Knowledge

2-EXPTIME

Source 📝

367:
Generalizations of many fully observable games are EXPTIME-complete. These games can be viewed as particular instances of a class of transition systems defined in terms of a set of state variables and actions/events that change the values of the state variables, together with the question of whether
198: 249:
2-EXPTIME is one class in a hierarchy of complexity classes with increasingly higher time bounds. The class 3-EXPTIME is defined similarly to 2-EXPTIME but with a triply exponential time bound
76: 295: 246:
in exponential space. This is one way to see that EXPSPACE ⊆ 2-EXPTIME, since an alternating Turing machine is at least as powerful as a deterministic Turing machine.
320:
over a field. In the worst case, a Gröbner basis may have a number of elements which is doubly exponential in the number of variables. On the other hand, the
540: 660: 438: 561: 415: 345: 193:{\displaystyle {\mathsf {2{\mbox{-}}EXPTIME}}=\bigcup _{k\in \mathbb {N} }{\mathsf {DTIME}}\left(2^{2^{n^{k}}}\right).} 488:
Kapur, Deepak; Narendran, Paliath (1992), "Double-exponential complexity of computing a complete set of AC-unifiers",
1022: 507: 653: 17: 531:
Johannsen, Jan; Lange, Martin (2003), "CTL is complete for double exponential time", in Baeten, Jos C. M.;
40: 324:
of Gröbner basis algorithms is doubly exponential in the number of variables as well as in the entry size.
1057: 646: 389: 373: 1038: 845: 622: 567: 252: 243: 242:
2-EXPTIME can also be reformulated as the space class AEXPSPACE, the problems that can be solved by an
461: 600:
Proceedings of the 35th International Colloquium on Automata, Languages and Programming (ICALP 2008)
542:
Proceedings of the 30th International Colloquium on Automata, Languages and Programming (ICALP 2003)
1027: 352: 435: 981: 407: 337: 331: 976: 971: 321: 310: 491:[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science 966: 536: 8: 56: 548:, Lecture Notes in Computer Science, vol. 2719, Springer-Verlag, pp. 767–775, 513: 459:
Dubé, Thomas W. (August 1990). "The Structure of Polynomial Ideals and Gröbner Bases".
427: 356: 986: 557: 532: 517: 503: 411: 341: 32: 950: 840: 772: 762: 669: 603: 549: 495: 470: 431: 369: 36: 21: 317: 945: 935: 892: 882: 875: 865: 855: 813: 808: 803: 787: 767: 745: 740: 735: 723: 718: 713: 708: 592: 442: 211: 607: 940: 828: 750: 703: 207: 44: 1051: 553: 499: 630:
Proceedings of International Conference on Automated Planning and Scheduling
489: 818: 728: 930: 755: 372:
exists. A generalization of this class of fully observable problems to
235: 638: 593:"Finite Automata, Digraph Connectivity, and Regular Expression Size" 474: 920: 915: 860: 683: 447:
Proceedings of the SIAM-AMS Symposium in Applied Mathematics Vol. 7
227: 223: 910: 377: 219: 305:
Examples of algorithms that require at least 2-EXPTIME include:
1017: 1012: 887: 870: 215: 1007: 1002: 823: 67: 297:. This can be generalized to higher and higher time bounds. 835: 693: 327:
Finding a complete set of associative-commutative unifiers
850: 782: 777: 698: 688: 436:"Super-Exponential Complexity of Presburger Arithmetic. 86: 255: 79: 623:"Complexity of Planning with Partial Observability" 313:provably requires at least doubly exponential time 289: 192: 1049: 620: 530: 487: 362: 654: 590: 661: 647: 130: 87: 591:Gruber, Hermann; Holzer, Markus (2008). 334:(which is, in fact, 2-EXPTIME-complete) 1050: 668: 418:. Section 20.1, corollary 3, page 495. 150: 147: 144: 141: 138: 110: 107: 104: 101: 98: 95: 92: 82: 642: 458: 410:, Computational Complexity (1994), 346:Cylindrical algebraic decomposition 344:takes doubly exponential time (see 13: 602:. Vol. 5126. pp. 39–50. 14: 1069: 1023:Probabilistically checkable proof 380:-complete to 2-EXPTIME-complete. 290:{\displaystyle 2^{2^{2^{n^{k}}}}} 18:computational complexity theory 614: 584: 524: 481: 452: 421: 401: 1: 395: 374:partially observable problems 309:Each decision procedure for 41:deterministic Turing machine 7: 608:10.1007/978-3-540-70583-3_4 390:Double exponential function 383: 363:2-EXPTIME-complete problems 300: 10: 1074: 1039:List of complexity classes 376:lifts the complexity from 244:alternating Turing machine 1036: 995: 959: 903: 796: 676: 462:SIAM Journal on Computing 1028:Interactive proof system 554:10.1007/3-540-45061-0_60 500:10.1109/LICS.1992.185515 621:Jussi Rintanen (2004). 982:Arithmetical hierarchy 632:. AAAI Press: 345–354. 408:Christos Papadimitriou 338:Quantifier elimination 291: 194: 977:Grzegorczyk hierarchy 972:Exponential hierarchy 904:Considered infeasible 537:Woeginger, Gerhard J. 322:worst-case complexity 311:Presburger arithmetic 292: 195: 967:Polynomial hierarchy 797:Suspected infeasible 253: 77: 996:Families of classes 677:Considered feasible 535:; Parrow, Joachim; 57:polynomial function 1058:Complexity classes 670:Complexity classes 533:Lenstra, Jan Karel 494:, pp. 11–21, 441:2006-09-15 at the 357:regular expression 342:real closed fields 287: 190: 135: 90: 27:(sometimes called 1045: 1044: 987:Boolean hierarchy 960:Class hierarchies 563:978-3-540-40493-4 416:978-0-201-53082-7 118: 89: 37:decision problems 1065: 663: 656: 649: 640: 639: 634: 633: 627: 618: 612: 611: 597: 588: 582: 580: 579: 578: 572: 566:, archived from 547: 528: 522: 520: 485: 479: 478: 456: 450: 432:Michael O. Rabin 425: 419: 405: 370:winning strategy 351:Calculating the 296: 294: 293: 288: 286: 285: 284: 283: 282: 281: 280: 279: 199: 197: 196: 191: 186: 182: 181: 180: 179: 178: 177: 154: 153: 134: 133: 114: 113: 91: 47:(2) time, where 22:complexity class 1073: 1072: 1068: 1067: 1066: 1064: 1063: 1062: 1048: 1047: 1046: 1041: 1032: 991: 955: 899: 893:PSPACE-complete 792: 672: 667: 637: 625: 619: 615: 595: 589: 585: 576: 574: 570: 564: 545: 529: 525: 510: 486: 482: 475:10.1137/0219053 457: 453: 443:Wayback Machine 426: 422: 406: 402: 398: 386: 365: 303: 275: 271: 270: 266: 265: 261: 260: 256: 254: 251: 250: 173: 169: 168: 164: 163: 159: 155: 137: 136: 129: 122: 85: 81: 80: 78: 75: 74: 12: 11: 5: 1071: 1061: 1060: 1043: 1042: 1037: 1034: 1033: 1031: 1030: 1025: 1020: 1015: 1010: 1005: 999: 997: 993: 992: 990: 989: 984: 979: 974: 969: 963: 961: 957: 956: 954: 953: 948: 943: 938: 933: 928: 923: 918: 913: 907: 905: 901: 900: 898: 897: 896: 895: 885: 880: 879: 878: 868: 863: 858: 853: 848: 843: 838: 833: 832: 831: 829:co-NP-complete 826: 821: 816: 806: 800: 798: 794: 793: 791: 790: 785: 780: 775: 770: 765: 760: 759: 758: 748: 743: 738: 733: 732: 731: 721: 716: 711: 706: 701: 696: 691: 686: 680: 678: 674: 673: 666: 665: 658: 651: 643: 636: 635: 613: 583: 562: 523: 508: 480: 469:(4): 750–773. 451: 428:Fischer, M. J. 420: 399: 397: 394: 393: 392: 385: 382: 364: 361: 360: 359: 349: 335: 328: 325: 314: 302: 299: 278: 274: 269: 264: 259: 240: 239: 201: 200: 189: 185: 176: 172: 167: 162: 158: 152: 149: 146: 143: 140: 132: 128: 125: 121: 117: 112: 109: 106: 103: 100: 97: 94: 84: 39:solvable by a 9: 6: 4: 3: 2: 1070: 1059: 1056: 1055: 1053: 1040: 1035: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 1000: 998: 994: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 964: 962: 958: 952: 949: 947: 944: 942: 939: 937: 934: 932: 929: 927: 924: 922: 919: 917: 914: 912: 909: 908: 906: 902: 894: 891: 890: 889: 886: 884: 881: 877: 874: 873: 872: 869: 867: 864: 862: 859: 857: 854: 852: 849: 847: 844: 842: 839: 837: 834: 830: 827: 825: 822: 820: 817: 815: 812: 811: 810: 807: 805: 802: 801: 799: 795: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 757: 754: 753: 752: 749: 747: 744: 742: 739: 737: 734: 730: 727: 726: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 690: 687: 685: 682: 681: 679: 675: 671: 664: 659: 657: 652: 650: 645: 644: 641: 631: 624: 617: 609: 605: 601: 594: 587: 573:on 2007-09-30 569: 565: 559: 555: 551: 544: 543: 538: 534: 527: 519: 515: 511: 509:0-8186-2735-2 505: 501: 497: 493: 492: 484: 476: 472: 468: 464: 463: 455: 448: 444: 440: 437: 433: 429: 424: 417: 413: 409: 404: 400: 391: 388: 387: 381: 379: 375: 371: 358: 354: 350: 347: 343: 339: 336: 333: 329: 326: 323: 319: 318:Gröbner basis 315: 312: 308: 307: 306: 298: 276: 272: 267: 262: 257: 247: 245: 237: 233: 229: 225: 221: 217: 213: 209: 206: 205: 204: 187: 183: 174: 170: 165: 160: 156: 126: 123: 119: 115: 73: 72: 71: 69: 64: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 23: 19: 925: 629: 616: 599: 586: 575:, retrieved 568:the original 541: 526: 490: 483: 466: 460: 454: 446: 423: 403: 366: 316:Computing a 304: 248: 241: 231: 202: 66:In terms of 65: 60: 52: 48: 28: 24: 15: 876:#P-complete 814:NP-complete 729:NL-complete 330:Satisfying 931:ELEMENTARY 756:P-complete 577:2006-12-22 396:References 353:complement 236:ELEMENTARY 926:2-EXPTIME 518:206437926 434:, 1974, " 232:2-EXPTIME 127:∈ 120:⋃ 31:) is the 25:2-EXPTIME 1052:Category 921:EXPSPACE 916:NEXPTIME 684:DLOGTIME 539:(eds.), 439:Archived 384:See also 301:Examples 228:EXPSPACE 224:NEXPTIME 203:We know 911:EXPTIME 819:NP-hard 449:: 27–41 378:EXPTIME 220:EXPTIME 55:) is a 35:of all 1018:NSPACE 1013:DSPACE 888:PSPACE 560:  516:  506:  430:, and 414:  216:PSPACE 20:, the 1008:NTIME 1003:DTIME 824:co-NP 626:(PDF) 596:(PDF) 571:(PDF) 546:(PDF) 514:S2CID 355:of a 68:DTIME 29:2-EXP 836:TFNP 558:ISBN 504:ISBN 412:ISBN 951:ALL 851:QMA 841:FNP 783:APX 778:BQP 773:BPP 763:ZPP 694:ACC 604:doi 550:doi 496:doi 471:doi 340:on 332:CTL 59:of 43:in 33:set 16:In 1054:: 946:RE 936:PR 883:IP 871:#P 866:PP 861:⊕P 856:PH 846:AM 809:NP 804:UP 788:FP 768:RP 746:CC 741:SC 736:NC 724:NL 719:FL 714:RL 709:SL 699:TC 689:AC 628:. 598:. 556:, 512:, 502:, 467:19 465:. 445:" 368:a 348:). 234:⊆ 230:⊆ 226:⊆ 222:⊆ 218:⊆ 214:⊆ 212:NP 210:⊆ 70:, 63:. 941:R 751:P 704:L 662:e 655:t 648:v 610:. 606:: 581:. 552:: 521:. 498:: 477:. 473:: 277:k 273:n 268:2 263:2 258:2 238:. 208:P 188:. 184:) 175:k 171:n 166:2 161:2 157:( 151:E 148:M 145:I 142:T 139:D 131:N 124:k 116:= 111:E 108:M 105:I 102:T 99:P 96:X 93:E 88:- 83:2 61:n 53:n 51:( 49:p 45:O

Index

computational complexity theory
complexity class
set
decision problems
deterministic Turing machine
O
polynomial function
DTIME
P
NP
PSPACE
EXPTIME
NEXPTIME
EXPSPACE
ELEMENTARY
alternating Turing machine
Presburger arithmetic
Gröbner basis
worst-case complexity
CTL
Quantifier elimination
real closed fields
Cylindrical algebraic decomposition
complement
regular expression
winning strategy
partially observable problems
EXPTIME
Double exponential function
Christos Papadimitriou

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.