Knowledge

32 nm process

Source 📝

34: 510:
module using a process technology with a size between 30 nm and 39 nm. The module could reportedly achieve data transfer rates of 2.133 Gbit/s at 1.2V, compared to 1.35V and 1.5V DDR3 DRAM at an equivalent "30 nm-class" process technology with speeds of up to 1.6 Gbit/s. The
535:
architecture, was released on 16 March 2010 as the Core i7 980x Extreme Edition, retailing for approximately US$ 1,000. Intel's lower-end 6-core, the i7-970, was released in late July 2010, priced at approximately US$ 900. Intel's "32nm" process has a transistor density of 7.11 million transistors
499:
gate dielectric and metal gate, and contained almost two billion transistors. 193 nm immersion lithography was used for the critical layers, while 193 nm or 248 nm dry lithography was used on less critical layers. The critical pitch was 112.5 nm.
429:
Since at least 1997, "process nodes" have been named purely on a marketing basis, and have no relation to the dimensions on the integrated circuit; neither gate length, nor metal pitch, nor gate pitch on a "32nm" device is thirty-two nanometers.
543:
architecture, were released in October 2011. The technology utilised a "32 nm" SOI process, two CPU cores per module, and up to four modules, ranging from a quad-core design costing approximately US$ 130 to a $ 280 eight-core design.
935: 1126: 495:
Intel Corporation revealed its first "32 nm" test chips to the public on 18 September 2007 at the Intel Developer Forum. The test chips had a cell size of 0.182 μm, used a second-generation
1013:
Steen, S.; et al. (2006). "Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes".
523:
Intel's Core i3 and i5 processors, released in January 2010, were among the first mass-produced processors to use "32 nm" technology. Intel's second-generation Core processors, codenamed
345: 939: 873: 694: 895: 1072: 576:. Intel began mass production of "22 nm" semiconductors in late 2011, and announced the release of its first commercial "22 nm" devices in April 2012. 472:
on the same layer. It was observed that the cell's sensitivity to input voltage fluctuations degraded significantly at such a small scale. In October 2006, the
573: 338: 415: 492:
similarly used double patterning combined with immersion lithography to produce a "32 nm" node 0.183 μm six-transistor SRAM cell in 2005.
331: 960: 636: 1053: 921: 539:
AMD also released "32 nm" SOI processors in the early 2010s. AMD's FX Series processors, codenamed Zambezi and based on AMD's
473: 870: 609:"Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology" 1040: 798: 668: 46: 899: 511:
module used pseudo open drain (POD) technology, specially adapted to allow DDR4 SDRAM to consume just half the current of
751: 488:
tools to reduce memory cell area offset some of the cost advantages of moving to this node from the 45 nm node.
1094: 846: 375: 21: 540: 532: 423: 461: 1062: 731: 278: 528: 465: 985: 936:"Ambarella A7L Enables the Next Generation of Digital Still Cameras with 1080p60 Fluid Motion Video" 713: 714:"Exclusive: Is Intel Really Starting To Lose Its Process Lead? 7nm Node Slated For Release in 2022" 383: 695:"14nm, 7nm, 5nm: How low can CMOS go? It depends if you ask the engineers or the economists..." 411: 313: 481: 382:" refers to the average half-pitch (i.e., half the distance between identical features) of a 1045: 288: 1050: 608: 496: 419: 8: 414:
produced commercial microchips using the "32 nm" process in the early 2010s. IBM and the
653: 527:, also used the "32 nm" manufacturing process. Intel's 6-core processor, codenamed 485: 477: 407: 422:
metal gate process. Intel began selling its first "32 nm" processors using the
96: 1022: 552: 469: 303: 292: 273: 785:"IMEC demonstrates feasibility of double patterning immersion litho for 32nm node" 456:
Prototypes using "32 nm" technology first emerged in the mid-2000s. In 2004,
69: 60: 1057: 877: 763: 318: 105: 87: 78: 972: 548: 298: 141: 135: 129: 123: 117: 111: 1026: 1120: 1108: 1084: 732:"Life at 10nm. (Or is it 7nm?) And 3nm - Views on Advanced Silicon Platforms" 445: 434: 363: 308: 213: 204: 195: 186: 168: 159: 150: 1067: 572:
The successor to "32 nm" technology was the "22 nm" node, per the
784: 524: 258: 240: 231: 222: 698: 503:
In January 2011, Samsung completed development of the industry's first
438: 399: 41: 476:(IMEC) demonstrated a 32 nm flash patterning capability based on 1127:
International Technology Roadmap for Semiconductors lithography nodes
379: 961:"Intel's CEO Discusses Q3 2011 Results - Earnings Call Transcript" 33: 754:. Tom'sHardware.com. 26 November 2011. Retrieved 5 December 2011. 613: 556: 396: 389: 646: 518: 1091: 371: 963:. Seeking Alpha. 18 October 2011. Retrieved 14 February 2013. 922:"Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review" 507: 1098: 1046:
Sony, IBM, and Toshiba partnering on semiconductor research
989: 787:. PhysOrg.com. 18 October 2006. Retrieved 17 December 2011. 577: 512: 504: 489: 464:
cell with a poly gate pitch of 135 nm, produced using
367: 283: 752:"Report: Intel Scheduling 22 nm Ivy Bridge for April 2012" 551:
announced the availability of the "32 nm"-based A7L
457: 764:"Intel's Ivy Bridge chips launch using '3D transistors'" 444:
The "32 nm" process was superseded by commercial
484:. The necessity of introducing double patterning and 574:
International Technology Roadmap for Semiconductors
938:. Ambarella.com. 26 September 2011. Archived from 1073:Samsung self-aligned double patterning technology 643:. White Paper. Intel.com. Retrieved 18 June 2013. 1118: 1051:IBM and AMD partnering on semiconductor research 871:"Intel Debuts 32-NM Westmere Desktop Processors" 973:"Intel beats analysts' first quarter forecasts" 896:"Intel's 6-core 32nm processors arriving soon" 975:. BBC. 17 April 2012. Retrieved 18 June 2013. 893: 884:. 7 January 2010. Retrieved 17 December 2011. 766:. BBC. 23 April 2012. Retrieved 18 June 2013. 555:circuit for digital still cameras, providing 339: 1041:Chipmakers gear up for manufacturing hurdles 844: 799:"IBM sees immersion at 22nm, pushes out EUV" 796: 747: 745: 822:H-Y. Chen et al., Symp. on VLSI Tech. 2005. 669:"A Brief History of Process Node Evolution" 637:Gate Dielectric Scaling for CMOS: from SiO 601: 346: 332: 742: 474:Interuniversity Microelectronics Centre 1119: 1012: 635:Intel (Architecture & Silicon). 567: 559:high-definition video capabilities. 519:Processors using "32 nm" technology 451: 13: 1006: 692: 666: 14: 1138: 1034: 894:Sal Cangeloso (4 February 2010). 847:"Samsung trials DDR4 DRAM module" 797:Mark LaPedus (23 February 2007). 562: 654:"No More Nanometers – EEJournal" 536:per square milimeter (MTr/mm2). 376:semiconductor device fabrication 32: 978: 966: 954: 928: 914: 887: 864: 845:Peter Clarke (4 January 2011). 838: 825: 816: 790: 778: 769: 515:when reading and writing data. 775:D. M. Fried et al., IEDM 2004. 757: 724: 706: 686: 660: 629: 441:based on the "32 nm" process. 418:also developed a "32 nm" 1: 595: 460:demonstrated a 0.143 μm 437:is an intermediate half-node 641:/PolySi to High-K/Metal-Gate 7: 10: 1143: 898:. Geek.com. Archived from 386:at this technology level. 362:is the step following the 1027:10.1016/j.mee.2006.01.181 466:electron-beam lithography 402:memory chips with the "32 1068:Intel 32 nm process 1095:manufacturing processes 835:. Vol. 4889, no. 1313. 392:produced commercial 32 584:nm", jumping from "40 482:immersion lithography 424:Westmere architecture 406:nm" process in 2009. 720:. 10 September 2016. 448:technology in 2012. 1063:Slashdot discussion 942:on 10 November 2011 831:F. T. Chen (2002). 547:In September 2011, 426:on 7 January 2010. 1056:2006-07-16 at the 876:2010-03-17 at the 617:. 11 February 2009 588:nm" in 2008 to "28 1115: 1114: 1105:Succeeded by 986:"28nm Technology" 667:Shukla, Priyank. 568:28 nm & 22 nm 531:and built on the 478:double patterning 356: 355: 1134: 1081:Preceded by 1078: 1077: 1030: 1021:(4–9): 754–761. 1001: 1000: 998: 996: 982: 976: 970: 964: 958: 952: 951: 949: 947: 932: 926: 925: 918: 912: 911: 909: 907: 902:on 30 March 2012 891: 885: 868: 862: 861: 859: 857: 842: 836: 829: 823: 820: 814: 813: 811: 809: 794: 788: 782: 776: 773: 767: 761: 755: 749: 740: 739: 738:. 12 March 2018. 728: 722: 721: 710: 704: 703: 690: 684: 683: 681: 679: 673:design-reuse.com 664: 658: 657: 650: 644: 633: 627: 626: 624: 622: 605: 591: 587: 583: 553:system-on-a-chip 470:photolithography 452:Technology demos 405: 395: 348: 341: 334: 304:Transistor count 257: 239: 230: 221: 212: 203: 194: 185: 176: 167: 158: 149: 104: 95: 86: 77: 68: 59: 36: 18: 17: 1142: 1141: 1137: 1136: 1135: 1133: 1132: 1131: 1117: 1116: 1106: 1082: 1058:Wayback Machine 1037: 1009: 1007:Further reading 1004: 994: 992: 984: 983: 979: 971: 967: 959: 955: 945: 943: 934: 933: 929: 920: 919: 915: 905: 903: 892: 888: 882:InformationWeek 878:Wayback Machine 869: 865: 855: 853: 843: 839: 830: 826: 821: 817: 807: 805: 795: 791: 783: 779: 774: 770: 762: 758: 750: 743: 730: 729: 725: 712: 711: 707: 691: 687: 677: 675: 665: 661: 656:. 23 July 2020. 652: 651: 647: 640: 634: 630: 620: 618: 607: 606: 602: 598: 589: 585: 581: 570: 565: 521: 454: 416:Common Platform 403: 393: 364:"45 nm" process 352: 323: 319:Nanoelectronics 270: 264: 255: 246: 237: 228: 219: 210: 201: 192: 183: 174: 165: 156: 147: 102: 93: 84: 75: 66: 57: 44: 25: 23: 12: 11: 5: 1140: 1130: 1129: 1113: 1112: 1103: 1088: 1076: 1075: 1070: 1065: 1060: 1048: 1043: 1036: 1035:External links 1033: 1032: 1031: 1015:Microelec. Eng 1008: 1005: 1003: 1002: 977: 965: 953: 927: 913: 886: 863: 837: 824: 815: 789: 777: 768: 756: 741: 723: 705: 693:Hruska, Joel. 685: 659: 645: 638: 628: 599: 597: 594: 569: 566: 564: 563:Successor node 561: 549:Ambarella Inc. 520: 517: 453: 450: 354: 353: 351: 350: 343: 336: 328: 325: 324: 322: 321: 316: 311: 306: 301: 296: 286: 281: 276: 269: 266: 265: 263: 262: 251: 248: 247: 245: 244: 235: 226: 217: 208: 199: 190: 181: 172: 163: 154: 145: 139: 133: 127: 121: 115: 109: 100: 91: 82: 73: 64: 54: 51: 50: 42:MOSFET scaling 38: 37: 29: 28: 9: 6: 4: 3: 2: 1139: 1128: 1125: 1124: 1122: 1111: 1110: 1104: 1102: 1100: 1096: 1093: 1089: 1087: 1086: 1080: 1079: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1055: 1052: 1049: 1047: 1044: 1042: 1039: 1038: 1028: 1024: 1020: 1016: 1011: 1010: 991: 987: 981: 974: 969: 962: 957: 941: 937: 931: 923: 917: 901: 897: 890: 883: 879: 875: 872: 867: 852: 848: 841: 834: 828: 819: 804: 800: 793: 786: 781: 772: 765: 760: 753: 748: 746: 737: 736:eejournal.com 733: 727: 719: 715: 709: 701: 700: 696: 689: 674: 670: 663: 655: 649: 642: 632: 616: 615: 610: 604: 600: 593: 592:nm" in 2011. 579: 575: 560: 558: 554: 550: 545: 542: 537: 534: 530: 526: 516: 514: 509: 506: 501: 498: 493: 491: 487: 483: 479: 475: 471: 467: 463: 459: 449: 447: 442: 440: 436: 431: 427: 425: 421: 417: 413: 409: 401: 398: 391: 387: 385: 381: 377: 373: 369: 365: 361: 349: 344: 342: 337: 335: 330: 329: 327: 326: 320: 317: 315: 312: 310: 309:Semiconductor 307: 305: 302: 300: 297: 294: 290: 287: 285: 282: 280: 277: 275: 272: 271: 268: 267: 260: 254: 253: 250: 249: 242: 236: 233: 227: 224: 218: 215: 209: 206: 200: 197: 191: 188: 182: 179: 173: 170: 164: 161: 155: 152: 146: 143: 140: 137: 134: 131: 128: 125: 122: 119: 116: 113: 110: 107: 101: 98: 92: 89: 83: 80: 74: 71: 65: 62: 56: 55: 53: 52: 48: 47:process nodes 43: 40: 39: 35: 31: 30: 27: 22:Semiconductor 20: 19: 16: 1107: 1090: 1083: 1018: 1014: 993:. Retrieved 980: 968: 956: 944:. Retrieved 940:the original 930: 916: 904:. Retrieved 900:the original 889: 881: 866: 854:. Retrieved 850: 840: 832: 827: 818: 806:. Retrieved 802: 792: 780: 771: 759: 735: 726: 718:wccftech.com 717: 708: 697: 688: 676:. Retrieved 672: 662: 648: 631: 619:. Retrieved 612: 603: 580:bypassed "32 571: 546: 538: 525:Sandy Bridge 522: 502: 494: 455: 443: 435:"28 nm" node 432: 428: 388: 360:"32 nm" node 359: 357: 261: ~ 2025 243: – 2022 234: – 2020 225: – 2018 216: – 2016 207: – 2014 198: – 2012 189: – 2010 180: – 2009 177: 171: – 2007 162: – 2005 153: – 2003 144: – 2001 138: – 1999 132: – 1996 126: – 1993 120: – 1990 114: – 1987 108: – 1984 99: – 1981 90: – 1977 81: – 1974 72: – 1971 63: – 1968 15: 946:11 November 906:11 November 856:11 November 808:11 November 699:ExtremeTech 384:memory cell 299:Moore's law 142:130 nm 136:180 nm 130:250 nm 124:350 nm 118:600 nm 112:800 nm 97:1.5 μm 26:fabrication 1109:22 nm 1085:45 nm 833:Proc. SPIE 596:References 439:die shrink 400:NAND flash 293:multi-gate 274:Half-nodes 214:10 nm 205:14 nm 196:22 nm 187:28 nm 178:32 nm 169:45 nm 160:65 nm 151:90 nm 70:10 μm 61:20 μm 541:Bulldozer 380:nanometre 259:2 nm 241:3 nm 232:5 nm 223:7 nm 106:1 μm 88:3 μm 79:6 μm 1121:Category 1054:Archived 874:Archived 851:EE Times 803:EE Times 533:Westmere 529:Gulftown 486:hyper-NA 314:Industry 995:30 June 621:21 June 614:Toshiba 557:1080p60 446:"22 nm" 390:Toshiba 279:Density 252:Future 1092:MOSFET 678:9 July 590:  586:  582:  497:high-κ 420:high-κ 404:  394:  378:. "32- 372:MOSFET 289:Device 94:  24:device 508:SDRAM 408:Intel 1099:CMOS 997:2019 990:TSMC 948:2011 908:2011 858:2011 810:2011 680:2019 623:2019 578:TSMC 513:DDR3 505:DDR4 490:TSMC 480:and 468:and 462:SRAM 433:The 410:and 368:CMOS 358:The 284:CMOS 1023:doi 458:IBM 412:AMD 397:GiB 366:in 1123:: 1019:83 1017:. 988:. 880:. 849:. 801:. 744:^ 734:. 716:. 671:. 611:. 374:) 256:00 238:00 229:00 220:00 103:00 85:00 76:00 1101:) 1097:( 1029:. 1025:: 999:. 950:. 924:. 910:. 860:. 812:. 702:. 682:. 639:2 625:. 370:( 347:e 340:t 333:v 295:) 291:( 211:0 202:0 193:0 184:0 175:0 166:0 157:0 148:0 67:0 58:0 49:) 45:(

Index

Semiconductor
device
fabrication


MOSFET scaling
process nodes
20 μm
10 μm
6 μm
3 μm
1.5 μm
1 μm
800 nm
600 nm
350 nm
250 nm
180 nm
130 nm
90 nm
65 nm
45 nm
32 nm
28 nm
22 nm
14 nm
10 nm
7 nm
5 nm
3 nm
2 nm
Half-nodes
Density

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.