Knowledge

32 nm process

Source 📝

45: 521:
module using a process technology with a size between 30 nm and 39 nm. The module could reportedly achieve data transfer rates of 2.133 Gbit/s at 1.2V, compared to 1.35V and 1.5V DDR3 DRAM at an equivalent "30 nm-class" process technology with speeds of up to 1.6 Gbit/s. The
546:
architecture, was released on 16 March 2010 as the Core i7 980x Extreme Edition, retailing for approximately US$ 1,000. Intel's lower-end 6-core, the i7-970, was released in late July 2010, priced at approximately US$ 900. Intel's "32nm" process has a transistor density of 7.11 million transistors
510:
gate dielectric and metal gate, and contained almost two billion transistors. 193 nm immersion lithography was used for the critical layers, while 193 nm or 248 nm dry lithography was used on less critical layers. The critical pitch was 112.5 nm.
440:
Since at least 1997, "process nodes" have been named purely on a marketing basis, and have no relation to the dimensions on the integrated circuit; neither gate length, nor metal pitch, nor gate pitch on a "32nm" device is thirty-two nanometers.
554:
architecture, were released in October 2011. The technology utilised a "32 nm" SOI process, two CPU cores per module, and up to four modules, ranging from a quad-core design costing approximately US$ 130 to a $ 280 eight-core design.
946: 1137: 506:
Intel Corporation revealed its first "32 nm" test chips to the public on 18 September 2007 at the Intel Developer Forum. The test chips had a cell size of 0.182 μm, used a second-generation
1024:
Steen, S.; et al. (2006). "Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes".
534:
Intel's Core i3 and i5 processors, released in January 2010, were among the first mass-produced processors to use "32 nm" technology. Intel's second-generation Core processors, codenamed
356: 950: 884: 705: 906: 1083: 587:. Intel began mass production of "22 nm" semiconductors in late 2011, and announced the release of its first commercial "22 nm" devices in April 2012. 483:
on the same layer. It was observed that the cell's sensitivity to input voltage fluctuations degraded significantly at such a small scale. In October 2006, the
584: 349: 426: 503:
similarly used double patterning combined with immersion lithography to produce a "32 nm" node 0.183 μm six-transistor SRAM cell in 2005.
342: 971: 647: 1064: 932: 550:
AMD also released "32 nm" SOI processors in the early 2010s. AMD's FX Series processors, codenamed Zambezi and based on AMD's
484: 881: 620:"Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology" 1051: 809: 679: 57: 910: 522:
module used pseudo open drain (POD) technology, specially adapted to allow DDR4 SDRAM to consume just half the current of
762: 499:
tools to reduce memory cell area offset some of the cost advantages of moving to this node from the 45 nm node.
1105: 857: 386: 32: 551: 543: 434: 17: 472: 1073: 742: 289: 539: 476: 996: 947:"Ambarella A7L Enables the Next Generation of Digital Still Cameras with 1080p60 Fluid Motion Video" 724: 725:"Exclusive: Is Intel Really Starting To Lose Its Process Lead? 7nm Node Slated For Release in 2022" 394: 706:"14nm, 7nm, 5nm: How low can CMOS go? It depends if you ask the engineers or the economists..." 422: 324: 492: 393:" refers to the average half-pitch (i.e., half the distance between identical features) of a 1056: 299: 1061: 619: 507: 430: 8: 425:
produced commercial microchips using the "32 nm" process in the early 2010s. IBM and the
664: 538:, also used the "32 nm" manufacturing process. Intel's 6-core processor, codenamed 496: 488: 418: 433:
metal gate process. Intel began selling its first "32 nm" processors using the
107: 1033: 563: 480: 314: 303: 284: 796:"IMEC demonstrates feasibility of double patterning immersion litho for 32nm node" 467:
Prototypes using "32 nm" technology first emerged in the mid-2000s. In 2004,
80: 71: 1068: 888: 774: 329: 116: 98: 89: 983: 559: 309: 152: 146: 140: 134: 128: 122: 1037: 1131: 1119: 1095: 743:"Life at 10nm. (Or is it 7nm?) And 3nm - Views on Advanced Silicon Platforms" 456: 445: 374: 319: 224: 215: 206: 197: 179: 170: 161: 1078: 583:
The successor to "32 nm" technology was the "22 nm" node, per the
795: 535: 269: 251: 242: 233: 709: 514:
In January 2011, Samsung completed development of the industry's first
449: 410: 52: 487:(IMEC) demonstrated a 32 nm flash patterning capability based on 1138:
International Technology Roadmap for Semiconductors lithography nodes
390: 972:"Intel's CEO Discusses Q3 2011 Results - Earnings Call Transcript" 44: 765:. Tom'sHardware.com. 26 November 2011. Retrieved 5 December 2011. 624: 567: 407: 400: 657: 529: 1102: 382: 974:. Seeking Alpha. 18 October 2011. Retrieved 14 February 2013. 933:"Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review" 518: 1109: 1057:
Sony, IBM, and Toshiba partnering on semiconductor research
1000: 798:. PhysOrg.com. 18 October 2006. Retrieved 17 December 2011. 588: 523: 515: 500: 475:
cell with a poly gate pitch of 135 nm, produced using
378: 294: 763:"Report: Intel Scheduling 22 nm Ivy Bridge for April 2012" 562:
announced the availability of the "32 nm"-based A7L
468: 775:"Intel's Ivy Bridge chips launch using '3D transistors'" 455:
The "32 nm" process was superseded by commercial
495:. The necessity of introducing double patterning and 585:
International Technology Roadmap for Semiconductors
949:. Ambarella.com. 26 September 2011. Archived from 1084:Samsung self-aligned double patterning technology 654:. White Paper. Intel.com. Retrieved 18 June 2013. 1129: 1062:IBM and AMD partnering on semiconductor research 882:"Intel Debuts 32-NM Westmere Desktop Processors" 984:"Intel beats analysts' first quarter forecasts" 907:"Intel's 6-core 32nm processors arriving soon" 986:. BBC. 17 April 2012. Retrieved 18 June 2013. 904: 895:. 7 January 2010. Retrieved 17 December 2011. 777:. BBC. 23 April 2012. Retrieved 18 June 2013. 566:circuit for digital still cameras, providing 350: 1052:Chipmakers gear up for manufacturing hurdles 855: 810:"IBM sees immersion at 22nm, pushes out EUV" 807: 758: 756: 833:H-Y. Chen et al., Symp. on VLSI Tech. 2005. 680:"A Brief History of Process Node Evolution" 648:Gate Dielectric Scaling for CMOS: from SiO 612: 357: 343: 753: 485:Interuniversity Microelectronics Centre 14: 1130: 1023: 646:Intel (Architecture & Silicon). 578: 570:high-definition video capabilities. 530:Processors using "32 nm" technology 462: 24: 1017: 703: 677: 25: 1149: 1045: 905:Sal Cangeloso (4 February 2010). 858:"Samsung trials DDR4 DRAM module" 808:Mark LaPedus (23 February 2007). 573: 665:"No More Nanometers – EEJournal" 547:per square milimeter (MTr/mm2). 387:semiconductor device fabrication 43: 989: 977: 965: 939: 925: 898: 875: 856:Peter Clarke (4 January 2011). 849: 836: 827: 801: 789: 780: 526:when reading and writing data. 786:D. M. Fried et al., IEDM 2004. 768: 735: 717: 697: 671: 640: 452:based on the "32 nm" process. 429:also developed a "32 nm" 13: 1: 606: 471:demonstrated a 0.143 μm 448:is an intermediate half-node 652:/PolySi to High-K/Metal-Gate 7: 10: 1154: 909:. Geek.com. Archived from 397:at this technology level. 373:is the step following the 1038:10.1016/j.mee.2006.01.181 477:electron-beam lithography 413:memory chips with the "32 1079:Intel 32 nm process 1106:manufacturing processes 846:. Vol. 4889, no. 1313. 403:produced commercial 32 595:nm", jumping from "40 493:immersion lithography 435:Westmere architecture 417:nm" process in 2009. 731:. 10 September 2016. 459:technology in 2012. 1074:Slashdot discussion 953:on 10 November 2011 842:F. T. Chen (2002). 558:In September 2011, 437:on 7 January 2010. 1067:2006-07-16 at the 887:2010-03-17 at the 628:. 11 February 2009 599:nm" in 2008 to "28 1126: 1125: 1116:Succeeded by 997:"28nm Technology" 678:Shukla, Priyank. 579:28 nm & 22 nm 542:and built on the 489:double patterning 367: 366: 16:(Redirected from 1145: 1092:Preceded by 1089: 1088: 1041: 1032:(4–9): 754–761. 1012: 1011: 1009: 1007: 993: 987: 981: 975: 969: 963: 962: 960: 958: 943: 937: 936: 929: 923: 922: 920: 918: 913:on 30 March 2012 902: 896: 879: 873: 872: 870: 868: 853: 847: 840: 834: 831: 825: 824: 822: 820: 805: 799: 793: 787: 784: 778: 772: 766: 760: 751: 750: 749:. 12 March 2018. 739: 733: 732: 721: 715: 714: 701: 695: 694: 692: 690: 684:design-reuse.com 675: 669: 668: 661: 655: 644: 638: 637: 635: 633: 616: 602: 598: 594: 564:system-on-a-chip 481:photolithography 463:Technology demos 416: 406: 359: 352: 345: 315:Transistor count 268: 250: 241: 232: 223: 214: 205: 196: 187: 178: 169: 160: 115: 106: 97: 88: 79: 70: 47: 29: 28: 21: 1153: 1152: 1148: 1147: 1146: 1144: 1143: 1142: 1128: 1127: 1117: 1093: 1069:Wayback Machine 1048: 1020: 1018:Further reading 1015: 1005: 1003: 995: 994: 990: 982: 978: 970: 966: 956: 954: 945: 944: 940: 931: 930: 926: 916: 914: 903: 899: 893:InformationWeek 889:Wayback Machine 880: 876: 866: 864: 854: 850: 841: 837: 832: 828: 818: 816: 806: 802: 794: 790: 785: 781: 773: 769: 761: 754: 741: 740: 736: 723: 722: 718: 702: 698: 688: 686: 676: 672: 667:. 23 July 2020. 663: 662: 658: 651: 645: 641: 631: 629: 618: 617: 613: 609: 600: 596: 592: 581: 576: 532: 465: 427:Common Platform 414: 404: 375:"45 nm" process 363: 334: 330:Nanoelectronics 281: 275: 266: 257: 248: 239: 230: 221: 212: 203: 194: 185: 176: 167: 158: 113: 104: 95: 86: 77: 68: 55: 36: 34: 23: 22: 15: 12: 11: 5: 1151: 1141: 1140: 1124: 1123: 1114: 1099: 1087: 1086: 1081: 1076: 1071: 1059: 1054: 1047: 1046:External links 1044: 1043: 1042: 1026:Microelec. Eng 1019: 1016: 1014: 1013: 988: 976: 964: 938: 924: 897: 874: 848: 835: 826: 800: 788: 779: 767: 752: 734: 716: 704:Hruska, Joel. 696: 670: 656: 649: 639: 610: 608: 605: 580: 577: 575: 574:Successor node 572: 560:Ambarella Inc. 531: 528: 464: 461: 365: 364: 362: 361: 354: 347: 339: 336: 335: 333: 332: 327: 322: 317: 312: 307: 297: 292: 287: 280: 277: 276: 274: 273: 262: 259: 258: 256: 255: 246: 237: 228: 219: 210: 201: 192: 183: 174: 165: 156: 150: 144: 138: 132: 126: 120: 111: 102: 93: 84: 75: 65: 62: 61: 53:MOSFET scaling 49: 48: 40: 39: 9: 6: 4: 3: 2: 1150: 1139: 1136: 1135: 1133: 1122: 1121: 1115: 1113: 1111: 1107: 1104: 1100: 1098: 1097: 1091: 1090: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1066: 1063: 1060: 1058: 1055: 1053: 1050: 1049: 1039: 1035: 1031: 1027: 1022: 1021: 1002: 998: 992: 985: 980: 973: 968: 952: 948: 942: 934: 928: 912: 908: 901: 894: 890: 886: 883: 878: 863: 859: 852: 845: 839: 830: 815: 811: 804: 797: 792: 783: 776: 771: 764: 759: 757: 748: 747:eejournal.com 744: 738: 730: 726: 720: 712: 711: 707: 700: 685: 681: 674: 666: 660: 653: 643: 627: 626: 621: 615: 611: 604: 603:nm" in 2011. 590: 586: 571: 569: 565: 561: 556: 553: 548: 545: 541: 537: 527: 525: 520: 517: 512: 509: 504: 502: 498: 494: 490: 486: 482: 478: 474: 470: 460: 458: 453: 451: 447: 442: 438: 436: 432: 428: 424: 420: 412: 409: 402: 398: 396: 392: 388: 384: 380: 376: 372: 360: 355: 353: 348: 346: 341: 340: 338: 337: 331: 328: 326: 323: 321: 320:Semiconductor 318: 316: 313: 311: 308: 305: 301: 298: 296: 293: 291: 288: 286: 283: 282: 279: 278: 271: 265: 264: 261: 260: 253: 247: 244: 238: 235: 229: 226: 220: 217: 211: 208: 202: 199: 193: 190: 184: 181: 175: 172: 166: 163: 157: 154: 151: 148: 145: 142: 139: 136: 133: 130: 127: 124: 121: 118: 112: 109: 103: 100: 94: 91: 85: 82: 76: 73: 67: 66: 64: 63: 59: 58:process nodes 54: 51: 50: 46: 42: 41: 38: 33:Semiconductor 31: 30: 27: 19: 1118: 1101: 1094: 1029: 1025: 1004:. Retrieved 991: 979: 967: 955:. Retrieved 951:the original 941: 927: 915:. Retrieved 911:the original 900: 892: 877: 865:. Retrieved 861: 851: 843: 838: 829: 817:. Retrieved 813: 803: 791: 782: 770: 746: 737: 729:wccftech.com 728: 719: 708: 699: 687:. Retrieved 683: 673: 659: 642: 630:. Retrieved 623: 614: 591:bypassed "32 582: 557: 549: 536:Sandy Bridge 533: 513: 505: 466: 454: 446:"28 nm" node 443: 439: 399: 371:"32 nm" node 370: 368: 272: ~ 2025 254: – 2022 245: – 2020 236: – 2018 227: – 2016 218: – 2014 209: – 2012 200: – 2010 191: – 2009 188: 182: – 2007 173: – 2005 164: – 2003 155: – 2001 149: – 1999 143: – 1996 137: – 1993 131: – 1990 125: – 1987 119: – 1984 110: – 1981 101: – 1977 92: – 1974 83: – 1971 74: – 1968 26: 18:32 nanometer 957:11 November 917:11 November 867:11 November 819:11 November 710:ExtremeTech 395:memory cell 310:Moore's law 153:130 nm 147:180 nm 141:250 nm 135:350 nm 129:600 nm 123:800 nm 108:1.5 μm 37:fabrication 1120:22 nm 1096:45 nm 844:Proc. SPIE 607:References 450:die shrink 411:NAND flash 304:multi-gate 285:Half-nodes 225:10 nm 216:14 nm 207:22 nm 198:28 nm 189:32 nm 180:45 nm 171:65 nm 162:90 nm 81:10 μm 72:20 μm 552:Bulldozer 391:nanometre 270:2 nm 252:3 nm 243:5 nm 234:7 nm 117:1 μm 99:3 μm 90:6 μm 1132:Category 1065:Archived 885:Archived 862:EE Times 814:EE Times 544:Westmere 540:Gulftown 497:hyper-NA 325:Industry 1006:30 June 632:21 June 625:Toshiba 568:1080p60 457:"22 nm" 401:Toshiba 290:Density 263:Future 1103:MOSFET 689:9 July 601:  597:  593:  508:high-κ 431:high-κ 415:  405:  389:. "32- 383:MOSFET 300:Device 105:  35:device 519:SDRAM 419:Intel 1110:CMOS 1008:2019 1001:TSMC 959:2011 919:2011 869:2011 821:2011 691:2019 634:2019 589:TSMC 524:DDR3 516:DDR4 501:TSMC 491:and 479:and 473:SRAM 444:The 421:and 379:CMOS 369:The 295:CMOS 1034:doi 469:IBM 423:AMD 408:GiB 377:in 1134:: 1030:83 1028:. 999:. 891:. 860:. 812:. 755:^ 745:. 727:. 682:. 622:. 385:) 267:00 249:00 240:00 231:00 114:00 96:00 87:00 1112:) 1108:( 1040:. 1036:: 1010:. 961:. 935:. 921:. 871:. 823:. 713:. 693:. 650:2 636:. 381:( 358:e 351:t 344:v 306:) 302:( 222:0 213:0 204:0 195:0 186:0 177:0 168:0 159:0 78:0 69:0 60:) 56:( 20:)

Index

32 nanometer
Semiconductor
device
fabrication


MOSFET scaling
process nodes
20 μm
10 μm
6 μm
3 μm
1.5 μm
1 μm
800 nm
600 nm
350 nm
250 nm
180 nm
130 nm
90 nm
65 nm
45 nm
32 nm
28 nm
22 nm
14 nm
10 nm
7 nm
5 nm
3 nm
2 nm
Half-nodes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.