Knowledge

Active learning (machine learning)

Source đź“ť

1249:: the choice of examples to label is seen as a dilemma between the exploration and the exploitation over the data space representation. This strategy manages this compromise by modelling the active learning problem as a contextual bandit problem. For example, Bouneffouf et al. propose a sequential algorithm named Active Thompson Sampling (ATS), which, in each round, assigns a sampling distribution on the pool, samples one point from this distribution, and queries the oracle for this sample point label. 983:
of examples to learn a concept can often be much lower than the number required in normal supervised learning. With this approach, there is a risk that the algorithm is overwhelmed by uninformative examples. Recent developments are dedicated to multi-label active learning, hybrid active learning and active learning in a single-pass (on-line) context, combining concepts from the field of machine learning (e.g. conflict and ignorance) with adaptive,
1351:
algorithms have been gaining in popularity. Some of them have been proposed to tackle the problem of learning AL strategies instead of relying on manually designed strategies. A benchmark which compares 'meta-learning approaches to active learning' to 'traditional heuristic-based Active Learning' may give intuitions if 'Learning active learning' is at the crossroads
1212:: This is where the learner generates synthetic data from an underlying natural distribution. For example, if the dataset are pictures of humans and animals, the learner could send a clipped image of a leg to the teacher and query if this appendage belongs to an animal or human. This is particularly useful if the dataset is small. 1339:: The primary selection criterion is the prediction mismatch between the current model and nearest-neighbour prediction. It targets on wrongly predicted data points. The second selection criterion is the distance to previously selected data, the farthest first. It aims at optimizing the diversity of selected data. 1233:(AST) measure liver function (though AST is also produced by other tissues, e.g., lung, pancreas) A synthetic data point with AST at the lower limit of normal range (8-33 Units/L) with an ALT several times above normal range (4-35 Units/L) in a simulated chronically ill patient would be physiologically impossible. 1206:
algorithm does not have sufficient information, early in the process, to make a sound assign-label-vs ask-teacher decision, and it does not capitalize as efficiently on the presence of already labeled data. Therefore, the teacher is likely to spend more effort in supplying labels than with the pool-based approach.
1191:
before selecting data points (instances) for labeling. It is often initially trained on a fully labeled subset of the data using a machine-learning method such as logistic regression or SVM that yields class-membership probabilities for individual data instances. The candidate instances are those for
982:
There are situations in which unlabeled data is abundant but manual labeling is expensive. In such a scenario, learning algorithms can actively query the user/teacher for labels. This type of iterative supervised learning is called active learning. Since the learner chooses the examples, the number
1194:
The theoretical drawback of pool-based sampling is that it is memory-intensive and is therefore limited in its capacity to handle enormous datasets, but in practice, the rate-limiting factor is that the teacher is typically a (fatiguable) human expert who must be paid for their effort, rather than
1350:
A wide variety of algorithms have been studied that fall into these categories. While the traditional AL strategies can achieve remarkable performance, it is often challenging to predict in advance which strategy is the most suitable in aparticular situation. In recent years, meta-learning
1205:
with the machine evaluating the informativeness of each item against its query parameters. The learner decides for itself whether to assign a label or query the teacher for each datapoint. As contrasted with Pool-based sampling, the obvious drawback of stream-based methods is that the learning
1192:
which the prediction is most ambiguous. Instances are drawn from the entire data pool and assigned a confidence score, a measurement of how well the learner "understands" the data. The system then selects the instances for which it is the least confident and queries the teacher for the labels.
1214:
The challenge here, as with all synthetic-data-generation efforts, is in ensuring that the synthetic data is consistent in terms of meeting the constraints on real data. As the number of variables/features in the input data increase, and strong dependencies between variables exist, it becomes
966:
in which a learning algorithm can interactively query a human user (or some other information source), to label new data points with the desired outputs. The human user must possess knowledge/expertise in the problem domain, including the ability to consult/research authoritative sources when
1979:
Faria, Bruno; Perdigão, Dylan; Brás, Joana; Macedo, Luis (2022). "The Joint Role of Batch Size and Query Strategy in Active Learning-Based Prediction - A Case Study in the Heart Attack Domain". In Goreti Marreiros; Bruno Martins; Ana Paiva; Bernardete Ribeiro; Alberto Sardinha (eds.).
1571:
Das, Shubhomoy; Wong, Weng-Keen; Dietterich, Thomas; Fern, Alan; Emmott, Andrew (2016). "Incorporating Expert Feedback into Active Anomaly Discovery". In Bonchi, Francesco; Domingo-Ferrer, Josep; Baeza-Yates, Ricardo; Zhou, Zhi-Hua; Wu, Xindong (eds.).
2160:. Proceedings of the Workshop on Interactive Adaptive Learning co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases ({ECML} {PKDD} 2020), Ghent, Belgium, 2020. 1345:
Learning is accomplished by applying dimensionality reduction to graphs and figures like scatter plots. Then the user is asked to label the compiled data (categorical, numerical, relevance scores, relation between two
1333:: predicts that a new data point will have a label similar to old data points in some specified way and degree of the similarity within the old examples is used to estimate the confidence in the prediction. 1271:: In this paper, the author proposes a sequential algorithm named exponentiated gradient (EG)-active that can improve any active learning algorithm by an optimal random exploration. 1984:. 21st EPIA Conference on Artificial Intelligence, EPIA 2022, Lisbon, Portugal, August 31–September 2, 2022. Lecture Notes in Computer Science. Vol. 13566. pp. 464–475. 1151: 1110: 1069: 2037:
Makili, Lázaro Emílio; Sánchez, Jesús A. Vega; Dormido-Canto, Sebastián (2012-10-01). "Active Learning Using Conformal Predictors: Application to Image Classification".
1517:
Rubens, Neil; Elahi, Mehdi; Sugiyama, Masashi; Kaplan, Dain (2016). "Active Learning in Recommender Systems". In Ricci, Francesco; Rokach, Lior; Shapira, Bracha (eds.).
1309:: a variety of models are trained on the current labeled data, and vote on the output for unlabeled data; label those points for which the "committee" disagrees the most 873: 911: 2113:
Bernard, JĂĽrgen; Zeppelzauer, Matthias; Lehmann, Markus; MĂĽller, Martin; Sedlmair, Michael (June 2018). "Towards User-Centered Active Learning Algorithms".
1022:
would include all proteins that are known to have a certain interesting activity and all additional proteins that one might want to test for that activity.
991:. Using active learning allows for faster development of a machine learning algorithm, when comparative updates would require a quantum or super computer. 868: 858: 699: 1242:
Algorithms for determining which data points should be labeled can be organized into a number of different categories, based upon their purpose:
1417: 906: 863: 714: 445: 946: 749: 1689:
Lughofer, Edwin (February 2012). "Hybrid active learning for reducing the annotation effort of operators in classification systems".
1450:
Balcan, Maria-Florina & Hanneke, Steve & Wortman, Jennifer. (2008). The True Sample Complexity of Active Learning.. 45-56.
825: 1444:
Improving Generalization with Active Learning, David Cohn, Les Atlas & Richard Ladner, Machine Learning 15, 201–221 (1994).
1876: 374: 1997: 1897: 1665: 1589: 1547: 1319:. This offers the possibility of selecting instances from non-overlapping or minimally overlapping partitions for labeling. 1295:
The sample with the smallest difference between the two highest class probabilities is considered to be the most uncertain.
883: 646: 181: 1315:: When the underlying model is a forest of trees, the leaf nodes might represent (overlapping) partitions of the original 1289:
The entropy formula is used on each sample, and the sample with the highest entropy is considered to be the least certain.
901: 2013: 1632: 1363:(SVMs) and exploit the structure of the SVM to determine which data points to label. Such methods usually calculate the 709: 658: 782: 777: 430: 440: 78: 1518: 939: 835: 599: 420: 1222: 810: 512: 288: 1640:
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '09
1283:: label those points for which the current model is least certain as to what the correct output should be. 767: 704: 614: 592: 435: 425: 968: 918: 830: 815: 276: 98: 1400:
to be labeled. Other similar methods, such as Maximum Marginal Hyperplane, choose data with the largest
1121: 1080: 1039: 1466:
Learning how to Active Learn: A Deep Reinforcement Learning Approach, Meng Fang, Yuan Li, Trevor Cohn,
1316: 1187:: In this approach, which is the most well known scenario, the learning algorithm attempts to evaluate 1168:
Most of the current research in active learning involves the best method to choose the data points for
878: 805: 555: 450: 238: 171: 131: 19:
This article is about a machine learning method. For active learning in the context of education, see
2185: 2088:
Zhao, Shuyang; Heittola, Toni; Virtanen, Tuomas (2020). "Active learning for sound event detection".
1364: 1217:
For example, to create a synthetic data set for human laboratory-test values, the sum of the various
932: 538: 306: 176: 1648: 1493: 1460:: a Unified Perspective to Learn with a Goal, Francesco Di Fiore, Michela Nardelli, Laura Mainini, 560: 480: 403: 321: 151: 113: 108: 68: 63: 1803: 1325:: label those points that would minimize output variance, which is one of the components of error. 1830: 1018:
be the total set of all data under consideration. For example, in a protein engineering problem,
988: 507: 356: 256: 83: 1871:
Bouneffouf, Djallel; Laroche, Romain; Urvoy, Tanguy; FĂ©raud, Raphael; Allesiardo, Robin (2014).
1643: 1432: 1360: 1230: 999: 687: 663: 565: 326: 301: 261: 73: 1618:"A literature survey of active machine learning in the context of natural language processing" 1451: 1457: 1427: 641: 463: 415: 271: 186: 58: 2046: 1698: 1329: 1262: 1226: 1225:
must equal 100, since the component numbers are really percentages. Similarly, the enzymes
984: 570: 520: 8: 673: 609: 580: 485: 311: 244: 230: 216: 191: 141: 93: 53: 2050: 1702: 2161: 2138: 2093: 2070: 1954: 1934: 1903: 1853: 1772: 1741: 1671: 1595: 1553: 651: 575: 361: 156: 2165: 2130: 2074: 2062: 1993: 1893: 1661: 1585: 1543: 1422: 1301:
The sample with the smallest best probability is considered to be the most uncertain.
1003: 744: 587: 500: 296: 266: 211: 206: 161: 103: 2142: 1958: 1745: 1599: 1557: 2122: 2054: 1985: 1944: 1907: 1885: 1857: 1845: 1782: 1733: 1724:
Lughofer, Edwin (2012). "Single-pass active learning with conflict and ignorance".
1706: 1675: 1653: 1577: 1535: 1527: 1218: 963: 772: 525: 475: 385: 369: 339: 201: 196: 146: 136: 34: 1989: 1889: 1849: 1710: 1393:
are those that the SVM is most uncertain about and therefore should be placed in
800: 604: 470: 410: 20: 1872: 1787: 1760: 820: 351: 88: 1737: 1531: 2179: 2134: 2066: 1949: 1922: 995: 739: 668: 550: 281: 166: 1657: 1215:
increasingly difficult to generate synthetic data with sufficient fidelity.
1581: 1389:
Minimum Marginal Hyperplane methods assume that the data with the smallest
2058: 1499:. Computer Sciences Technical Report 1648. University of Wisconsin–Madison 1761:"The MLIP package: moment tensor potentials with MPI and active learning" 1539: 545: 39: 1884:. Lecture Notes in Computer Science. Vol. 8834. pp. 405–412. 694: 390: 316: 2126: 1875:. In Loo, C. K.; Yap, K. S.; Wong, K. W.; Teoh, A.; Huang, K. (eds.). 2158:
Learning Active Learning at the Crossroads? Evaluation and Discussion
1467: 1461: 1445: 853: 634: 1386:-dimensional distance from that datum to the separating hyperplane. 2098: 1777: 1939: 1831:"Active learning via query synthesis and nearest neighbour search" 967:
necessary. In statistics literature, it is sometimes also called
1631:
Yang, Bishan; Sun, Jian-Tao; Wang, Tengjiao; Chen, Zheng (2009).
629: 1829:
Wang, Liantao; Hu, Xuelei; Yuan, Bo; Lu, Jianfeng (2015-01-05).
2112: 2090:
IEEE/ACM Transactions on Audio, Speech, and Language Processing
1804:"Active learning machine learning: What it is and how it works" 1633:"Effective multi-label active learning for text classification" 1617: 380: 1255:: label those points that would most change the current model. 624: 619: 346: 1870: 1404:. Tradeoff methods choose a mix of the smallest and largest 1452:
https://link.springer.com/article/10.1007/s10994-010-5174-y
2036: 1516: 1923:"Exponentiated Gradient Exploration for Active Learning" 1873:"Contextual Bandit for Active Learning: Active Thompson" 1261:: label those points that would most reduce the model's 1201:: Here, each consecutive unlabeled instance is examined 912:
List of datasets in computer vision and image processing
1978: 1269:
Exponentiated Gradient Exploration for Active Learning
994:
Large-scale active learning projects may benefit from
1570: 1124: 1083: 1042: 2087: 2006: 1145: 1104: 1063: 2155: 1574:IEEE 16th International Conference on Data Mining 2177: 1914: 1864: 1630: 1615: 1359:Some active learning algorithms are built upon 1418:List of datasets for machine learning research 1354: 907:List of datasets for machine-learning research 1974: 1972: 1970: 1968: 1491: 1313:Querying from diverse subspaces or partitions 940: 2156:Desreumaux, Louis; Lemaire, Vincent (2020). 1828: 1965: 1920: 1717: 947: 933: 2097: 1948: 1938: 1786: 1776: 1647: 1510: 1487: 1485: 1483: 1765:Machine Learning: Science and Technology 1723: 1688: 1611: 1609: 971:. The information source is also called 1758: 2178: 1921:Bouneffouf, Djallel (8 January 2016). 1564: 1480: 2081: 1801: 1682: 1606: 1624: 1247:Balance exploration and exploitation 1982:Progress in Artificial Intelligence 1494:"Active Learning Literature Survey" 1237: 902:Glossary of artificial intelligence 13: 2106: 1468:https://arxiv.org/abs/1708.02383v1 1462:https://arxiv.org/abs/2303.01560v2 1446:https://doi.org/10.1007/BF00993277 1343:User Centered Labeling Strategies: 1146:{\displaystyle \mathbf {T} _{C,i}} 1105:{\displaystyle \mathbf {T} _{U,i}} 1064:{\displaystyle \mathbf {T} _{K,i}} 1004:humans in the active learning loop 14: 2197: 1620:. SICS Technical Report T2009:06. 1337:Mismatch-first farthest-traversal 1112:: Data points where the label is 1071:: Data points where the label is 1127: 1086: 1045: 1033:is broken up into three subsets 2149: 2030: 1822: 1199:Stream-Based Selective Sampling 1795: 1752: 1616:Olsson, Fredrik (April 2009). 1277:a sample is randomly selected. 1009: 322:Relevance vector machine (RVM) 1: 2039:Fusion Science and Technology 1878:Neural Information Processing 1473: 1438: 1371:, of each unlabeled datum in 1223:White Blood Cell differential 811:Computational learning theory 375:Expectation–maximization (EM) 1990:10.1007/978-3-031-16474-3_38 1890:10.1007/978-3-319-12637-1_51 1850:10.1016/j.neucom.2014.06.042 1711:10.1016/j.patcog.2011.08.009 1520:Recommender Systems Handbook 1178: 768:Coefficient of determination 615:Convolutional neural network 327:Support vector machine (SVM) 7: 1526:(2 ed.). Springer US. 1411: 1355:Minimum marginal hyperplane 969:optimal experimental design 919:Outline of machine learning 816:Empirical risk minimization 10: 2202: 2014:"shubhomoydas/ad_examples" 1576:. IEEE. pp. 853–858. 1210:Membership Query Synthesis 556:Feedforward neural network 307:Artificial neural networks 18: 1738:10.1007/s12530-012-9060-7 1532:10.1007/978-1-4899-7637-6 1299:Least Confident Sampling: 987:policies in the field of 539:Artificial neural network 16:Machine learning strategy 1950:10.3390/computers5010001 1788:10.1088/2632-2153/abc9fe 1259:Expected error reduction 848:Journals and conferences 795:Mathematical foundations 705:Temporal difference (TD) 561:Recurrent neural network 481:Conditional random field 404:Dimensionality reduction 152:Dimensionality reduction 114:Quantum machine learning 109:Neuromorphic engineering 69:Self-supervised learning 64:Semi-supervised learning 2115:Computer Graphics Forum 1910:. HAL Id: hal-01069802. 1658:10.1145/1557019.1557119 1361:support-vector machines 1025:During each iteration, 989:online machine learning 257:Apprenticeship learning 1759:Novikov, Ivan (2021). 1582:10.1109/ICDM.2016.0102 1492:Settles, Burr (2010). 1433:Reinforcement learning 1231:Aspartate Transaminase 1221:(WBC) components in a 1147: 1106: 1065: 1000:Amazon Mechanical Turk 806:Bias–variance tradeoff 688:Reinforcement learning 664:Spiking neural network 74:Reinforcement learning 2059:10.13182/FST12-A14626 1458:Bayesian Optimization 1428:Bayesian Optimization 1253:Expected model change 1148: 1107: 1066: 962:is a special case of 642:Neural radiance field 464:Structured prediction 187:Structured prediction 59:Unsupervised learning 1456:Active Learning and 1330:Conformal prediction 1281:Uncertainty sampling 1263:generalization error 1227:Alanine Transaminase 1122: 1081: 1040: 985:incremental learning 831:Statistical learning 729:Learning with humans 521:Local outlier factor 2051:2012FuST...62..347M 1703:2012PatRe..45..884L 1691:Pattern Recognition 1185:Pool-Based Sampling 998:frameworks such as 674:Electrochemical RAM 581:reservoir computing 312:Logistic regression 231:Supervised learning 217:Multimodal learning 192:Feature engineering 137:Generative modeling 99:Rule-based learning 94:Curriculum learning 54:Supervised learning 29:Part of a series on 1323:Variance reduction 1307:Query by committee 1189:the entire dataset 1143: 1102: 1061: 1002:that include many 242: • 157:Density estimation 2127:10.1111/cgf.13406 1999:978-3-031-16473-6 1899:978-3-319-12636-4 1667:978-1-60558-495-9 1591:978-1-5090-5473-2 1549:978-1-4899-7637-6 1423:Sample complexity 1287:Entropy Sampling: 957: 956: 762:Model diagnostics 745:Human-in-the-loop 588:Boltzmann machine 501:Anomaly detection 297:Linear regression 212:Ontology learning 207:Grammar induction 182:Semantic analysis 177:Association rules 162:Anomaly detection 104:Neuro-symbolic AI 2193: 2186:Machine learning 2170: 2169: 2153: 2147: 2146: 2110: 2104: 2103: 2101: 2085: 2079: 2078: 2034: 2028: 2027: 2025: 2024: 2010: 2004: 2003: 1976: 1963: 1962: 1952: 1942: 1918: 1912: 1911: 1883: 1868: 1862: 1861: 1835: 1826: 1820: 1819: 1817: 1815: 1799: 1793: 1792: 1790: 1780: 1756: 1750: 1749: 1726:Evolving Systems 1721: 1715: 1714: 1686: 1680: 1679: 1651: 1637: 1628: 1622: 1621: 1613: 1604: 1603: 1568: 1562: 1561: 1525: 1514: 1508: 1507: 1505: 1504: 1498: 1489: 1407: 1403: 1399: 1392: 1385: 1381: 1377: 1370: 1293:Margin Sampling: 1275:Random Sampling: 1238:Query strategies 1219:white blood cell 1195:computer memory. 1174: 1159: 1152: 1150: 1149: 1144: 1142: 1141: 1130: 1111: 1109: 1108: 1103: 1101: 1100: 1089: 1070: 1068: 1067: 1062: 1060: 1059: 1048: 1032: 1028: 1021: 1017: 964:machine learning 949: 942: 935: 896:Related articles 773:Confusion matrix 526:Isolation forest 471:Graphical models 250: 249: 202:Learning to rank 197:Feature learning 35:Machine learning 26: 25: 2201: 2200: 2196: 2195: 2194: 2192: 2191: 2190: 2176: 2175: 2174: 2173: 2154: 2150: 2111: 2107: 2086: 2082: 2035: 2031: 2022: 2020: 2012: 2011: 2007: 2000: 1977: 1966: 1919: 1915: 1900: 1881: 1869: 1865: 1833: 1827: 1823: 1813: 1811: 1810:. DataRobot Inc 1800: 1796: 1757: 1753: 1722: 1718: 1687: 1683: 1668: 1649:10.1.1.546.9358 1642:. p. 917. 1635: 1629: 1625: 1614: 1607: 1592: 1569: 1565: 1550: 1523: 1515: 1511: 1502: 1500: 1496: 1490: 1481: 1476: 1441: 1414: 1405: 1401: 1398: 1394: 1390: 1383: 1379: 1376: 1372: 1368: 1357: 1240: 1216: 1213: 1193: 1181: 1173: 1169: 1158: 1154: 1131: 1126: 1125: 1123: 1120: 1119: 1090: 1085: 1084: 1082: 1079: 1078: 1049: 1044: 1043: 1041: 1038: 1037: 1030: 1026: 1019: 1015: 1012: 960:Active learning 953: 924: 923: 897: 889: 888: 849: 841: 840: 801:Kernel machines 796: 788: 787: 763: 755: 754: 735:Active learning 730: 722: 721: 690: 680: 679: 605:Diffusion model 541: 531: 530: 503: 493: 492: 466: 456: 455: 411:Factor analysis 406: 396: 395: 379: 342: 332: 331: 252: 251: 235: 234: 233: 222: 221: 127: 119: 118: 84:Online learning 49: 37: 24: 21:active learning 17: 12: 11: 5: 2199: 2189: 2188: 2172: 2171: 2148: 2121:(3): 121–132. 2105: 2080: 2045:(2): 347–355. 2029: 2005: 1998: 1964: 1913: 1898: 1863: 1838:Neurocomputing 1821: 1808:DataRobot Blog 1794: 1751: 1732:(4): 251–271. 1716: 1697:(2): 884–896. 1681: 1666: 1623: 1605: 1590: 1563: 1548: 1509: 1478: 1477: 1475: 1472: 1471: 1470: 1464: 1454: 1448: 1440: 1437: 1436: 1435: 1430: 1425: 1420: 1413: 1410: 1396: 1374: 1356: 1353: 1348: 1347: 1340: 1334: 1326: 1320: 1310: 1304: 1303: 1302: 1296: 1290: 1278: 1272: 1266: 1256: 1250: 1239: 1236: 1235: 1234: 1207: 1196: 1180: 1177: 1171: 1166: 1165: 1164:to be labeled. 1156: 1153:: A subset of 1140: 1137: 1134: 1129: 1117: 1099: 1096: 1093: 1088: 1076: 1058: 1055: 1052: 1047: 1011: 1008: 955: 954: 952: 951: 944: 937: 929: 926: 925: 922: 921: 916: 915: 914: 904: 898: 895: 894: 891: 890: 887: 886: 881: 876: 871: 866: 861: 856: 850: 847: 846: 843: 842: 839: 838: 833: 828: 823: 821:Occam learning 818: 813: 808: 803: 797: 794: 793: 790: 789: 786: 785: 780: 778:Learning curve 775: 770: 764: 761: 760: 757: 756: 753: 752: 747: 742: 737: 731: 728: 727: 724: 723: 720: 719: 718: 717: 707: 702: 697: 691: 686: 685: 682: 681: 678: 677: 671: 666: 661: 656: 655: 654: 644: 639: 638: 637: 632: 627: 622: 612: 607: 602: 597: 596: 595: 585: 584: 583: 578: 573: 568: 558: 553: 548: 542: 537: 536: 533: 532: 529: 528: 523: 518: 510: 504: 499: 498: 495: 494: 491: 490: 489: 488: 483: 478: 467: 462: 461: 458: 457: 454: 453: 448: 443: 438: 433: 428: 423: 418: 413: 407: 402: 401: 398: 397: 394: 393: 388: 383: 377: 372: 367: 359: 354: 349: 343: 338: 337: 334: 333: 330: 329: 324: 319: 314: 309: 304: 299: 294: 286: 285: 284: 279: 274: 264: 262:Decision trees 259: 253: 239:classification 229: 228: 227: 224: 223: 220: 219: 214: 209: 204: 199: 194: 189: 184: 179: 174: 169: 164: 159: 154: 149: 144: 139: 134: 132:Classification 128: 125: 124: 121: 120: 117: 116: 111: 106: 101: 96: 91: 89:Batch learning 86: 81: 76: 71: 66: 61: 56: 50: 47: 46: 43: 42: 31: 30: 15: 9: 6: 4: 3: 2: 2198: 2187: 2184: 2183: 2181: 2167: 2163: 2159: 2152: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2116: 2109: 2100: 2095: 2091: 2084: 2076: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2033: 2019: 2015: 2009: 2001: 1995: 1991: 1987: 1983: 1975: 1973: 1971: 1969: 1960: 1956: 1951: 1946: 1941: 1936: 1932: 1928: 1924: 1917: 1909: 1905: 1901: 1895: 1891: 1887: 1880: 1879: 1874: 1867: 1859: 1855: 1851: 1847: 1843: 1839: 1832: 1825: 1809: 1805: 1798: 1789: 1784: 1779: 1774: 1770: 1766: 1762: 1755: 1747: 1743: 1739: 1735: 1731: 1727: 1720: 1712: 1708: 1704: 1700: 1696: 1692: 1685: 1677: 1673: 1669: 1663: 1659: 1655: 1650: 1645: 1641: 1634: 1627: 1619: 1612: 1610: 1601: 1597: 1593: 1587: 1583: 1579: 1575: 1567: 1559: 1555: 1551: 1545: 1541: 1540:11311/1006123 1537: 1533: 1529: 1522: 1521: 1513: 1495: 1488: 1486: 1484: 1479: 1469: 1465: 1463: 1459: 1455: 1453: 1449: 1447: 1443: 1442: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1416: 1415: 1409: 1387: 1366: 1362: 1352: 1344: 1341: 1338: 1335: 1332: 1331: 1327: 1324: 1321: 1318: 1317:feature space 1314: 1311: 1308: 1305: 1300: 1297: 1294: 1291: 1288: 1285: 1284: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1260: 1257: 1254: 1251: 1248: 1245: 1244: 1243: 1232: 1228: 1224: 1220: 1211: 1208: 1204: 1203:one at a time 1200: 1197: 1190: 1186: 1183: 1182: 1176: 1163: 1138: 1135: 1132: 1118: 1115: 1097: 1094: 1091: 1077: 1074: 1056: 1053: 1050: 1036: 1035: 1034: 1023: 1007: 1005: 1001: 997: 996:crowdsourcing 992: 990: 986: 980: 978: 974: 970: 965: 961: 950: 945: 943: 938: 936: 931: 930: 928: 927: 920: 917: 913: 910: 909: 908: 905: 903: 900: 899: 893: 892: 885: 882: 880: 877: 875: 872: 870: 867: 865: 862: 860: 857: 855: 852: 851: 845: 844: 837: 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 798: 792: 791: 784: 781: 779: 776: 774: 771: 769: 766: 765: 759: 758: 751: 748: 746: 743: 741: 740:Crowdsourcing 738: 736: 733: 732: 726: 725: 716: 713: 712: 711: 708: 706: 703: 701: 698: 696: 693: 692: 689: 684: 683: 675: 672: 670: 669:Memtransistor 667: 665: 662: 660: 657: 653: 650: 649: 648: 645: 643: 640: 636: 633: 631: 628: 626: 623: 621: 618: 617: 616: 613: 611: 608: 606: 603: 601: 598: 594: 591: 590: 589: 586: 582: 579: 577: 574: 572: 569: 567: 564: 563: 562: 559: 557: 554: 552: 551:Deep learning 549: 547: 544: 543: 540: 535: 534: 527: 524: 522: 519: 517: 515: 511: 509: 506: 505: 502: 497: 496: 487: 486:Hidden Markov 484: 482: 479: 477: 474: 473: 472: 469: 468: 465: 460: 459: 452: 449: 447: 444: 442: 439: 437: 434: 432: 429: 427: 424: 422: 419: 417: 414: 412: 409: 408: 405: 400: 399: 392: 389: 387: 384: 382: 378: 376: 373: 371: 368: 366: 364: 360: 358: 355: 353: 350: 348: 345: 344: 341: 336: 335: 328: 325: 323: 320: 318: 315: 313: 310: 308: 305: 303: 300: 298: 295: 293: 291: 287: 283: 282:Random forest 280: 278: 275: 273: 270: 269: 268: 265: 263: 260: 258: 255: 254: 247: 246: 241: 240: 232: 226: 225: 218: 215: 213: 210: 208: 205: 203: 200: 198: 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 170: 168: 167:Data cleaning 165: 163: 160: 158: 155: 153: 150: 148: 145: 143: 140: 138: 135: 133: 130: 129: 123: 122: 115: 112: 110: 107: 105: 102: 100: 97: 95: 92: 90: 87: 85: 82: 80: 79:Meta-learning 77: 75: 72: 70: 67: 65: 62: 60: 57: 55: 52: 51: 45: 44: 41: 36: 33: 32: 28: 27: 22: 2157: 2151: 2118: 2114: 2108: 2089: 2083: 2042: 2038: 2032: 2021:. Retrieved 2017: 2008: 1981: 1930: 1926: 1916: 1877: 1866: 1841: 1837: 1824: 1812:. Retrieved 1807: 1797: 1768: 1764: 1754: 1729: 1725: 1719: 1694: 1690: 1684: 1639: 1626: 1573: 1566: 1519: 1512: 1501:. Retrieved 1388: 1358: 1349: 1342: 1336: 1328: 1322: 1312: 1306: 1298: 1292: 1286: 1280: 1274: 1268: 1258: 1252: 1246: 1241: 1209: 1202: 1198: 1188: 1184: 1167: 1161: 1113: 1072: 1024: 1013: 993: 981: 976: 972: 959: 958: 826:PAC learning 734: 513: 362: 357:Hierarchical 289: 243: 237: 1844:: 426–434. 1802:DataRobot. 1771:(2): 3, 4. 1010:Definitions 710:Multi-agent 647:Transformer 546:Autoencoder 302:Naive Bayes 40:data mining 2099:2002.05033 2023:2018-12-04 1814:30 January 1778:2007.08555 1503:2014-11-18 1474:References 1439:Literature 1378:and treat 1346:instances. 1229:(ALT) and 695:Q-learning 593:Restricted 391:Mean shift 340:Clustering 317:Perceptron 245:regression 147:Clustering 142:Regression 2166:221794570 2135:0167-7055 2075:115384000 2067:1536-1055 1940:1408.2196 1927:Computers 1644:CiteSeerX 1179:Scenarios 854:ECML PKDD 836:VC theory 783:ROC curve 715:Self-play 635:DeepDream 476:Bayes net 267:Ensembles 48:Paradigms 2180:Category 2143:51875861 1959:14313852 1933:(1): 1. 1746:43844282 1600:15285595 1558:11569603 1412:See also 1160:that is 277:Boosting 126:Problems 2047:Bibcode 1908:1701357 1858:3027214 1699:Bibcode 1676:1979173 1114:unknown 973:teacher 859:NeurIPS 676:(ECRAM) 630:AlexNet 272:Bagging 2164:  2141:  2133:  2073:  2065:  2018:GitHub 1996:  1957:  1906:  1896:  1856:  1744:  1674:  1664:  1646:  1598:  1588:  1556:  1546:  1382:as an 1365:margin 1162:chosen 977:oracle 652:Vision 508:RANSAC 386:OPTICS 381:DBSCAN 365:-means 172:AutoML 2162:S2CID 2139:S2CID 2094:arXiv 2071:S2CID 1955:S2CID 1935:arXiv 1904:S2CID 1882:(PDF) 1854:S2CID 1834:(PDF) 1773:arXiv 1742:S2CID 1672:S2CID 1636:(PDF) 1596:S2CID 1554:S2CID 1524:(PDF) 1497:(PDF) 1073:known 874:IJCAI 700:SARSA 659:Mamba 625:LeNet 620:U-Net 446:t-SNE 370:Fuzzy 347:BIRCH 2131:ISSN 2063:ISSN 1994:ISBN 1894:ISBN 1816:2024 1662:ISBN 1586:ISBN 1544:ISBN 1014:Let 884:JMLR 869:ICLR 864:ICML 750:RLHF 566:LSTM 352:CURE 38:and 2123:doi 2055:doi 1986:doi 1945:doi 1886:doi 1846:doi 1842:147 1783:doi 1734:doi 1707:doi 1654:doi 1578:doi 1536:hdl 1528:doi 1408:s. 1397:C,i 1375:U,i 1172:C,i 1157:U,i 975:or 610:SOM 600:GAN 576:ESN 571:GRU 516:-NN 451:SDL 441:PGD 436:PCA 431:NMF 426:LDA 421:ICA 416:CCA 292:-NN 2182:: 2137:. 2129:. 2119:37 2117:. 2092:. 2069:. 2061:. 2053:. 2043:62 2041:. 2016:. 1992:. 1967:^ 1953:. 1943:. 1929:. 1925:. 1902:. 1892:. 1852:. 1840:. 1836:. 1806:. 1781:. 1767:. 1763:. 1740:. 1728:. 1705:. 1695:45 1693:. 1670:. 1660:. 1652:. 1638:. 1608:^ 1594:. 1584:. 1552:. 1542:. 1534:. 1482:^ 1367:, 1175:. 1029:, 1006:. 979:. 879:ML 2168:. 2145:. 2125:: 2102:. 2096:: 2077:. 2057:: 2049:: 2026:. 2002:. 1988:: 1961:. 1947:: 1937:: 1931:5 1888:: 1860:. 1848:: 1818:. 1791:. 1785:: 1775:: 1769:2 1748:. 1736:: 1730:3 1713:. 1709:: 1701:: 1678:. 1656:: 1602:. 1580:: 1560:. 1538:: 1530:: 1506:. 1406:W 1402:W 1395:T 1391:W 1384:n 1380:W 1373:T 1369:W 1265:. 1170:T 1155:T 1139:i 1136:, 1133:C 1128:T 1116:. 1098:i 1095:, 1092:U 1087:T 1075:. 1057:i 1054:, 1051:K 1046:T 1031:T 1027:i 1020:T 1016:T 948:e 941:t 934:v 514:k 363:k 290:k 248:) 236:( 23:.

Index

active learning
Machine learning
data mining
Supervised learning
Unsupervised learning
Semi-supervised learning
Self-supervised learning
Reinforcement learning
Meta-learning
Online learning
Batch learning
Curriculum learning
Rule-based learning
Neuro-symbolic AI
Neuromorphic engineering
Quantum machine learning
Classification
Generative modeling
Regression
Clustering
Dimensionality reduction
Density estimation
Anomaly detection
Data cleaning
AutoML
Association rules
Semantic analysis
Structured prediction
Feature engineering
Feature learning

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑