: 77: 1920: 2553: 2437: 2111: 1597: 597: 331:. On the other hand, there is at least one generally useful method that sums 42: 2442: 2184: 2126: 1936: 376: 2189: 2136: 1851: 779: 54: 28: 2038: 2022: 2014: 1960: 1257:). If some summation method is known to return an ordinary number for 778:) to −1, and −1 is the (E) sum of the series. (The notation is due to 2121: 1952: 2069: 1497: 62: 1593:
demand careful thinking about the interpretation of endless sums.
1436: 76:
of this series is −1, which is the limit of the series using the
1387:
similar phenomenon occurs with the divergent geometric series
1834:
Understanding infinity: the mathematics of infinite processes
1320:
may be subtracted from both sides of the equation, yielding
1725:
Gardiner pp. 93–99; the argument on p. 95 for
861:{\displaystyle 1+y+y^{2}+y^{3}+\cdots ={\frac {1}{1-y}}} 928:
The fact that (E) summation assigns a finite value to
179:
since these diverge to infinity, so does the series.
2418:
1/2 + 1/3 + 1/5 + 1/7 + 1/11 + ⋯ (inverses of primes)
2408:
1 − 1 + 2 − 6 + 24 − 120 + ⋯ (alternating factorials)
1818:
Novi Commentarii Academiae Scientiarum Petropolitanae
1731: 1687: 1563: 1527: 1503: 1479: 1445: 1393: 1361: 1326: 1306: 1283: 1263: 1224: 1197: 1159: 1133: 1096: 1042: 997: 982: 934: 900: 874: 795: 736: 695: 639: 606: 578: 552: 525: 384: 337: 274: 185: 138: 94: 49:, it is characterized by its first term, 1, and its 1781:
p-adic Numbers, p-adic Analysis, and Zeta-Functions
256:{\displaystyle 2^{0}+2^{1}+\cdots +2^{k}=2^{k+1}-1} 1761: 1708: 1581: 1549: 1512: 1488: 1461: 1423: 1376: 1347: 1312: 1292: 1269: 1245: 1203: 1183: 1145: 1116: 964: 918: 886: 860: 766: 722: 681: 625: 584: 564: 538: 507: 367: 308: 255: 171: 124: 894:These two series are related by the substitution 23:The first four partial sums of 1 + 2 + 4 + 8 + ⋯. 2551: 1939:(November 1983). "Euler and Infinite Series". 1769:is slightly different but has the same spirit. 2054: 2501:Hypergeometric function of a matrix argument 2357:1 + 1/2 + 1/3 + ... (Riemann zeta function) 1879: 1716:are briefly touched on by Hardy p. 19. 1550:{\displaystyle 0.111\ldots ={\frac {1}{9}}} 1300:then it is easily determined. In this case 2061: 2047: 1997: 633:deleted, and it is given by the same rule 375:to the finite value of −1. The associated 309:{\displaystyle \sum _{n=0}^{\infty }2^{n}} 2413:1 + 1/2 + 1/3 + 1/4 + ⋯ (harmonic series) 1897: 65:, so the sum of this series is infinity. 2068: 1967: 1882:"Euler's 1760 paper on divergent series" 1880:Barbeau, E. J.; Leah, P. J. (May 1976). 1828: 18: 1906: 1778: 682:{\displaystyle f(x)={\frac {1}{1-2x}}.} 323:gives a sum of infinity, including the 2552: 2042: 1935: 1850: 1808: 572:Nonetheless, the so-defined function 1439:appears to have the non-integer sum 2378:1 − 1 + 1 − 1 + ⋯ (Grandi's series) 1615:1 − 1 + 1 − 1 + ⋯ (Grandi's series) 13: 2003:Educational Studies in Mathematics 1872: 1284: 1198: 1140: 786:'s approach to divergent series.) 291: 14: 2586: 2496:Generalized hypergeometric series 172:{\displaystyle 1,3,7,15,\ldots ;} 2534: 2533: 2506:Lauricella hypergeometric series 2224: 626:{\displaystyle x={\frac {1}{2}}} 321:totally regular summation method 2516:Riemann's differential equation 1762:{\displaystyle 1+2+4+8+\cdots } 1582:{\displaystyle 0.999\ldots =1,} 1462:{\displaystyle {\frac {1}{2}}.} 1424:{\displaystyle 1-1+1-1+\cdots } 965:{\displaystyle 1+2+4+8+\cdots } 767:{\displaystyle 1+2+4+8+\cdots } 368:{\displaystyle 1+2+4+8+\cdots } 125:{\displaystyle 1+2+4+8+\cdots } 41:whose terms are the successive 1772: 1719: 1675: 1666: 1657: 1228: 1082: 1052: 705: 699: 649: 643: 539:{\displaystyle {\frac {1}{2}}} 394: 388: 1: 2511:Modular hypergeometric series 2352:1/4 + 1/16 + 1/64 + 1/256 + ⋯ 1801: 1246:{\displaystyle z\mapsto 1+2z} 1979:. MAA Online. Archived from 1899:10.1016/0315-0860(76)90030-6 1610:1 − 1 + 2 − 6 + 24 − 120 + ⋯ 1513:{\displaystyle 0.999\ldots } 1489:{\displaystyle 0.111\ldots } 83: 7: 2521:Theta hypergeometric series 1814:"De seriebus divergentibus" 1603: 546:so it does not converge at 10: 2591: 2403:Infinite arithmetic series 2347:1/2 + 1/4 + 1/8 + 1/16 + ⋯ 2342:1/2 − 1/4 + 1/8 − 1/16 + ⋯ 1968:Sandifer, Ed (June 2006). 1153:is a root of the equation 2529: 2486: 2430: 2365: 2334: 2327: 2297: 2266: 2259: 2233: 2222: 2145: 2089: 2080: 1921:10.1080/00033790010028179 1864:QA295 .H29 1967 1836:(Dover ed.). Dover. 1146:{\displaystyle s=\infty } 1650: 1293:{\displaystyle \infty ,} 774:is said to be summable ( 723:{\displaystyle f(1)=-1,} 2234:Properties of sequences 1204:{\displaystyle \infty } 1184:{\displaystyle s=1+2s.} 2097:Arithmetic progression 1779:Koblitz, Neal (1984). 1763: 1710: 1709:{\displaystyle s=1+2s} 1583: 1551: 1514: 1490: 1463: 1425: 1378: 1349: 1348:{\displaystyle 0=1+s,} 1314: 1294: 1271: 1247: 1205: 1185: 1147: 1118: 966: 920: 888: 862: 768: 724: 683: 627: 586: 566: 540: 509: 369: 310: 295: 257: 173: 126: 24: 2488:Hypergeometric series 2102:Geometric progression 1764: 1711: 1584: 1552: 1515: 1491: 1464: 1435:), where a series of 1426: 1379: 1377:{\displaystyle s=-1.} 1350: 1315: 1295: 1272: 1248: 1217:Möbius transformation 1206: 1186: 1148: 1119: 967: 921: 919:{\displaystyle y=2x.} 889: 863: 769: 725: 684: 628: 594:analytic continuation 587: 567: 541: 517:radius of convergence 510: 370: 311: 275: 258: 174: 127: 22: 2468:Trigonometric series 2260:Properties of series 2107:Harmonic progression 1941:Mathematics Magazine 1886:Historia Mathematica 1729: 1685: 1561: 1525: 1501: 1477: 1443: 1391: 1359: 1324: 1304: 1281: 1261: 1222: 1195: 1157: 1131: 980: 932: 898: 887:{\displaystyle y=2.} 872: 793: 734: 730:the original series 693: 637: 604: 576: 565:{\displaystyle x=1.} 550: 523: 382: 335: 272: 183: 136: 92: 88:The partial sums of 53:, 2. As a series of 2448:Formal power series 1858:. Clarendon Press. 1589:but the underlying 1127:In a useful sense, 74:Ramanujan summation 2246:Monotonic function 2165:Fibonacci sequence 2015:10.1007/BF00240986 1970:"Divergent series" 1759: 1706: 1579: 1547: 1510: 1486: 1471:recurring decimals 1459: 1421: 1374: 1345: 1310: 1290: 1267: 1243: 1211:is one of the two 1201: 1181: 1143: 1114: 1112: 1109: 1085: 1031: 962: 916: 884: 858: 764: 720: 679: 623: 582: 562: 536: 505: 365: 306: 253: 169: 122: 25: 2560:Binary arithmetic 2547: 2546: 2478:Generating series 2426: 2425: 2398:1 − 2 + 4 − 8 + ⋯ 2393:1 + 2 + 4 + 8 + ⋯ 2388:1 − 2 + 3 − 4 + ⋯ 2383:1 + 2 + 3 + 4 + ⋯ 2373:1 + 1 + 1 + 1 + ⋯ 2323: 2322: 2251:Periodic sequence 2220: 2219: 2205:Triangular number 2195:Pentagonal number 2175:Heptagonal number 2160:Complete sequence 2082:Integer sequences 1909:Annals of Science 1681:The two roots of 1644:1 + 2 + 4 + ⋯ + 2 1635:1 − 2 + 4 − 8 + ⋯ 1630:1 + 2 + 3 + 4 + ⋯ 1625:1 − 2 + 3 − 4 + ⋯ 1620:1 + 1 + 1 + 1 + ⋯ 1545: 1496:and most notably 1454: 1313:{\displaystyle s} 1270:{\displaystyle s} 856: 674: 621: 585:{\displaystyle f} 534: 519:around 0 of only 503: 265:It is written as 70:summation methods 34:1 + 2 + 4 + 8 + ⋯ 2582: 2570:Geometric series 2565:Divergent series 2537: 2536: 2463:Dirichlet series 2332: 2331: 2264: 2263: 2228: 2200:Polygonal number 2180:Hexagonal number 2153: 2087: 2086: 2063: 2056: 2049: 2040: 2039: 2034: 1999:Sierpińska, Anna 1994: 1992: 1991: 1985: 1977:How Euler Did It 1974: 1964: 1932: 1903: 1901: 1867: 1856:Divergent Series 1847: 1825: 1795: 1794: 1776: 1770: 1768: 1766: 1765: 1760: 1723: 1717: 1715: 1713: 1712: 1707: 1679: 1673: 1670: 1664: 1663:Hardy p. 10 1661: 1645: 1640:Two's complement 1588: 1586: 1585: 1580: 1556: 1554: 1553: 1548: 1546: 1538: 1519: 1517: 1516: 1511: 1495: 1493: 1492: 1487: 1468: 1466: 1465: 1460: 1455: 1447: 1430: 1428: 1427: 1422: 1383: 1381: 1380: 1375: 1354: 1352: 1351: 1346: 1319: 1317: 1316: 1311: 1299: 1297: 1296: 1291: 1276: 1274: 1273: 1268: 1252: 1250: 1249: 1244: 1210: 1208: 1207: 1202: 1190: 1188: 1187: 1182: 1152: 1150: 1149: 1144: 1123: 1121: 1120: 1115: 1113: 1089: 1035: 971: 969: 968: 963: 925: 923: 922: 917: 893: 891: 890: 885: 868:and plugging in 867: 865: 864: 859: 857: 855: 841: 830: 829: 817: 816: 782:in reference to 773: 771: 770: 765: 729: 727: 726: 721: 688: 686: 685: 680: 675: 673: 656: 632: 630: 629: 624: 622: 614: 591: 589: 588: 583: 571: 569: 568: 563: 545: 543: 542: 537: 535: 527: 514: 512: 511: 506: 504: 502: 485: 474: 473: 464: 462: 461: 443: 442: 427: 426: 374: 372: 371: 366: 315: 313: 312: 307: 305: 304: 294: 289: 262: 260: 259: 254: 246: 245: 227: 226: 208: 207: 195: 194: 178: 176: 175: 170: 131: 129: 128: 123: 47:geometric series 35: 2590: 2589: 2585: 2584: 2583: 2581: 2580: 2579: 2550: 2549: 2548: 2543: 2525: 2482: 2431:Kinds of series 2422: 2361: 2328:Explicit series 2319: 2293: 2255: 2241:Cauchy sequence 2229: 2216: 2170:Figurate number 2147: 2141: 2132:Powers of three 2076: 2067: 2037: 1989: 1987: 1983: 1972: 1953:10.2307/2690371 1875: 1873:Further reading 1870: 1844: 1810:Euler, Leonhard 1804: 1799: 1798: 1791: 1777: 1773: 1730: 1727: 1726: 1724: 1720: 1686: 1683: 1682: 1680: 1676: 1672:Hardy pp. 8, 10 1671: 1667: 1662: 1658: 1653: 1643: 1606: 1562: 1559: 1558: 1537: 1526: 1523: 1522: 1502: 1499: 1498: 1478: 1475: 1474: 1446: 1444: 1441: 1440: 1433:Grandi's series 1392: 1389: 1388: 1360: 1357: 1356: 1325: 1322: 1321: 1305: 1302: 1301: 1282: 1279: 1278: 1277:; that is, not 1262: 1259: 1258: 1223: 1220: 1219: 1196: 1193: 1192: 1158: 1155: 1154: 1132: 1129: 1128: 1111: 1110: 1094: 1087: 1086: 1040: 1033: 1032: 995: 990: 983: 981: 978: 977: 933: 930: 929: 899: 896: 895: 873: 870: 869: 845: 840: 825: 821: 812: 808: 794: 791: 790: 735: 732: 731: 694: 691: 690: 660: 655: 638: 635: 634: 613: 605: 602: 601: 600:with the point 577: 574: 573: 551: 548: 547: 526: 524: 521: 520: 489: 484: 469: 465: 463: 457: 453: 438: 434: 422: 418: 383: 380: 379: 336: 333: 332: 319:Therefore, any 300: 296: 290: 279: 273: 270: 269: 235: 231: 222: 218: 203: 199: 190: 186: 184: 181: 180: 137: 134: 133: 93: 90: 89: 86: 39:infinite series 33: 17: 16:Infinite series 12: 11: 5: 2588: 2578: 2577: 2575:P-adic numbers 2572: 2567: 2562: 2545: 2544: 2542: 2541: 2530: 2527: 2526: 2524: 2523: 2518: 2513: 2508: 2503: 2498: 2492: 2490: 2484: 2483: 2481: 2480: 2475: 2473:Fourier series 2470: 2465: 2460: 2458:Puiseux series 2455: 2453:Laurent series 2450: 2445: 2440: 2434: 2432: 2428: 2427: 2424: 2423: 2421: 2420: 2415: 2410: 2405: 2400: 2395: 2390: 2385: 2380: 2375: 2369: 2367: 2363: 2362: 2360: 2359: 2354: 2349: 2344: 2338: 2336: 2329: 2325: 2324: 2321: 2320: 2318: 2317: 2312: 2307: 2301: 2299: 2295: 2294: 2292: 2291: 2286: 2281: 2276: 2270: 2268: 2261: 2257: 2256: 2254: 2253: 2248: 2243: 2237: 2235: 2231: 2230: 2223: 2221: 2218: 2217: 2215: 2214: 2213: 2212: 2202: 2197: 2192: 2187: 2182: 2177: 2172: 2167: 2162: 2156: 2154: 2143: 2142: 2140: 2139: 2134: 2129: 2124: 2119: 2114: 2109: 2104: 2099: 2093: 2091: 2084: 2078: 2077: 2066: 2065: 2058: 2051: 2043: 2036: 2035: 2009:(4): 371–396. 1995: 1965: 1947:(5): 307–314. 1933: 1915:(2): 179–199. 1904: 1892:(2): 141–160. 1876: 1874: 1871: 1869: 1868: 1848: 1842: 1826: 1805: 1803: 1800: 1797: 1796: 1789: 1771: 1758: 1755: 1752: 1749: 1746: 1743: 1740: 1737: 1734: 1718: 1705: 1702: 1699: 1696: 1693: 1690: 1674: 1665: 1655: 1654: 1652: 1649: 1648: 1647: 1637: 1632: 1627: 1622: 1617: 1612: 1605: 1602: 1598:2-adic numbers 1578: 1575: 1572: 1569: 1566: 1544: 1541: 1536: 1533: 1530: 1509: 1506: 1485: 1482: 1458: 1453: 1450: 1420: 1417: 1414: 1411: 1408: 1405: 1402: 1399: 1396: 1373: 1370: 1367: 1364: 1344: 1341: 1338: 1335: 1332: 1329: 1309: 1289: 1286: 1266: 1255:Riemann sphere 1242: 1239: 1236: 1233: 1230: 1227: 1200: 1191:(For example, 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1142: 1139: 1136: 1125: 1124: 1108: 1105: 1102: 1099: 1095: 1093: 1090: 1088: 1084: 1081: 1078: 1075: 1072: 1069: 1066: 1063: 1060: 1057: 1054: 1051: 1048: 1045: 1041: 1039: 1036: 1034: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 1003: 1000: 996: 994: 991: 989: 986: 985: 961: 958: 955: 952: 949: 946: 943: 940: 937: 915: 912: 909: 906: 903: 883: 880: 877: 854: 851: 848: 844: 839: 836: 833: 828: 824: 820: 815: 811: 807: 804: 801: 798: 784:Leonhard Euler 763: 760: 757: 754: 751: 748: 745: 742: 739: 719: 716: 713: 710: 707: 704: 701: 698: 678: 672: 669: 666: 663: 659: 654: 651: 648: 645: 642: 620: 617: 612: 609: 581: 561: 558: 555: 533: 530: 501: 498: 495: 492: 488: 483: 480: 477: 472: 468: 460: 456: 452: 449: 446: 441: 437: 433: 430: 425: 421: 417: 414: 411: 408: 405: 402: 399: 396: 393: 390: 387: 364: 361: 358: 355: 352: 349: 346: 343: 340: 317: 316: 303: 299: 293: 288: 285: 282: 278: 252: 249: 244: 241: 238: 234: 230: 225: 221: 217: 214: 211: 206: 202: 198: 193: 189: 168: 165: 162: 159: 156: 153: 150: 147: 144: 141: 121: 118: 115: 112: 109: 106: 103: 100: 97: 85: 82: 15: 9: 6: 4: 3: 2: 2587: 2576: 2573: 2571: 2568: 2566: 2563: 2561: 2558: 2557: 2555: 2540: 2532: 2531: 2528: 2522: 2519: 2517: 2514: 2512: 2509: 2507: 2504: 2502: 2499: 2497: 2494: 2493: 2491: 2489: 2485: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2444: 2441: 2439: 2438:Taylor series 2436: 2435: 2433: 2429: 2419: 2416: 2414: 2411: 2409: 2406: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2379: 2376: 2374: 2371: 2370: 2368: 2364: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2339: 2337: 2333: 2330: 2326: 2316: 2313: 2311: 2308: 2306: 2303: 2302: 2300: 2296: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2271: 2269: 2265: 2262: 2258: 2252: 2249: 2247: 2244: 2242: 2239: 2238: 2236: 2232: 2227: 2211: 2208: 2207: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2183: 2181: 2178: 2176: 2173: 2171: 2168: 2166: 2163: 2161: 2158: 2157: 2155: 2151: 2144: 2138: 2135: 2133: 2130: 2128: 2127:Powers of two 2125: 2123: 2120: 2118: 2115: 2113: 2112:Square number 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2094: 2092: 2088: 2085: 2083: 2079: 2075: 2071: 2064: 2059: 2057: 2052: 2050: 2045: 2044: 2041: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 2000: 1996: 1986:on 2013-03-20 1982: 1978: 1971: 1966: 1962: 1958: 1954: 1950: 1946: 1942: 1938: 1937:Kline, Morris 1934: 1930: 1926: 1922: 1918: 1914: 1910: 1905: 1900: 1895: 1891: 1887: 1883: 1878: 1877: 1865: 1861: 1857: 1853: 1849: 1845: 1843:0-486-42538-X 1839: 1835: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1806: 1792: 1790:0-387-96017-1 1786: 1782: 1775: 1756: 1753: 1750: 1747: 1744: 1741: 1738: 1735: 1732: 1722: 1703: 1700: 1697: 1694: 1691: 1688: 1678: 1669: 1660: 1656: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1611: 1608: 1607: 1601: 1599: 1594: 1592: 1576: 1573: 1570: 1567: 1564: 1542: 1539: 1534: 1531: 1528: 1520: 1507: 1504: 1483: 1480: 1472: 1456: 1451: 1448: 1438: 1434: 1418: 1415: 1412: 1409: 1406: 1403: 1400: 1397: 1394: 1384: 1371: 1368: 1365: 1362: 1342: 1339: 1336: 1333: 1330: 1327: 1307: 1287: 1264: 1256: 1240: 1237: 1234: 1231: 1225: 1218: 1214: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1137: 1134: 1106: 1103: 1100: 1097: 1091: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1058: 1055: 1049: 1046: 1043: 1037: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 998: 992: 987: 976: 975: 974: 959: 956: 953: 950: 947: 944: 941: 938: 935: 926: 913: 910: 907: 904: 901: 881: 878: 875: 852: 849: 846: 842: 837: 834: 831: 826: 822: 818: 813: 809: 805: 802: 799: 796: 787: 785: 781: 777: 761: 758: 755: 752: 749: 746: 743: 740: 737: 717: 714: 711: 708: 702: 696: 676: 670: 667: 664: 661: 657: 652: 646: 640: 618: 615: 610: 607: 599: 598:complex plane 595: 592:has a unique 579: 559: 556: 553: 531: 528: 518: 499: 496: 493: 490: 486: 481: 478: 475: 470: 466: 458: 454: 450: 447: 444: 439: 435: 431: 428: 423: 419: 415: 412: 409: 406: 403: 400: 397: 391: 385: 378: 362: 359: 356: 353: 350: 347: 344: 341: 338: 330: 326: 322: 301: 297: 286: 283: 280: 276: 268: 267: 266: 263: 250: 247: 242: 239: 236: 232: 228: 223: 219: 215: 212: 209: 204: 200: 196: 191: 187: 166: 163: 160: 157: 154: 151: 148: 145: 142: 139: 119: 116: 113: 110: 107: 104: 101: 98: 95: 81: 79: 78:2-adic metric 75: 71: 66: 64: 60: 56: 52: 48: 44: 43:powers of two 40: 36: 30: 21: 2443:Power series 2392: 2185:Lucas number 2137:Powers of 10 2117:Cubic number 2006: 2002: 1988:. Retrieved 1981:the original 1976: 1944: 1940: 1912: 1908: 1889: 1885: 1855: 1852:Hardy, G. H. 1833: 1830:Gardiner, A. 1821: 1817: 1780: 1774: 1721: 1677: 1668: 1659: 1595: 1385: 1213:fixed points 1126: 927: 788: 377:power series 318: 264: 87: 67: 55:real numbers 51:common ratio 32: 26: 2310:Conditional 2298:Convergence 2289:Telescoping 2274:Alternating 2190:Pell number 780:G. H. Hardy 29:mathematics 2554:Categories 2335:Convergent 2279:Convergent 1990:2007-02-17 1824:: 205–237. 1802:References 325:Cesàro sum 2366:Divergent 2284:Divergent 2146:Advanced 2122:Factorial 2070:Sequences 2031:144880659 1929:143992318 1832:(2002) . 1757:⋯ 1568:… 1532:… 1508:… 1484:… 1419:⋯ 1410:− 1398:− 1369:− 1285:∞ 1229:↦ 1199:∞ 1141:∞ 1080:⋯ 1029:⋯ 960:⋯ 850:− 835:⋯ 762:⋯ 712:− 665:− 494:− 479:⋯ 448:⋯ 363:⋯ 292:∞ 277:∑ 248:− 213:⋯ 164:… 120:⋯ 84:Summation 2539:Category 2305:Absolute 1854:(1949). 1812:(1760). 1604:See also 1437:integers 329:Abel sum 63:infinity 59:diverges 2315:Uniform 2023:3482354 1961:2690371 1253:on the 1215:of the 596:to the 45:. As a 37:is the 2267:Series 2074:series 2029:  2021:  1959:  1927:  1862:  1840:  1787:  1591:proofs 689:Since 515:has a 2210:array 2090:Basic 2027:S2CID 2019:JSTOR 1984:(PDF) 1973:(PDF) 1957:JSTOR 1925:S2CID 1651:Notes 1565:0.999 1529:0.111 1505:0.999 1481:0.111 2150:list 2072:and 1838:ISBN 1785:ISBN 1557:and 327:and 132:are 2011:doi 1949:doi 1917:doi 1894:doi 1860:LCC 1473:as 1355:so 61:to 57:it 27:In 2556:: 2025:. 2017:. 2007:18 2005:. 1975:. 1955:. 1945:56 1943:. 1923:. 1913:59 1911:. 1888:. 1884:. 1820:. 1816:. 1372:1. 1023:16 882:2. 560:1. 158:15 80:. 31:, 2152:) 2148:( 2062:e 2055:t 2048:v 2033:. 2013:: 1993:. 1963:. 1951:: 1931:. 1919:: 1902:. 1896:: 1890:3 1866:. 1846:. 1822:5 1793:. 1754:+ 1751:8 1748:+ 1745:4 1742:+ 1739:2 1736:+ 1733:1 1704:s 1701:2 1698:+ 1695:1 1692:= 1689:s 1646:. 1577:, 1574:1 1571:= 1543:9 1540:1 1535:= 1457:. 1452:2 1449:1 1431:( 1416:+ 1413:1 1407:1 1404:+ 1401:1 1395:1 1366:= 1363:s 1343:, 1340:s 1337:+ 1334:1 1331:= 1328:0 1308:s 1288:, 1265:s 1241:z 1238:2 1235:+ 1232:1 1226:z 1179:. 1176:s 1173:2 1170:+ 1167:1 1164:= 1161:s 1138:= 1135:s 1107:s 1104:2 1101:+ 1098:1 1092:= 1083:) 1077:+ 1074:8 1071:+ 1068:4 1065:+ 1062:2 1059:+ 1056:1 1053:( 1050:2 1047:+ 1044:1 1038:= 1026:+ 1020:+ 1017:8 1014:+ 1011:4 1008:+ 1005:2 1002:+ 999:1 993:= 988:s 957:+ 954:8 951:+ 948:4 945:+ 942:2 939:+ 936:1 914:. 911:x 908:2 905:= 902:y 879:= 876:y 853:y 847:1 843:1 838:= 832:+ 827:3 823:y 819:+ 814:2 810:y 806:+ 803:y 800:+ 797:1 776:E 759:+ 756:8 753:+ 750:4 747:+ 744:2 741:+ 738:1 718:, 715:1 709:= 706:) 703:1 700:( 697:f 677:. 671:x 668:2 662:1 658:1 653:= 650:) 647:x 644:( 641:f 619:2 616:1 611:= 608:x 580:f 557:= 554:x 532:2 529:1 500:x 497:2 491:1 487:1 482:= 476:+ 471:n 467:x 459:n 455:2 451:+ 445:+ 440:3 436:x 432:8 429:+ 424:2 420:x 416:4 413:+ 410:x 407:2 404:+ 401:1 398:= 395:) 392:x 389:( 386:f 360:+ 357:8 354:+ 351:4 348:+ 345:2 342:+ 339:1 302:n 298:2 287:0 284:= 281:n 251:1 243:1 240:+ 237:k 233:2 229:= 224:k 220:2 216:+ 210:+ 205:1 201:2 197:+ 192:0 188:2 167:; 161:, 155:, 152:7 149:, 146:3 143:, 140:1 117:+ 114:8 111:+ 108:4 105:+ 102:2 99:+ 96:1

Index


mathematics
infinite series
powers of two
geometric series
common ratio
real numbers
diverges
infinity
summation methods
Ramanujan summation
2-adic metric
totally regular summation method
Cesàro sum
Abel sum
power series
radius of convergence
analytic continuation
complex plane
E
G. H. Hardy
Leonhard Euler
fixed points
Möbius transformation
Riemann sphere
Grandi's series
integers
recurring decimals
0.999 {\displaystyle 0.999\ldots }
proofs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.