Knowledge

ATAC-seq

Source đź“ť

168:
cells. scATAC-seq matrices can be extremely large (hundreds of thousands of regions) and is extremely sparse, i.e. less than 3% of entries are non-zero. Therefore, imputation of count matrix is another crucial step performed by using various methods such as non-negative matrix factorization. As with bulk ATAC-seq, scATAC-seq allows finding regulators like transcription factors controlling gene expression of cells. This can be achieved by looking at the number of reads around TF motifs or footprinting analysis.
112: 167:
Computational analysis of scATAC-seq is based on construction of a count matrix with number of reads per open chromatin regions. Open chromatin regions can be defined, for example, by standard peak calling of pseudo bulk ATAC-seq data. Further steps include data reduction with PCA and clustering of
158:
can be used to separate single nuclei and perform ATAC-seq reactions individually. With this approach, single cells are captured by either a microfluidic device or a liquid deposition system before tagmentation. An alternative technique that does not require single cell isolation is combinatorial
163:
to measure chromatin accessibility in thousands of individual cells; it can generate epigenomic profiles from 10,000-100,000 cells per experiment. But combinatorial cellular indexing requires additional, custom-engineered equipment or a large quantity of custom, modified Tn5. Recently, a pooled
78:
that inserts sequencing adapters into open regions of the genome. While naturally occurring transposases have a low level of activity, ATAC-seq employs the mutated hyperactive transposase. In a process called "tagmentation", Tn5 transposase cleaves and tags double-stranded DNA with sequencing
134:
The utility of high-resolution enhancer mapping ranges from studying the evolutionary divergence of enhancer usage (e.g. between chimps and humans) during development and uncovering a lineage-specific enhancer map used during blood cell differentiation.
1358:
Cao, Junyue; Cusanovich, Darren A.; Ramani, Vijay; Aghamirzaie, Delasa; Pliner, Hannah A.; Hill, Andrew J.; Daza, Riza M.; McFaline-Figueroa, Jose L.; Packer, Jonathan S.; Christiansen, Lena; Steemers, Frank J. (2018-09-28).
903:
Hendrickson DG, Soifer I, Wranik BJ, Botstein D, Scott McIsaac R (2018), "Simultaneous Profiling of DNA Accessibility and Gene Expression Dynamics with ATAC-Seq and RNA-Seq",
138:
ATAC-Seq has also been applied to defining the genome-wide chromatin accessibility landscape in human cancers, and revealing an overall decrease in chromatin accessibility in
91:
binding sites and nucleosome positions. The number of reads for a region correlate with how open that chromatin is, at single nucleotide resolution. ATAC-seq requires no
1545: 142:. Computational footprinting methods can be performed on ATAC-seq to find cell specific binding sites and transcription factors with cell specific activity. 190:"Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position" 164:
barcode method called sci-CAR was developed, allowing joint profiling of chromatin accessibility and gene expression of single cells.
689:
Hoeijmakers WA, Bártfai R (2018). "Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq)".
103:; and no sensitive enzymatic digestion like MNase-seq or DNase-seq. ATAC-seq preparation can be completed in under three hours. 1565: 706: 411: 347:"DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells" 298:"Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions" 920: 124: 803:
Li, Zhijian; Schulz, Marcel H.; Look, Thomas; Begemann, Matthias; Zenke, Martin; Costa, Ivan G. (26 February 2019).
1100:"ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration" 119:
ATAC-Seq analysis is used to investigate a number of chromatin-accessibility signatures. The most common use is
394:
Bajic M, Maher KA, Deal RB (2018). "Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq".
490:"Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition" 87:. Sequencing reads can then be used to infer regions of increased accessibility as well as to map regions of 1272:
Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD, Kohlway AS, Pokholok D, Aryee MJ, et al. (2019).
96: 943:
Prescott SL, Srinivasan R, Marchetto MC, Grishina I, Narvaiza I, Selleri L, et al. (September 2015).
1540: 84: 593:"Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA" 992:
Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, et al. (August 2014).
80: 1490:"chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data" 640:
Savic D, Partridge EC, Newberry KM, Smith SB, Meadows SK, Roberts BS, et al. (October 2015).
1217:"Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing" 743:
Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. (July 2015).
1361:"Joint profiling of chromatin accessibility and gene expression in thousands of single cells" 1442: 1372: 1314: 1228: 1171: 1111: 1054: 756: 466: 151: 139: 88: 8: 296:
Schep AN, Buenrostro JD, Denny SK, Schwartz K, Sherlock G, Greenleaf WJ (November 2015).
75: 1550: 1446: 1376: 1318: 1232: 1175: 1115: 1058: 1041:
Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, et al. (October 2018).
760: 1514: 1489: 1465: 1430: 1403: 1360: 1335: 1302: 1249: 1216: 1192: 1159: 1132: 1099: 1075: 1042: 1018: 993: 969: 944: 880: 855: 831: 804: 777: 744: 666: 641: 617: 592: 568: 543: 542:
Picelli S, Björklund AK, Reinius B, Sagasser S, Winberg G, Sandberg R (December 2014).
516: 489: 430: 371: 346: 322: 297: 270: 245: 214: 189: 945:"Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest" 544:"Tn5 transposase and tagmentation procedures for massively scaled sequencing projects" 1519: 1470: 1408: 1390: 1340: 1254: 1197: 1158:
Mezger A, Klemm S, Mann I, Brower K, Mir A, Bostick M, et al. (September 2018).
1137: 1080: 1023: 974: 926: 916: 907:, Methods in Molecular Biology, vol. 1819, Springer New York, pp. 317–333, 885: 836: 782: 720: 712: 702: 671: 622: 573: 521: 470: 435: 417: 407: 376: 327: 275: 219: 43: 1098:
Wang J, Zibetti C, Shang P, Sripathi SR, Zhang P, Cano M, et al. (April 2018).
1509: 1501: 1460: 1450: 1398: 1380: 1330: 1322: 1281: 1244: 1236: 1187: 1179: 1127: 1119: 1070: 1062: 1013: 1005: 964: 956: 908: 875: 867: 826: 816: 772: 764: 694: 661: 653: 612: 604: 563: 555: 511: 501: 462: 425: 399: 366: 358: 317: 309: 265: 257: 209: 201: 50:. In 2013, the technique was first described as an alternative advanced method for 261: 912: 403: 128: 1274:"Droplet-based combinatorial indexing for massive scale single-cell epigenomics" 745:"Single-cell chromatin accessibility reveals principles of regulatory variation" 698: 1455: 1431:"Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen" 1326: 1183: 1123: 960: 506: 1551:
HINT-ATAC: Identification of Transcription Factor Binding Sites using ATAC-seq
821: 62:. ATAC-seq is a faster analysis of the epigenome than DNase-seq or MNase-seq. 1559: 1394: 1303:"A rapid and robust method for single cell chromatin accessibility profiling" 1160:"High-throughput chromatin accessibility profiling at single-cell resolution" 716: 421: 160: 155: 1385: 1240: 1066: 1009: 1523: 1474: 1412: 1344: 1258: 1201: 1141: 1084: 1027: 978: 930: 889: 840: 786: 724: 675: 626: 608: 577: 525: 474: 439: 380: 331: 279: 223: 188:
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (December 2013).
1429:
Li Z, Kuppe C, Cheng M, Menzel S, Zenke M, Kramann R, et al. (2021).
871: 657: 559: 313: 111: 362: 768: 1505: 991: 205: 120: 92: 805:"Identification of transcription factor binding sites using ATAC-seq" 246:"ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide" 150:
Modifications to the ATAC-seq protocol have been made to accommodate
59: 55: 51: 47: 642:"CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins" 1286: 1273: 942: 100: 856:"methyl-ATAC-seq measures DNA methylation at accessible chromatin" 398:. Methods in Molecular Biology. Vol. 1675. pp. 183–201. 1301:
Chen X, Miragaia RJ, Natarajan KN, Teichmann SA (December 2018).
994:"Immunogenetics. Chromatin state dynamics during blood formation" 693:. Methods in Molecular Biology. Vol. 1689. pp. 83–101. 1043:"The chromatin accessibility landscape of primary human cancers" 902: 541: 1357: 1300: 1488:
Schep AN, Wu B, Buenrostro JD, Greenleaf WJ (October 2017).
742: 295: 244:
Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (January 2015).
853: 738: 736: 734: 639: 1487: 854:
Spektor R, Tippens ND, Mimoso CA, Soloway PD (June 2019).
243: 74:
regions by probing open chromatin with hyperactive mutant
187: 71: 1097: 731: 591:
Simon JM, Giresi PG, Davis IJ, Lieb JD (January 2012).
1271: 1040: 985: 936: 682: 537: 535: 183: 181: 123:
mapping experiments, but it can be applied to mapping
79:
adaptors. The tagged DNA fragments are then purified,
1157: 291: 289: 802: 590: 532: 178: 1428: 1153: 1151: 688: 633: 286: 239: 237: 235: 233: 1546:ATAC-seq: Fast and sensitive epigenomic profiling 1557: 1294: 1265: 1034: 1148: 1091: 338: 230: 131:sites, or combined with sequencing techniques. 584: 393: 1541:ATAC-seq probes open-chromatin state (figure) 387: 446: 344: 1214: 1513: 1464: 1454: 1402: 1384: 1334: 1285: 1248: 1191: 1131: 1074: 1017: 968: 879: 830: 820: 798: 796: 776: 665: 616: 567: 515: 505: 452: 429: 370: 321: 269: 213: 110: 453:Reznikoff WS (2008). "Transposon Tn5". 159:cellular indexing. This technique uses 145: 1558: 793: 467:10.1146/annurev.genet.42.110807.091656 250:Current Protocols in Molecular Biology 1424: 1422: 345:Song L, Crawford GE (February 2010). 487: 99:like FAIRE-seq; no antibodies like 13: 1419: 125:transcription factor binding sites 14: 1577: 1534: 83:-amplified, and sequenced using 42:uencing) is a technique used in 1481: 1351: 1215:Cusanovich, Darren (May 2015). 1208: 896: 847: 106: 70:ATAC-seq identifies accessible 488:Adey, Andrew (December 2010). 481: 65: 1: 691:Chromatin Immunoprecipitation 262:10.1002/0471142727.mb2129s109 171: 1566:Molecular biology techniques 913:10.1007/978-1-4939-8618-7_15 404:10.1007/978-1-4939-7318-7_12 351:Cold Spring Harbor Protocols 97:phenol-chloroform extraction 7: 699:10.1007/978-1-4939-7380-4_8 16:Molecular biology technique 10: 1582: 1456:10.1038/s41467-021-26530-2 1327:10.1038/s41467-018-07771-0 1184:10.1038/s41467-018-05887-x 1124:10.1038/s41467-018-03856-y 961:10.1016/j.cell.2015.08.036 905:Computational Cell Biology 507:10.1186/gb-2010-11-12-r119 85:next-generation sequencing 822:10.1186/s13059-019-1642-2 455:Annual Review of Genetics 396:Plant Chromatin Dynamics 115:Applications of ATAC-Seq 1386:10.1126/science.aau0730 1241:10.1126/science.aab1601 1067:10.1126/science.aav1898 1010:10.1126/science.1256271 48:chromatin accessibility 609:10.1038/nprot.2011.444 116: 46:to assess genome-wide 1435:Nature Communications 1307:Nature Communications 1164:Nature Communications 1104:Nature Communications 872:10.1101/gr.245399.118 658:10.1101/gr.193540.115 560:10.1101/gr.177881.114 314:10.1101/gr.192294.115 114: 363:10.1101/pdb.prot5384 152:single-cell analysis 146:Single-cell ATAC-seq 140:macular degeneration 89:transcription factor 1447:2021NatCo..12.6386L 1377:2018Sci...361.1380C 1371:(6409): 1380–1385. 1319:2018NatCo...9.5345C 1233:2015Sci...348..910C 1176:2018NatCo...9.3647M 1116:2018NatCo...9.1364W 1059:2018Sci...362.1898C 769:10.1038/nature14590 761:2015Natur.523..486B 357:(2): pdb.prot5384. 256:: 21.29.1–21.29.9. 1506:10.1038/nmeth.4401 1053:(6413): eaav1898. 206:10.1038/nmeth.2688 117: 1227:(6237): 910–914. 708:978-1-4939-7379-8 413:978-1-4939-7317-0 127:, adapted to map 44:molecular biology 1573: 1528: 1527: 1517: 1485: 1479: 1478: 1468: 1458: 1426: 1417: 1416: 1406: 1388: 1355: 1349: 1348: 1338: 1298: 1292: 1291: 1289: 1269: 1263: 1262: 1252: 1212: 1206: 1205: 1195: 1155: 1146: 1145: 1135: 1095: 1089: 1088: 1078: 1038: 1032: 1031: 1021: 989: 983: 982: 972: 940: 934: 933: 900: 894: 893: 883: 851: 845: 844: 834: 824: 800: 791: 790: 780: 755:(7561): 486–90. 740: 729: 728: 686: 680: 679: 669: 637: 631: 630: 620: 597:Nature Protocols 588: 582: 581: 571: 539: 530: 529: 519: 509: 485: 479: 478: 450: 444: 443: 433: 391: 385: 384: 374: 342: 336: 335: 325: 293: 284: 283: 273: 241: 228: 227: 217: 185: 1581: 1580: 1576: 1575: 1574: 1572: 1571: 1570: 1556: 1555: 1537: 1532: 1531: 1500:(10): 975–978. 1486: 1482: 1427: 1420: 1356: 1352: 1299: 1295: 1270: 1266: 1213: 1209: 1156: 1149: 1096: 1092: 1039: 1035: 1004:(6199): 943–9. 990: 986: 941: 937: 923: 901: 897: 860:Genome Research 852: 848: 801: 794: 741: 732: 709: 687: 683: 646:Genome Research 638: 634: 589: 585: 554:(12): 2033–40. 548:Genome Research 540: 533: 486: 482: 451: 447: 414: 392: 388: 343: 339: 308:(11): 1757–70. 302:Genome Research 294: 287: 242: 231: 186: 179: 174: 148: 129:DNA methylation 109: 76:Tn5 Transposase 68: 38:hromatin using 17: 12: 11: 5: 1579: 1569: 1568: 1554: 1553: 1548: 1543: 1536: 1535:External links 1533: 1530: 1529: 1494:Nature Methods 1480: 1418: 1350: 1293: 1287:10.1101/612713 1264: 1207: 1147: 1090: 1033: 984: 935: 921: 895: 866:(6): 969–977. 846: 809:Genome Biology 792: 730: 707: 681: 652:(10): 1581–9. 632: 583: 531: 494:Genome Biology 480: 445: 412: 386: 337: 285: 229: 200:(12): 1213–8. 194:Nature Methods 176: 175: 173: 170: 147: 144: 108: 105: 67: 64: 15: 9: 6: 4: 3: 2: 1578: 1567: 1564: 1563: 1561: 1552: 1549: 1547: 1544: 1542: 1539: 1538: 1525: 1521: 1516: 1511: 1507: 1503: 1499: 1495: 1491: 1484: 1476: 1472: 1467: 1462: 1457: 1452: 1448: 1444: 1441:(1): 865931. 1440: 1436: 1432: 1425: 1423: 1414: 1410: 1405: 1400: 1396: 1392: 1387: 1382: 1378: 1374: 1370: 1366: 1362: 1354: 1346: 1342: 1337: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1297: 1288: 1283: 1279: 1275: 1268: 1260: 1256: 1251: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1211: 1203: 1199: 1194: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1154: 1152: 1143: 1139: 1134: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1094: 1086: 1082: 1077: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1037: 1029: 1025: 1020: 1015: 1011: 1007: 1003: 999: 995: 988: 980: 976: 971: 966: 962: 958: 954: 950: 946: 939: 932: 928: 924: 922:9781493986170 918: 914: 910: 906: 899: 891: 887: 882: 877: 873: 869: 865: 861: 857: 850: 842: 838: 833: 828: 823: 818: 814: 810: 806: 799: 797: 788: 784: 779: 774: 770: 766: 762: 758: 754: 750: 746: 739: 737: 735: 726: 722: 718: 714: 710: 704: 700: 696: 692: 685: 677: 673: 668: 663: 659: 655: 651: 647: 643: 636: 628: 624: 619: 614: 610: 606: 603:(2): 256–67. 602: 598: 594: 587: 579: 575: 570: 565: 561: 557: 553: 549: 545: 538: 536: 527: 523: 518: 513: 508: 503: 499: 495: 491: 484: 476: 472: 468: 464: 461:(1): 269–86. 460: 456: 449: 441: 437: 432: 427: 423: 419: 415: 409: 405: 401: 397: 390: 382: 378: 373: 368: 364: 360: 356: 352: 348: 341: 333: 329: 324: 319: 315: 311: 307: 303: 299: 292: 290: 281: 277: 272: 267: 263: 259: 255: 251: 247: 240: 238: 236: 234: 225: 221: 216: 211: 207: 203: 199: 195: 191: 184: 182: 177: 169: 165: 162: 157: 156:Microfluidics 153: 143: 141: 136: 132: 130: 126: 122: 113: 104: 102: 98: 94: 90: 86: 82: 77: 73: 63: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 1497: 1493: 1483: 1438: 1434: 1368: 1364: 1353: 1310: 1306: 1296: 1277: 1267: 1224: 1220: 1210: 1167: 1163: 1107: 1103: 1093: 1050: 1046: 1036: 1001: 997: 987: 955:(1): 68–83. 952: 948: 938: 904: 898: 863: 859: 849: 812: 808: 752: 748: 690: 684: 649: 645: 635: 600: 596: 586: 551: 547: 500:(12): R119. 497: 493: 483: 458: 454: 448: 395: 389: 354: 350: 340: 305: 301: 253: 249: 197: 193: 166: 149: 137: 133: 118: 107:Applications 69: 39: 35: 31: 27: 23: 19: 18: 1313:(1): 5345. 1170:(1): 3647. 1110:(1): 1364. 66:Description 30:ransposase- 172:References 121:nucleosome 93:sonication 34:ccessible 1395:0036-8075 815:(1): 45. 717:1064-3745 422:1064-3745 161:barcoding 60:DNase-Seq 56:FAIRE-Seq 52:MNase-seq 26:ssay for 1560:Category 1524:28825706 1475:34737275 1413:30166440 1345:30559361 1259:25953818 1202:30194434 1142:29636475 1085:30361341 1028:25103404 979:26365491 931:30421411 890:31160376 841:30808370 787:26083756 725:29027167 676:26355004 627:22262007 578:25079858 526:21143862 475:18680433 440:29052193 381:20150147 332:26314830 280:25559105 224:24097267 101:ChIP-seq 20:ATAC-seq 1515:5623146 1466:8568974 1443:Bibcode 1404:6571013 1373:Bibcode 1365:Science 1336:6297232 1315:Bibcode 1278:bioRxiv 1250:4836442 1229:Bibcode 1221:Science 1193:6128862 1172:Bibcode 1133:5893535 1112:Bibcode 1076:6408149 1055:Bibcode 1047:Science 1019:4412442 998:Science 970:4848043 881:6581052 832:6391789 778:4685948 757:Bibcode 667:4579343 618:3784247 569:4248319 517:3046479 431:5693289 372:3627383 323:4617971 271:4374986 215:3959825 1522:  1512:  1473:  1463:  1411:  1401:  1393:  1343:  1333:  1257:  1247:  1200:  1190:  1140:  1130:  1083:  1073:  1026:  1016:  977:  967:  929:  919:  888:  878:  839:  829:  785:  775:  749:Nature 723:  715:  705:  674:  664:  625:  615:  576:  566:  524:  514:  473:  438:  428:  420:  410:  379:  369:  330:  320:  278:  268:  222:  212:  1520:PMID 1471:PMID 1409:PMID 1391:ISSN 1341:PMID 1255:PMID 1198:PMID 1138:PMID 1081:PMID 1024:PMID 975:PMID 949:Cell 927:PMID 917:ISBN 886:PMID 837:PMID 783:PMID 721:PMID 713:ISSN 703:ISBN 672:PMID 623:PMID 574:PMID 522:PMID 471:PMID 436:PMID 418:ISSN 408:ISBN 377:PMID 355:2010 328:PMID 276:PMID 220:PMID 58:and 1510:PMC 1502:doi 1461:PMC 1451:doi 1399:PMC 1381:doi 1369:361 1331:PMC 1323:doi 1282:doi 1245:PMC 1237:doi 1225:348 1188:PMC 1180:doi 1128:PMC 1120:doi 1071:PMC 1063:doi 1051:362 1014:PMC 1006:doi 1002:345 965:PMC 957:doi 953:163 909:doi 876:PMC 868:doi 827:PMC 817:doi 773:PMC 765:doi 753:523 695:doi 662:PMC 654:doi 613:PMC 605:doi 564:PMC 556:doi 512:PMC 502:doi 463:doi 426:PMC 400:doi 367:PMC 359:doi 318:PMC 310:doi 266:PMC 258:doi 254:109 210:PMC 202:doi 95:or 81:PCR 72:DNA 40:seq 1562:: 1518:. 1508:. 1498:14 1496:. 1492:. 1469:. 1459:. 1449:. 1439:12 1437:. 1433:. 1421:^ 1407:. 1397:. 1389:. 1379:. 1367:. 1363:. 1339:. 1329:. 1321:. 1309:. 1305:. 1280:. 1276:. 1253:. 1243:. 1235:. 1223:. 1219:. 1196:. 1186:. 1178:. 1166:. 1162:. 1150:^ 1136:. 1126:. 1118:. 1106:. 1102:. 1079:. 1069:. 1061:. 1049:. 1045:. 1022:. 1012:. 1000:. 996:. 973:. 963:. 951:. 947:. 925:, 915:, 884:. 874:. 864:29 862:. 858:. 835:. 825:. 813:20 811:. 807:. 795:^ 781:. 771:. 763:. 751:. 747:. 733:^ 719:. 711:. 701:. 670:. 660:. 650:25 648:. 644:. 621:. 611:. 599:. 595:. 572:. 562:. 552:24 550:. 546:. 534:^ 520:. 510:. 498:11 496:. 492:. 469:. 459:42 457:. 434:. 424:. 416:. 406:. 375:. 365:. 353:. 349:. 326:. 316:. 306:25 304:. 300:. 288:^ 274:. 264:. 252:. 248:. 232:^ 218:. 208:. 198:10 196:. 192:. 180:^ 154:. 54:, 1526:. 1504:: 1477:. 1453:: 1445:: 1415:. 1383:: 1375:: 1347:. 1325:: 1317:: 1311:9 1290:. 1284:: 1261:. 1239:: 1231:: 1204:. 1182:: 1174:: 1168:9 1144:. 1122:: 1114:: 1108:9 1087:. 1065:: 1057:: 1030:. 1008:: 981:. 959:: 911:: 892:. 870:: 843:. 819:: 789:. 767:: 759:: 727:. 697:: 678:. 656:: 629:. 607:: 601:7 580:. 558:: 528:. 504:: 477:. 465:: 442:. 402:: 383:. 361:: 334:. 312:: 282:. 260:: 226:. 204:: 36:C 32:A 28:T 24:A 22:(

Index

molecular biology
chromatin accessibility
MNase-seq
FAIRE-Seq
DNase-Seq
DNA
Tn5 Transposase
PCR
next-generation sequencing
transcription factor
sonication
phenol-chloroform extraction
ChIP-seq

nucleosome
transcription factor binding sites
DNA methylation
macular degeneration
single-cell analysis
Microfluidics
barcoding


"Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position"
doi
10.1038/nmeth.2688
PMC
3959825
PMID
24097267

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑