Knowledge

Evolvability

Source đź“ť

352:, then mutations affect only one trait at a time, and adaptation is much less constrained. In a modular gene network, for example, a gene that induces a limited set of other genes that control a specific trait under selection may evolve more readily than one that also induces other gene pathways controlling traits not under selection. Individual genes also exhibit modularity. A mutation in one cis-regulatory element of a gene's promoter region may allow the expression of the gene to be altered only in specific tissues, developmental stages, or environmental conditions rather than changing gene activity in the entire organism simultaneously. 432:. Identifying evolvable proteins and manipulating their evolvability is becoming increasingly necessary in order to achieve ever larger functional modification of enzymes. Proteins are also often studied as part of the basic science of evolvability, because the biophysical properties and chemical functions can be easily changed by a few mutations. More evolvable proteins can tolerate a broader range of amino acid changes and allow them to evolve toward new functions. The study of evolvability has fundamental importance for understanding very long term evolution of 369:. Short-term selection for low variation most of the time is likely to be more powerful than long-term selection for evolvability, making it difficult for natural selection to cause the evolution of evolvability. Other forces of selection also affect the generation of variation; for example, mutation and recombination may in part be byproducts of mechanisms to cope with DNA damage. 258:, increasing evolvability according to the second sense. Even without genetic diversity, some genotypes have higher evolvability than others, and selection for robustness can increase the "neighborhood richness" of phenotypes that can be accessed from the same starting genotype by mutation. For example, one reason many proteins are less robust to mutation is that they have marginal 303:. When this happens, natural selection weeds out the very bad mutations, while leaving the others relatively unaffected. While evolution has no "foresight" to know which environment will be encountered in the future, some mutations cause major disruption to a basic biological process, and will never be adaptive in any environment. Screening these out in advance leads to 399:
the risk that a future environment will be similar or different. Theoretical models also predict the evolution of evolvability via modularity. When the costs of evolvability are sufficiently short-lived, more evolvable lineages may be the most successful in the long-term. However, the hypothesis that
131:
Pigliucci's second definition of evolvability includes Altenberg's quantitative concept of evolvability, being not a single number, but the entire upper tail of the fitness distribution of the offspring produced by the population. This quantity was considered a "local" property of the instantaneous
113:
in the population. Each allele catalyzes the same reaction, but with a different level of activity. However, even after millions of years of evolution, exploring many sequences with similar function, no mutation might exist that gives this enzyme the ability to catalyze a different reaction. Thus,
298:
exists, many mutants will persist in a cryptic state. Mutations tend to fall into two categories, having either a very bad effect or very little effect: few mutations fall somewhere in between. Sometimes, these mutations will not be completely invisible, but still have rare effects, with very low
140:
More heritable phenotypic variation means more evolvability. While mutation is the ultimate source of heritable variation, its permutations and combinations also make a big difference. Sexual reproduction generates more variation (and thereby evolvability) relative to asexual reproduction (see
310:
Another way that phenotypes can be explored, prior to strong genetic commitment, is through learning. An organism that learns gets to "sample" several different phenotypes during its early development, and later sticks to whatever worked best. Later in evolution, the optimal phenotype can be
253:
does not increase evolvability in the first sense. In organisms with a high level of robustness, mutations have smaller phenotypic effects than in organisms with a low level of robustness. Thus, robustness reduces the amount of heritable genetic variation on which selection can act. However,
262:, and most mutations reduce this stability further. Proteins that are more thermostable can tolerate a wider range of mutations and are more evolvable. For polygenic traits, neighborhood richness contributes more to evolvability than does genetic diversity or "spread" across genotype space. 66:
cannot occur. Early failed efforts to evolve computer programs by random mutation and selection showed that evolvability is not a given, but depends on the representation of the program as a data structure, because this determines how changes in the program map to changes in its behavior.
145:). Evolvability is further increased by generating more variation when an organism is stressed, and thus likely to be less well adapted, but less variation when an organism is doing well. The amount of variation generated can be adjusted in many different ways, for example via the 412:
we wish to increase evolvability, and in medicine and agriculture we wish to decrease it. Protein evolvability is defined as the ability of the protein to acquire sequence diversity and conformational flexibility which can enable it to evolve toward a new function.
326:
can also increase evolvability even when it has no direction, for example when the flattening is a result of random errors in molecular and/or developmental processes. This increase in evolvability can happen when evolution is faced with crossing a "valley" in an
114:
although the enzyme's activity is evolvable in the first sense, that does not mean that the enzyme's function is evolvable in the second sense. However, every system evolvable in the second sense must also be evolvable in the first.
331:. This means that two mutations exist that are deleterious by themselves, but beneficial in combination. These combinations can evolve more easily when the landscape is first flattened, and the discovered phenotype is then fixed by 463:. Predicting the evolution and evolvability of our pathogens, and devising strategies to slow or circumvent the development of resistance, demands deeper knowledge of the complex forces driving evolution at the molecular level. 343:
If every mutation affected every trait, then a mutation that was an improvement for one trait would be a disadvantage for other traits. This means that almost no mutations would be beneficial overall. But if
360:
While variation yielding high evolvability could be useful in the long term, in the short term most of that variation is likely to be a disadvantage. For example, naively it would seem that increasing the
241:
The relationship between robustness and evolvability depends on whether recombination can be ignored. Recombination can generally be ignored in asexual populations and for traits affected by single genes.
2844:
Pan D, Xue W, Zhang W, Liu H, Yao X (October 2012). "Understanding the drug resistance mechanism of hepatitis C virus NS3/4A to ITMN-191 due to R155K, A156V, D168A/E mutations: a computational study".
132:
state of a population, and its integration over the population's evolutionary trajectory, and over many possible populations, would be necessary to give a more global measure of evolvability.
380:
of microbes. Mutator alleles can also evolve more easily when they only increase mutation rates in nearby DNA sequences, not across the whole genome: this is known as a contingency locus.
75:
are structured in ways that make beneficial changes more likely. This has been taken as evidence that evolution has created fitter populations of organisms that are better able to evolve.
181:
Rather than creating more phenotypic variation, some mechanisms increase the intensity and effectiveness with which selection acts on existing phenotypic variation. For example:
376:
on the success of adaptive mutations that they cause. In this case, selection can take place at the level of the lineage. This may explain why mutators are often seen during
219:, where different genotypes contain different adaptive mutations. Recombination brings the two alleles together, creating a super-genotype in place of two competing lineages. 3259:
Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (June 2011). "Beyond DNA: integrating inclusive inheritance into an extended theory of evolution".
365:
via a mutator allele would increase evolvability. But as an extreme example, if the mutation rate is too high then all individuals will be dead or at least carry a heavy
120:
recognizes three classes of definition, depending on timescale. The first corresponds to Wagner's first, and represents the very short timescales that are described by
2660:
Dellus-Gur E, Toth-Petroczy A, Elias M, Tawfik DS (July 2013). "What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs".
2067:"The spontaneous appearance rate of the yeast prion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+] system" 54:
In order for a biological organism to evolve by natural selection, there must be a certain minimum probability that new, heritable variants are beneficial. Random
749: 274:, may lead to the accumulation of significant quantities of cryptic genetic variation. In a new environment or genetic background, this variation may be 2353:
Bommarius AS, Blum JK, Abrahamson MJ (April 2011). "Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst".
3006:
Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A, Blázquez J (August 2013). "Antibiotics and antibiotic resistance: a bitter fight against evolution".
2423:
Wang X, Minasov G, Shoichet BK (June 2002). "Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs".
286:
Different genetic codes have the potential to change robustness and evolvability by changing the effect of single-base mutational changes.
2609:
Ranea JA, Sillero A, Thornton JM, Orengo CA (October 2006). "Protein superfamily evolution and the last universal common ancestor (LUCA)".
124:. He divides Wagner's second definition into two categories, one representing the intermediate timescales that can be studied using 3833: 204:
above which selection becomes an important player. This could happen through an increase in the census population size, decreasing
3809: 2732: 2707: 865: 796:
Vaishnav ED, de Boer CG, Molinet J, Yassour M, Fan L, Adiconis X, Thompson DA, Levine JZ, Cubillos FA, Regev A (March 2022).
628: 3774: 424:
approaches aim to create changes rapidly through mutations with large effects. Such mutations, however, commonly destroy
1562:
Fudala A, Korona R (August 2009). "Low frequency of mutations with strongly deleterious but nonlethal fitness effects".
3619: 3347: 17: 3319: 2318:
Carter PJ (May 2011). "Introduction to current and future protein therapeutics: a protein engineering perspective".
1884:"Complex adaptations can drive the evolution of the capacitor [PSI], even with realistic rates of yeast sex" 3576: 3362: 3357: 384: 142: 467: 387:, or via the tendency of variation-generating mechanisms to become more active when an organism is stressed. The 101:
if it can acquire novel functions through genetic change, functions that help the organism survive and reproduce.
2499:
Salverda ML, Dellus E, Gorter FA, Debets AJ, van der Oost J, Hoekstra RF, Tawfik DS, de Visser JA (March 2011).
400:
evolvability is an adaptation is often rejected in favor of alternative hypotheses, e.g. minimization of costs.
86:
describes two definitions of evolvability. According to the first definition, a biological system is evolvable:
1360:
Whitacre J, Bender A (March 2010). "Degeneracy: a design principle for achieving robustness and evolvability".
3753: 2971:
Neve P (October 2007). "Challenges for herbicide resistance evolution and management: 50 years after Harper".
62:, are expected to be mostly detrimental. Beneficial mutations are always rare, but if they are too rare, then 3828: 3604: 2801:
Merlo LM, Pepper JW, Reid BJ, Maley CC (December 2006). "Cancer as an evolutionary and ecological process".
3571: 395:. An evolutionary capacitor is a switch that turns genetic variation on and off. This is very much like 3763: 3629: 3461: 3456: 2275:
Soskine M, Tawfik DS (August 2010). "Mutational effects and the evolution of new protein functions".
197: 611: 1519:
Eyre-Walker A, Keightley PD (August 2007). "The distribution of fitness effects of new mutations".
392: 275: 170: 2700:
The origins of evolutionary innovations : a theory of transformative change in living systems
3697: 3634: 3609: 3492: 3412: 2388:
Tokuriki N, Tawfik DS (October 2009). "Stability effects of mutations and protein evolvability".
459:
resistance. It is possible that we are facing the end of the effective life of most of available
271: 3682: 3581: 3566: 3535: 3436: 747:
Bianco, Simone (April 1, 2022). "Artificial Intelligence: Bioengineers' Ultimate Best Friend".
606: 479: 429: 377: 3793: 3687: 3614: 3513: 3451: 3446: 3377: 3312: 2022:, Bergman A (July 2003). "The evolution of the evolvability properties of the yeast prion ". 433: 396: 295: 250: 236: 216: 201: 121: 2920:
Labbé P, Berticat C, Berthomieu A, Unal S, Bernard C, Weill M, Lenormand T (November 2007).
3702: 3545: 3540: 3422: 3417: 3404: 3217: 2980: 2618: 2563: 2231: 2175:
Draghi J, Wagner GP (February 2008). "Evolution of evolvability in a developmental model".
2131: 1933:
Michod RE (1986). "On fitness and adaptedness and their role in evolutionary explanation".
1674: 1379: 1261: 995: 809: 552: 332: 322:
Learning biases phenotypes in a beneficial direction. But an exploratory flattening of the
312: 166: 154: 68: 8: 3798: 448: 417: 409: 373: 150: 125: 3221: 2984: 2622: 2567: 2235: 2135: 1678: 1383: 1265: 999: 813: 556: 3487: 3284: 3241: 3180: 3120: 3093: 3069: 3042: 2948: 2922:"Forty years of erratic insecticide resistance evolution in the mosquito Culex pipiens" 2921: 2826: 2783: 2642: 2586: 2551: 2527: 2500: 2300: 2252: 2219: 2200: 2152: 2119: 2091: 2066: 2047: 2035: 2001: 1993: 1958: 1910: 1883: 1859: 1832: 1813: 1770: 1697: 1662: 1634: 1609: 1587: 1544: 1496: 1471: 1447: 1422: 1403: 1369: 1337: 1312: 1284: 1249: 1225: 1200: 1168: 1143: 1106: 1079: 1060: 1011: 963: 938: 919: 830: 797: 778: 729: 713: 708: 691: 421: 173:. A large population size increases the influx of novel mutations in each generation. 2436: 3748: 3528: 3523: 3432: 3276: 3233: 3229: 3198: 3172: 3167: 3143: 3125: 3074: 3023: 2992: 2953: 2902: 2897: 2880: 2861: 2818: 2775: 2748: 2728: 2703: 2677: 2634: 2591: 2532: 2481: 2440: 2405: 2370: 2335: 2292: 2257: 2192: 2188: 2157: 2096: 2039: 2005: 1950: 1915: 1864: 1805: 1801: 1788:
Kim Y (August 2007). "Rate of adaptive peak shifts with partial genetic robustness".
1762: 1757: 1740: 1702: 1639: 1579: 1575: 1536: 1501: 1452: 1395: 1342: 1289: 1230: 1173: 1111: 1052: 1047: 1030: 968: 911: 884: 861: 835: 782: 770: 721: 624: 601:
Altenberg L (1995). "Genome growth and the evolution of the genotype–phenotype map".
580: 575: 540: 521: 328: 323: 315:
so it becomes the default behavior rather than a rare behavior. This is known as the
255: 190: 117: 48: 38: 3732: 2646: 2204: 2051: 1962: 1817: 1741:"The effect of phenotypic plasticity on evolution in multipeaked fitness landscapes" 1591: 1548: 1407: 1064: 1015: 986:
Hansen TF, PĂ©labon C, Houle D (September 2011). "Heritability is not evolvability".
733: 3758: 3727: 3722: 3677: 3305: 3288: 3268: 3245: 3225: 3184: 3162: 3115: 3105: 3064: 3054: 3015: 2988: 2943: 2933: 2892: 2853: 2830: 2810: 2787: 2767: 2669: 2626: 2581: 2571: 2522: 2512: 2471: 2432: 2397: 2362: 2327: 2304: 2284: 2247: 2239: 2184: 2147: 2139: 2086: 2078: 2031: 1985: 1942: 1905: 1895: 1854: 1844: 1797: 1774: 1752: 1692: 1682: 1629: 1621: 1571: 1528: 1491: 1483: 1442: 1434: 1387: 1332: 1324: 1279: 1269: 1220: 1212: 1163: 1155: 1101: 1091: 1080:"Evidence that adaptation in Drosophila is not limited by mutation at single sites" 1042: 1003: 958: 950: 923: 903: 825: 817: 762: 758: 703: 653: 616: 570: 560: 511: 425: 186: 766: 37:. Evolvability is the ability of a population of organisms to not merely generate 3768: 3672: 3482: 3110: 3059: 2938: 2857: 2517: 1900: 1096: 954: 259: 223: 212:, or through changes in the probability distribution of the numbers of offspring. 2331: 2220:"Second-order selection for evolvability in a large Escherichia coli population" 2082: 1625: 1328: 3297: 3019: 2695: 2556:
Proceedings of the National Academy of Sciences of the United States of America
2366: 2218:
Woods RJ, Barrick JE, Cooper TF, Shrestha U, Kauth MR, Lenski RE (March 2011).
1667:
Proceedings of the National Academy of Sciences of the United States of America
1391: 1254:
Proceedings of the National Academy of Sciences of the United States of America
821: 545:
Proceedings of the National Academy of Sciences of the United States of America
316: 83: 59: 2673: 2630: 2401: 2143: 1216: 1144:"Adaptive evolution: evaluating empirical support for theoretical predictions" 1007: 3822: 3736: 3650: 3518: 3352: 3329: 3005: 2476: 2459: 774: 672: 620: 444: 388: 362: 304: 209: 205: 146: 3202: 3147: 2752: 2576: 2243: 1687: 1274: 888: 565: 169:, and via access to previously cryptic variants through the switching of an 3382: 3372: 3280: 3237: 3176: 3129: 3078: 3027: 2957: 2906: 2865: 2822: 2779: 2681: 2638: 2595: 2536: 2485: 2444: 2409: 2374: 2339: 2296: 2261: 2196: 2161: 2115: 2100: 2043: 2019: 1954: 1919: 1868: 1849: 1809: 1766: 1706: 1658: 1643: 1605: 1583: 1540: 1505: 1456: 1399: 1346: 1308: 1293: 1234: 1196: 1177: 1115: 1056: 915: 839: 725: 525: 516: 499: 366: 1663:"Evolution of molecular error rates and the consequences for evolvability" 1487: 972: 584: 3497: 3477: 2725:
Arthropod biology and evolution : molecules, development, morphology
1438: 460: 383:
The evolution of evolvability is less controversial if it occurs via the
158: 3741: 3441: 3394: 3043:"Quantifying the adaptive potential of an antibiotic resistance enzyme" 1997: 1946: 1830: 717: 657: 349: 345: 300: 162: 128:, and one representing exceedingly rare long-term innovations of form. 63: 43: 34: 1031:"The evolution of stress-induced hypermutation in asexual populations" 605:. Lecture Notes in Computer Science. Vol. 899. pp. 205–259. 97:
According to the second definition, a biological system is evolvable:
3692: 3660: 3427: 3333: 456: 452: 3272: 2814: 2771: 2501:"Initial mutations direct alternative pathways of protein evolution" 2288: 1989: 1831:
Whitehead DJ, Wilke CO, Vernazobres D, Bornberg-Bauer E (May 2008).
1532: 1159: 907: 798:"The evolution, evolvability and engineering of gene regulatory DNA" 692:"Perspective: Complex adaptations and the evolution of evolvability" 466:
A better understanding of evolvability is proposed to be part of an
3655: 3624: 55: 3258: 2659: 1374: 3387: 1976:
Eshel I (1973). "Clone-selection and optimal rates of mutation".
1720:
Hinton GE, Nowlan SJ (1987). "How learning can guide evolution".
1610:"Cryptic genetic variation is enriched for potential adaptations" 1423:"The genetic code constrains yet facilitates Darwinian evolution" 500:"Experimental evolution: experimental evolution and evolvability" 440: 110: 1141: 391:
may also be an example of the evolution of evolvability through
281: 3367: 939:"Comparing evolvability and variability of quantitative traits" 860:. Princeton Studies in Complexity. Princeton University Press. 372:
When recombination is low, mutator alleles may still sometimes
106: 72: 3094:"How to make evolution-proof insecticides for malaria control" 2457: 1142:
Olson-Manning CF, Wagner MR, Mitchell-Olds T (December 2012).
795: 443:, bacteria, fungi and cancers evolve to be resistant to host 2120:"The evolution of bet-hedging adaptations to rare scenarios" 2065:
Lancaster AK, Bardill JP, True HL, Masel J (February 2010).
1137: 1135: 1133: 1131: 1129: 1127: 1125: 208:, through an increase in the recombination rate, decreasing 67:
Analogously, the evolvability of organisms depends on their
3665: 2919: 2550:
Bloom JD, Labthavikul ST, Otey CR, Arnold FH (April 2006).
1248:
Bloom JD, Labthavikul ST, Otey CR, Arnold FH (April 2006).
3040: 2608: 2549: 2498: 2217: 1247: 644:
Friedberg RM (1958). "A Learning Machine: Part I |".
3041:
Schenk MF, Szendro IG, Krug J, de Visser JA (June 2012).
2064: 1738: 1472:"Refactoring the Genetic Code for Increased Evolvability" 1122: 2460:"Natural history as a predictor of protein evolvability" 408:
Evolvability phenomena have practical applications. For
2458:
O'Loughlin TL, Patrick WM, Matsumura I (October 2006).
2352: 1470:
Pines G, Winkler JD, Pines A, Gill RT (November 2017).
1313:"Compensatory evolution and the origins of innovations" 90:
if its properties show heritable genetic variation, and
2846:
Biochimica et Biophysica Acta (BBA) - General Subjects
1739:
Borenstein E, Meilijson I, Ruppin E (September 2006).
673:"The evolution of evolvability in genetic programming" 93:
if natural selection can thus change these properties.
3155:
Evolution; International Journal of Organic Evolution
2177:
Evolution; International Journal of Organic Evolution
2024:
Evolution; International Journal of Organic Evolution
1790:
Evolution; International Journal of Organic Evolution
1564:
Evolution; International Journal of Organic Evolution
1469: 1035:
Evolution; International Journal of Organic Evolution
696:
Evolution; International Journal of Organic Evolution
254:
robustness may allow exploration of large regions of
2881:"The emergence of antibiotic resistance by mutation" 2800: 2722: 1518: 2422: 1353: 1077: 1420: 985: 2878: 2723:Minelli A, Boxshall G, Fusco G (April 23, 2013). 2268: 879: 877: 3820: 3327: 3203:"An extended synthesis for evolutionary biology" 3148:"Do we need an extended evolutionary synthesis?" 596: 594: 538: 497: 451:. These same problems occur in agriculture with 3091: 1833:"The look-ahead effect of phenotypic mutations" 689: 215:Recombination decreasing the importance of the 2843: 2387: 1359: 874: 439:Many human diseases are capable of evolution. 230: 47:genetic diversity, and thereby evolve through 3313: 3008:International Journal of Medical Microbiology 2274: 1881: 1191: 1189: 1187: 1078:Karasov T, Messer PW, Petrov DA (June 2010). 858:Robustness and evolvability in living systems 851: 849: 591: 282:Factors affecting evolvability via robustness 2543: 2492: 2174: 2018: 1719: 1561: 1195: 671:Altenberg L (1994). Kinnear, Kenneth (ed.). 355: 289: 135: 3092:Read AF, Lynch PA, Thomas MB (April 2009). 2464:Protein Engineering, Design & Selection 176: 33:is defined as the capacity of a system for 27:Capacity of a system for adaptive evolution 3320: 3306: 3210:Annals of the New York Academy of Sciences 1656: 1306: 1184: 846: 740: 78: 3197: 3166: 3142: 3119: 3109: 3068: 3058: 2947: 2937: 2896: 2879:Woodford N, Ellington MJ (January 2007). 2747: 2585: 2575: 2552:"Protein stability promotes evolvability" 2526: 2516: 2475: 2251: 2151: 2113: 2090: 1909: 1899: 1858: 1848: 1756: 1696: 1686: 1633: 1495: 1446: 1373: 1336: 1283: 1273: 1250:"Protein stability promotes evolvability" 1224: 1167: 1105: 1095: 1046: 1028: 962: 883: 829: 707: 670: 643: 610: 600: 574: 564: 515: 1421:Firnberg E, Ostermeier M (August 2013). 855: 245: 1975: 646:IBM Journal of Research and Development 14: 3821: 3810:Index of evolutionary biology articles 2694: 2317: 1932: 746: 200:increasing the threshold value of the 3301: 2390:Current Opinion in Structural Biology 1604: 936: 307:stocks of cryptic genetic variation. 265: 2970: 690:Wagner GP, Altenberg L (June 1996). 539:Kirschner M, Gerhart J (July 1998). 319:, and it can increase evolvability. 2885:Clinical Microbiology and Infection 2355:Current Opinion in Chemical Biology 1787: 498:Colegrave N, Collins S (May 2008). 348:is restricted to within functional 24: 3620:Evolutionary developmental biology 2036:10.1111/j.0014-3820.2003.tb00358.x 1882:Griswold CK, Masel J (June 2009). 709:10.1111/j.1558-5646.1996.tb02339.x 251:Robustness in the face of mutation 189:on "good genes", and so intensify 25: 3845: 1935:Journal of the History of Biology 3577:Evolution of sexual reproduction 3230:10.1111/j.1749-6632.2009.04578.x 3168:10.1111/j.1558-5646.2007.00246.x 2993:10.1111/j.1365-3180.2007.00581.x 2898:10.1111/j.1469-0691.2006.01492.x 2189:10.1111/j.1558-5646.2007.00303.x 1802:10.1111/j.1558-5646.2007.00166.x 1758:10.1111/j.1420-9101.2006.01125.x 1576:10.1111/j.1558-5646.2009.00713.x 1048:10.1111/j.1558-5646.2012.01576.x 385:evolution of sexual reproduction 143:evolution of sexual reproduction 3834:Extended evolutionary synthesis 3252: 3191: 3136: 3085: 3034: 2999: 2964: 2913: 2872: 2837: 2794: 2741: 2716: 2688: 2653: 2602: 2451: 2416: 2381: 2346: 2311: 2211: 2168: 2107: 2058: 2012: 1969: 1926: 1875: 1824: 1781: 1745:Journal of Evolutionary Biology 1732: 1713: 1650: 1598: 1555: 1512: 1463: 1414: 1300: 1241: 1199:, Trotter MV (September 2010). 1071: 1022: 979: 930: 677:Advances in Genetic Programming 468:Extended Evolutionary Synthesis 403: 3348:Genotype–phenotype distinction 2611:Journal of Molecular Evolution 2124:Theoretical Population Biology 1978:Journal of Applied Probability 1362:Journal of Theoretical Biology 789: 683: 664: 637: 532: 491: 430:tolerance to further mutations 60:DNA sequences with no function 13: 1: 3605:Regulation of gene expression 2437:10.1016/s0022-2836(02)00400-x 1201:"Robustness and evolvability" 1029:Ram Y, Hadany L (July 2012). 767:10.1089/genbio.2022.29027.sbi 485: 338: 3775:Endless Forms Most Beautiful 3555:Evolution of genetic systems 3363:Gene–environment correlation 3358:Gene–environment interaction 3111:10.1371/journal.pbio.1000058 3060:10.1371/journal.pgen.1002783 2939:10.1371/journal.pgen.0030205 2858:10.1016/j.bbagen.2012.06.001 2753:"Is evolvability evolvable?" 2662:Journal of Molecular Biology 2518:10.1371/journal.pgen.1001321 2425:Journal of Molecular Biology 1901:10.1371/journal.pgen.1000517 1097:10.1371/journal.pgen.1000924 889:"Is evolvability evolvable?" 603:Evolution and Biocomputation 7: 3754:Christiane NĂĽsslein-Volhard 2702:. Oxford University Press. 2332:10.1016/j.yexcr.2011.02.013 2083:10.1534/genetics.109.110213 1626:10.1534/genetics.105.051649 1329:10.1534/genetics.112.148627 473: 420:, both rational design and 278:and sometimes be adaptive. 231:Robustness and evolvability 10: 3850: 3630:Hedgehog signaling pathway 3507:Developmental architecture 3020:10.1016/j.ijmm.2013.02.004 2367:10.1016/j.cbpa.2010.11.011 2320:Experimental Cell Research 1392:10.1016/j.jtbi.2009.11.008 955:10.1093/genetics/130.1.195 822:10.1038/s41586-022-04506-6 234: 185:Mating rituals that allow 3807: 3786: 3715: 3643: 3597: 3590: 3554: 3506: 3470: 3457:Transgressive segregation 3403: 3340: 2674:10.1016/j.jmb.2013.03.033 2631:10.1007/s00239-005-0289-7 2402:10.1016/j.sbi.2009.08.003 2144:10.1016/j.tpb.2007.08.006 1217:10.1016/j.tig.2010.06.002 1008:10.1007/s11692-011-9127-6 356:Evolution of evolvability 290:Exploration ahead of time 270:Temporary robustness, or 198:effective population size 157:, via the probability of 149:, via the probability of 136:Generating more variation 105:For example, consider an 937:Houle D (January 1992). 621:10.1007/3-540-59046-3_11 393:evolutionary capacitance 177:Enhancement of selection 3635:Notch signaling pathway 3610:Gene regulatory network 3493:Dual inheritance theory 3261:Nature Reviews Genetics 2760:Nature Reviews Genetics 2577:10.1073/pnas.0510098103 2277:Nature Reviews Genetics 2244:10.1126/science.1198914 1688:10.1073/pnas.1012918108 1521:Nature Reviews Genetics 1275:10.1073/pnas.0510098103 1148:Nature Reviews Genetics 896:Nature Reviews Genetics 566:10.1073/pnas.95.15.8420 313:genetically assimilated 260:thermodynamic stability 79:Alternative definitions 58:, unless they occur in 3683:cis-regulatory element 3591:Control of development 3471:Non-genetic influences 3437:evolutionary landscape 2803:Nature Reviews. Cancer 2477:10.1093/protein/gzl029 1850:10.1186/1745-6150-3-18 1427:Nucleic Acids Research 517:10.1038/sj.hdy.6801095 480:Evolutionary trade-off 378:experimental evolution 171:evolutionary capacitor 3794:Nature versus nurture 3698:Cell surface receptor 3615:Evo-devo gene toolkit 3514:Developmental biology 3452:Polygenic inheritance 3378:Quantitative genetics 1488:10.1128/mBio.01654-17 434:protein superfamilies 296:mutational robustness 246:Without recombination 237:Mutational robustness 235:Further information: 217:Hill-Robertson effect 202:selection coefficient 122:quantitative genetics 71:map. This means that 3829:Evolutionary biology 3703:Transcription factor 3418:Genetic assimilation 3405:Genetic architecture 988:Evolutionary Biology 449:pharmaceutical drugs 333:genetic assimilation 155:asexual reproduction 3799:Morphogenetic field 3716:Influential figures 3222:2009NYASA1168..218P 2985:2007WeedR..47..365N 2623:2006JMolE..63..513R 2568:2006PNAS..103.5869B 2236:2011Sci...331.1433W 2136:2007TPBio..72..560K 1679:2011PNAS..108.1082R 1384:2010JThBi.263..143W 1266:2006PNAS..103.5869B 1000:2011EvBio..38..258H 814:2022Natur.603..455V 557:1998PNAS...95.8420K 428:or at least reduce 418:protein engineering 410:protein engineering 126:population genetics 3488:Genomic imprinting 1947:10.1007/bf00138880 1439:10.1093/nar/gkt536 1205:Trends in Genetics 658:10.1147/rd.21.0002 422:directed evolution 329:adaptive landscape 266:With recombination 69:genotype–phenotype 41:, but to generate 35:adaptive evolution 18:Adaptive potential 3816: 3815: 3749:Eric F. Wieschaus 3711: 3710: 3529:Pattern formation 3433:Fitness landscape 3146:(December 2007). 2734:978-3-642-36159-3 2709:978-0-19-969259-0 2698:(July 14, 2011). 2118:(December 2007). 867:978-0-691-12240-3 856:Wagner A (2005). 808:(7901): 455–463. 750:GEN Biotechnology 630:978-3-540-59046-0 324:fitness landscape 191:natural selection 118:Massimo Pigliucci 49:natural selection 39:genetic diversity 16:(Redirected from 3841: 3759:William McGinnis 3728:Richard Lewontin 3723:C. H. Waddington 3595: 3594: 3572:Neutral networks 3322: 3315: 3308: 3299: 3298: 3293: 3292: 3256: 3250: 3249: 3207: 3195: 3189: 3188: 3170: 3152: 3140: 3134: 3133: 3123: 3113: 3089: 3083: 3082: 3072: 3062: 3038: 3032: 3031: 3003: 2997: 2996: 2968: 2962: 2961: 2951: 2941: 2917: 2911: 2910: 2900: 2876: 2870: 2869: 2841: 2835: 2834: 2798: 2792: 2791: 2757: 2751:(January 2008). 2745: 2739: 2738: 2720: 2714: 2713: 2692: 2686: 2685: 2657: 2651: 2650: 2606: 2600: 2599: 2589: 2579: 2547: 2541: 2540: 2530: 2520: 2496: 2490: 2489: 2479: 2455: 2449: 2448: 2420: 2414: 2413: 2385: 2379: 2378: 2350: 2344: 2343: 2315: 2309: 2308: 2272: 2266: 2265: 2255: 2230:(6023): 1433–6. 2215: 2209: 2208: 2172: 2166: 2165: 2155: 2111: 2105: 2104: 2094: 2062: 2056: 2055: 2016: 2010: 2009: 1973: 1967: 1966: 1930: 1924: 1923: 1913: 1903: 1879: 1873: 1872: 1862: 1852: 1828: 1822: 1821: 1785: 1779: 1778: 1760: 1736: 1730: 1729: 1717: 1711: 1710: 1700: 1690: 1661:(January 2011). 1654: 1648: 1647: 1637: 1602: 1596: 1595: 1559: 1553: 1552: 1516: 1510: 1509: 1499: 1467: 1461: 1460: 1450: 1418: 1412: 1411: 1377: 1357: 1351: 1350: 1340: 1304: 1298: 1297: 1287: 1277: 1245: 1239: 1238: 1228: 1193: 1182: 1181: 1171: 1139: 1120: 1119: 1109: 1099: 1075: 1069: 1068: 1050: 1026: 1020: 1019: 983: 977: 976: 966: 934: 928: 927: 893: 887:(January 2008). 881: 872: 871: 853: 844: 843: 833: 793: 787: 786: 759:Mary Ann Liebert 744: 738: 737: 711: 687: 681: 680: 668: 662: 661: 641: 635: 634: 614: 598: 589: 588: 578: 568: 536: 530: 529: 519: 495: 187:sexual selection 21: 3849: 3848: 3844: 3843: 3842: 3840: 3839: 3838: 3819: 3818: 3817: 3812: 3803: 3782: 3769:Sean B. Carroll 3707: 3639: 3586: 3550: 3502: 3483:Maternal effect 3466: 3399: 3336: 3326: 3296: 3273:10.1038/nrg3028 3257: 3253: 3205: 3196: 3192: 3150: 3141: 3137: 3104:(4): e1000058. 3090: 3086: 3053:(6): e1002783. 3039: 3035: 3004: 3000: 2969: 2965: 2918: 2914: 2877: 2873: 2852:(10): 1526–34. 2842: 2838: 2815:10.1038/nrc2013 2799: 2795: 2772:10.1038/nrg2278 2755: 2746: 2742: 2735: 2721: 2717: 2710: 2693: 2689: 2668:(14): 2609–21. 2658: 2654: 2607: 2603: 2562:(15): 5869–74. 2548: 2544: 2511:(3): e1001321. 2497: 2493: 2456: 2452: 2421: 2417: 2386: 2382: 2351: 2347: 2316: 2312: 2289:10.1038/nrg2808 2273: 2269: 2216: 2212: 2173: 2169: 2112: 2108: 2063: 2059: 2030:(7): 1498–512. 2017: 2013: 1990:10.2307/3212376 1974: 1970: 1931: 1927: 1894:(6): e1000517. 1880: 1876: 1829: 1825: 1786: 1782: 1737: 1733: 1722:Complex Systems 1718: 1714: 1655: 1651: 1603: 1599: 1560: 1556: 1533:10.1038/nrg2146 1517: 1513: 1468: 1464: 1419: 1415: 1358: 1354: 1305: 1301: 1260:(15): 5869–74. 1246: 1242: 1194: 1185: 1160:10.1038/nrg3322 1140: 1123: 1090:(6): e1000924. 1076: 1072: 1027: 1023: 984: 980: 935: 931: 908:10.1038/nrg2278 891: 882: 875: 868: 854: 847: 794: 790: 745: 741: 688: 684: 669: 665: 642: 638: 631: 612:10.1.1.493.6534 599: 592: 537: 533: 496: 492: 488: 476: 445:immune defences 426:enzyme function 406: 358: 341: 292: 284: 268: 248: 239: 233: 224:generation time 179: 138: 81: 28: 23: 22: 15: 12: 11: 5: 3847: 3837: 3836: 3831: 3814: 3813: 3808: 3805: 3804: 3802: 3801: 3796: 3790: 3788: 3784: 3783: 3781: 3780: 3779: 3778: 3766: 3761: 3756: 3751: 3746: 3745: 3744: 3733:François Jacob 3730: 3725: 3719: 3717: 3713: 3712: 3709: 3708: 3706: 3705: 3700: 3695: 3690: 3685: 3680: 3675: 3670: 3669: 3668: 3658: 3653: 3647: 3645: 3641: 3640: 3638: 3637: 3632: 3627: 3622: 3617: 3612: 3607: 3601: 3599: 3592: 3588: 3587: 3585: 3584: 3579: 3574: 3569: 3564: 3558: 3556: 3552: 3551: 3549: 3548: 3543: 3538: 3533: 3532: 3531: 3526: 3516: 3510: 3508: 3504: 3503: 3501: 3500: 3495: 3490: 3485: 3480: 3474: 3472: 3468: 3467: 3465: 3464: 3462:Sequence space 3459: 3454: 3449: 3444: 3439: 3430: 3425: 3420: 3415: 3409: 3407: 3401: 3400: 3398: 3397: 3392: 3391: 3390: 3380: 3375: 3370: 3365: 3360: 3355: 3350: 3344: 3342: 3338: 3337: 3325: 3324: 3317: 3310: 3302: 3295: 3294: 3251: 3190: 3161:(12): 2743–9. 3135: 3084: 3033: 3014:(6–7): 293–7. 2998: 2979:(5): 365–369. 2963: 2912: 2871: 2836: 2809:(12): 924–35. 2793: 2740: 2733: 2715: 2708: 2687: 2652: 2601: 2542: 2491: 2470:(10): 439–42. 2450: 2415: 2396:(5): 596–604. 2380: 2361:(2): 194–200. 2345: 2310: 2267: 2210: 2167: 2106: 2077:(2): 393–400. 2057: 2011: 1984:(4): 728–738. 1968: 1941:(2): 289–302. 1925: 1874: 1837:Biology Direct 1823: 1796:(8): 1847–56. 1780: 1751:(5): 1555–70. 1731: 1712: 1649: 1620:(3): 1985–91. 1608:(March 2006). 1597: 1570:(8): 2164–71. 1554: 1511: 1462: 1433:(15): 7420–8. 1413: 1352: 1323:(4): 1209–20. 1311:(April 2013). 1299: 1240: 1183: 1154:(12): 867–77. 1121: 1070: 1041:(7): 2315–28. 1021: 994:(3): 258–277. 978: 949:(1): 195–204. 929: 873: 866: 845: 788: 739: 702:(3): 967–976. 682: 663: 636: 629: 590: 551:(15): 8420–7. 541:"Evolvability" 531: 489: 487: 484: 483: 482: 475: 472: 405: 402: 357: 354: 340: 337: 317:Baldwin effect 291: 288: 283: 280: 267: 264: 256:genotype space 247: 244: 232: 229: 228: 227: 220: 213: 194: 178: 175: 137: 134: 109:with multiple 103: 102: 95: 94: 91: 84:Andreas Wagner 80: 77: 26: 9: 6: 4: 3: 2: 3846: 3835: 3832: 3830: 3827: 3826: 3824: 3811: 3806: 3800: 3797: 3795: 3792: 3791: 3789: 3785: 3777: 3776: 3772: 3771: 3770: 3767: 3765: 3762: 3760: 3757: 3755: 3752: 3750: 3747: 3743: 3740: 3739: 3738: 3737:Jacques Monod 3734: 3731: 3729: 3726: 3724: 3721: 3720: 3718: 3714: 3704: 3701: 3699: 3696: 3694: 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3667: 3664: 3663: 3662: 3659: 3657: 3654: 3652: 3651:Homeotic gene 3649: 3648: 3646: 3642: 3636: 3633: 3631: 3628: 3626: 3623: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3602: 3600: 3596: 3593: 3589: 3583: 3580: 3578: 3575: 3573: 3570: 3568: 3565: 3563: 3560: 3559: 3557: 3553: 3547: 3544: 3542: 3539: 3537: 3534: 3530: 3527: 3525: 3522: 3521: 3520: 3519:Morphogenesis 3517: 3515: 3512: 3511: 3509: 3505: 3499: 3496: 3494: 3491: 3489: 3486: 3484: 3481: 3479: 3476: 3475: 3473: 3469: 3463: 3460: 3458: 3455: 3453: 3450: 3448: 3445: 3443: 3440: 3438: 3434: 3431: 3429: 3426: 3424: 3421: 3419: 3416: 3414: 3411: 3410: 3408: 3406: 3402: 3396: 3393: 3389: 3386: 3385: 3384: 3381: 3379: 3376: 3374: 3371: 3369: 3366: 3364: 3361: 3359: 3356: 3354: 3353:Reaction norm 3351: 3349: 3346: 3345: 3343: 3339: 3335: 3331: 3323: 3318: 3316: 3311: 3309: 3304: 3303: 3300: 3290: 3286: 3282: 3278: 3274: 3270: 3267:(7): 475–86. 3266: 3262: 3255: 3247: 3243: 3239: 3235: 3231: 3227: 3223: 3219: 3216:(1): 218–28. 3215: 3211: 3204: 3201:(June 2009). 3200: 3194: 3186: 3182: 3178: 3174: 3169: 3164: 3160: 3156: 3149: 3145: 3139: 3131: 3127: 3122: 3117: 3112: 3107: 3103: 3099: 3095: 3088: 3080: 3076: 3071: 3066: 3061: 3056: 3052: 3048: 3047:PLOS Genetics 3044: 3037: 3029: 3025: 3021: 3017: 3013: 3009: 3002: 2994: 2990: 2986: 2982: 2978: 2974: 2973:Weed Research 2967: 2959: 2955: 2950: 2945: 2940: 2935: 2931: 2927: 2926:PLOS Genetics 2923: 2916: 2908: 2904: 2899: 2894: 2890: 2886: 2882: 2875: 2867: 2863: 2859: 2855: 2851: 2847: 2840: 2832: 2828: 2824: 2820: 2816: 2812: 2808: 2804: 2797: 2789: 2785: 2781: 2777: 2773: 2769: 2765: 2761: 2754: 2750: 2744: 2736: 2730: 2726: 2719: 2711: 2705: 2701: 2697: 2691: 2683: 2679: 2675: 2671: 2667: 2663: 2656: 2648: 2644: 2640: 2636: 2632: 2628: 2624: 2620: 2617:(4): 513–25. 2616: 2612: 2605: 2597: 2593: 2588: 2583: 2578: 2573: 2569: 2565: 2561: 2557: 2553: 2546: 2538: 2534: 2529: 2524: 2519: 2514: 2510: 2506: 2505:PLOS Genetics 2502: 2495: 2487: 2483: 2478: 2473: 2469: 2465: 2461: 2454: 2446: 2442: 2438: 2434: 2430: 2426: 2419: 2411: 2407: 2403: 2399: 2395: 2391: 2384: 2376: 2372: 2368: 2364: 2360: 2356: 2349: 2341: 2337: 2333: 2329: 2326:(9): 1261–9. 2325: 2321: 2314: 2306: 2302: 2298: 2294: 2290: 2286: 2283:(8): 572–82. 2282: 2278: 2271: 2263: 2259: 2254: 2249: 2245: 2241: 2237: 2233: 2229: 2225: 2221: 2214: 2206: 2202: 2198: 2194: 2190: 2186: 2183:(2): 301–15. 2182: 2178: 2171: 2163: 2159: 2154: 2149: 2145: 2141: 2137: 2133: 2130:(4): 560–75. 2129: 2125: 2121: 2117: 2110: 2102: 2098: 2093: 2088: 2084: 2080: 2076: 2072: 2068: 2061: 2053: 2049: 2045: 2041: 2037: 2033: 2029: 2025: 2021: 2015: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1972: 1964: 1960: 1956: 1952: 1948: 1944: 1940: 1936: 1929: 1921: 1917: 1912: 1907: 1902: 1897: 1893: 1889: 1888:PLOS Genetics 1885: 1878: 1870: 1866: 1861: 1856: 1851: 1846: 1842: 1838: 1834: 1827: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1784: 1776: 1772: 1768: 1764: 1759: 1754: 1750: 1746: 1742: 1735: 1727: 1723: 1716: 1708: 1704: 1699: 1694: 1689: 1684: 1680: 1676: 1673:(3): 1082–7. 1672: 1668: 1664: 1660: 1653: 1645: 1641: 1636: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1601: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1558: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1515: 1507: 1503: 1498: 1493: 1489: 1485: 1481: 1477: 1473: 1466: 1458: 1454: 1449: 1444: 1440: 1436: 1432: 1428: 1424: 1417: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1381: 1376: 1371: 1368:(1): 143–53. 1367: 1363: 1356: 1348: 1344: 1339: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1303: 1295: 1291: 1286: 1281: 1276: 1271: 1267: 1263: 1259: 1255: 1251: 1244: 1236: 1232: 1227: 1222: 1218: 1214: 1211:(9): 406–14. 1210: 1206: 1202: 1198: 1192: 1190: 1188: 1179: 1175: 1170: 1165: 1161: 1157: 1153: 1149: 1145: 1138: 1136: 1134: 1132: 1130: 1128: 1126: 1117: 1113: 1108: 1103: 1098: 1093: 1089: 1085: 1084:PLOS Genetics 1081: 1074: 1066: 1062: 1058: 1054: 1049: 1044: 1040: 1036: 1032: 1025: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 982: 974: 970: 965: 960: 956: 952: 948: 944: 940: 933: 925: 921: 917: 913: 909: 905: 901: 897: 890: 886: 880: 878: 869: 863: 859: 852: 850: 841: 837: 832: 827: 823: 819: 815: 811: 807: 803: 799: 792: 784: 780: 776: 772: 768: 764: 760: 756: 752: 751: 743: 735: 731: 727: 723: 719: 715: 710: 705: 701: 697: 693: 686: 678: 674: 667: 659: 655: 651: 647: 640: 632: 626: 622: 618: 613: 608: 604: 597: 595: 586: 582: 577: 572: 567: 562: 558: 554: 550: 546: 542: 535: 527: 523: 518: 513: 510:(5): 464–70. 509: 505: 501: 494: 490: 481: 478: 477: 471: 469: 464: 462: 458: 454: 450: 447:, as well as 446: 442: 437: 435: 431: 427: 423: 419: 414: 411: 401: 398: 394: 390: 386: 381: 379: 375: 370: 368: 367:mutation load 364: 363:mutation rate 353: 351: 347: 336: 334: 330: 325: 320: 318: 314: 308: 306: 302: 297: 287: 279: 277: 273: 263: 261: 257: 252: 243: 238: 225: 221: 218: 214: 211: 210:genetic draft 207: 206:genetic drift 203: 199: 195: 192: 188: 184: 183: 182: 174: 172: 168: 164: 160: 156: 152: 148: 147:mutation rate 144: 133: 129: 127: 123: 119: 115: 112: 108: 100: 99: 98: 92: 89: 88: 87: 85: 76: 74: 70: 65: 61: 57: 52: 50: 46: 45: 40: 36: 32: 19: 3773: 3666:eyeless gene 3562:Evolvability 3561: 3536:Segmentation 3413:Canalisation 3383:Heterochrony 3373:Heritability 3341:Key concepts 3264: 3260: 3254: 3213: 3209: 3193: 3158: 3154: 3138: 3101: 3098:PLOS Biology 3097: 3087: 3050: 3046: 3036: 3011: 3007: 3001: 2976: 2972: 2966: 2932:(11): e205. 2929: 2925: 2915: 2888: 2884: 2874: 2849: 2845: 2839: 2806: 2802: 2796: 2766:(1): 75–82. 2763: 2759: 2743: 2727:. Springer. 2724: 2718: 2699: 2690: 2665: 2661: 2655: 2614: 2610: 2604: 2559: 2555: 2545: 2508: 2504: 2494: 2467: 2463: 2453: 2431:(1): 85–95. 2428: 2424: 2418: 2393: 2389: 2383: 2358: 2354: 2348: 2323: 2319: 2313: 2280: 2276: 2270: 2227: 2223: 2213: 2180: 2176: 2170: 2127: 2123: 2109: 2074: 2070: 2060: 2027: 2023: 2014: 1981: 1977: 1971: 1938: 1934: 1928: 1891: 1887: 1877: 1840: 1836: 1826: 1793: 1789: 1783: 1748: 1744: 1734: 1725: 1721: 1715: 1670: 1666: 1652: 1617: 1613: 1600: 1567: 1563: 1557: 1527:(8): 610–8. 1524: 1520: 1514: 1479: 1475: 1465: 1430: 1426: 1416: 1365: 1361: 1355: 1320: 1316: 1302: 1257: 1253: 1243: 1208: 1204: 1151: 1147: 1087: 1083: 1073: 1038: 1034: 1024: 991: 987: 981: 946: 942: 932: 902:(1): 75–82. 899: 895: 857: 805: 801: 791: 754: 748: 742: 699: 695: 685: 676: 666: 649: 645: 639: 602: 548: 544: 534: 507: 503: 493: 465: 438: 415: 407: 404:Applications 382: 371: 359: 342: 321: 309: 293: 285: 272:canalisation 269: 249: 240: 180: 139: 130: 116: 104: 96: 82: 53: 42: 31:Evolvability 30: 29: 3764:Mike Levine 3673:Distal-less 3498:Polyphenism 3478:Epigenetics 3330:development 3199:Pigliucci M 3144:Pigliucci M 2891:(1): 5–18. 2749:Pigliucci M 885:Pigliucci M 761:: 140–141. 652:(1): 2–13. 461:antibiotics 397:bet-hedging 389:yeast prion 159:outcrossing 3823:Categories 3742:Lac operon 3567:Robustness 3546:Modularity 3541:Metamerism 3447:Plasticity 3442:Pleiotropy 3395:Heterotopy 1728:: 495–502. 486:References 346:pleiotropy 339:Modularity 305:preadapted 301:penetrance 163:inbreeding 64:adaptation 3693:Morphogen 3678:Engrailed 3661:Pax genes 3582:Tinkering 3428:Epistasis 3423:Dominance 3334:phenotype 2114:King OD, 2006:123907349 1843:(1): 18. 1657:Rajon E, 1375:0907.0510 1307:Rajon E, 783:248313305 775:2768-1572 607:CiteSeerX 457:herbicide 453:pesticide 374:hitchhike 167:dispersal 56:mutations 3656:Hox gene 3644:Elements 3625:Homeobox 3281:21681209 3238:19566710 3177:17924956 3130:19355786 3079:22761587 3028:23517688 2958:18020711 2907:17184282 2866:22698669 2823:17109012 2780:18059367 2696:Wagner A 2682:23542341 2647:25258028 2639:17021929 2596:16581913 2537:21408208 2486:16868005 2445:12079336 2410:19765975 2375:21115265 2340:21371474 2297:20634811 2262:21415350 2205:11560256 2197:18031304 2162:17915273 2101:19917766 2071:Genetics 2052:30954684 2044:12940355 1963:42288730 1955:11611993 1920:19521499 1869:18479505 1818:13150906 1810:17683428 1767:16910985 1707:21199946 1644:16387877 1614:Genetics 1592:12103318 1584:19473394 1549:10868777 1541:17637733 1506:29138304 1457:23754851 1408:11511132 1400:19925810 1347:23335336 1317:Genetics 1294:16581913 1235:20598394 1178:23154809 1116:20585551 1065:35770307 1057:22759304 1016:11359207 943:Genetics 916:18059367 840:35264797 734:21040413 726:28565291 679:: 47–74. 526:18212804 504:Heredity 474:See also 276:revealed 222:Shorter 44:adaptive 3787:Debates 3598:Systems 3524:Eyespot 3388:Neoteny 3289:8837202 3246:5710484 3218:Bibcode 3185:2703146 3121:3279047 3070:3386231 2981:Bibcode 2949:2077897 2831:8040576 2788:3164124 2619:Bibcode 2587:1458665 2564:Bibcode 2528:3048372 2305:8951755 2253:3176658 2232:Bibcode 2224:Science 2153:2118055 2132:Bibcode 2116:Masel J 2092:2828720 2020:Masel J 1998:3212376 1911:2686163 1860:2423361 1775:6964065 1698:3024668 1675:Bibcode 1659:Masel J 1635:1456269 1606:Masel J 1497:5686537 1448:3753648 1380:Bibcode 1338:3606098 1309:Masel J 1285:1458665 1262:Bibcode 1226:3198833 1197:Masel J 1169:3748133 1107:2887467 996:Bibcode 973:1732160 964:1204793 924:3164124 831:8934302 810:Bibcode 718:2410639 585:9671692 553:Bibcode 441:Viruses 350:modules 111:alleles 73:genomes 3688:Ligand 3368:Operon 3287:  3279:  3244:  3236:  3183:  3175:  3128:  3118:  3077:  3067:  3026:  2956:  2946:  2905:  2864:  2829:  2821:  2786:  2778:  2731:  2706:  2680:  2645:  2637:  2594:  2584:  2535:  2525:  2484:  2443:  2408:  2373:  2338:  2303:  2295:  2260:  2250:  2203:  2195:  2160:  2150:  2099:  2089:  2050:  2042:  2004:  1996:  1961:  1953:  1918:  1908:  1867:  1857:  1816:  1808:  1773:  1765:  1705:  1695:  1642:  1632:  1590:  1582:  1547:  1539:  1504:  1494:  1455:  1445:  1406:  1398:  1345:  1335:  1292:  1282:  1233:  1223:  1176:  1166:  1114:  1104:  1063:  1055:  1014:  971:  961:  922:  914:  864:  838:  828:  802:Nature 781:  773:  732:  724:  716:  627:  609:  583:  573:  524:  196:Large 165:, via 151:sexual 107:enzyme 3285:S2CID 3242:S2CID 3206:(PDF) 3181:S2CID 3151:(PDF) 2827:S2CID 2784:S2CID 2756:(PDF) 2643:S2CID 2301:S2CID 2201:S2CID 2048:S2CID 2002:S2CID 1994:JSTOR 1959:S2CID 1814:S2CID 1771:S2CID 1588:S2CID 1545:S2CID 1482:(6). 1404:S2CID 1370:arXiv 1061:S2CID 1012:S2CID 920:S2CID 892:(PDF) 779:S2CID 757:(2). 730:S2CID 714:JSTOR 576:33871 294:When 3328:The 3277:PMID 3234:PMID 3214:1168 3173:PMID 3126:PMID 3075:PMID 3024:PMID 2954:PMID 2903:PMID 2862:PMID 2850:1820 2819:PMID 2776:PMID 2729:ISBN 2704:ISBN 2678:PMID 2635:PMID 2592:PMID 2533:PMID 2482:PMID 2441:PMID 2406:PMID 2371:PMID 2336:PMID 2293:PMID 2258:PMID 2193:PMID 2158:PMID 2097:PMID 2040:PMID 1951:PMID 1916:PMID 1865:PMID 1806:PMID 1763:PMID 1703:PMID 1640:PMID 1580:PMID 1537:PMID 1502:PMID 1476:mBio 1453:PMID 1396:PMID 1343:PMID 1290:PMID 1231:PMID 1174:PMID 1112:PMID 1053:PMID 969:PMID 912:PMID 862:ISBN 836:PMID 771:ISSN 722:PMID 625:ISBN 581:PMID 522:PMID 455:and 161:vs. 153:vs. 3332:of 3269:doi 3226:doi 3163:doi 3116:PMC 3106:doi 3065:PMC 3055:doi 3016:doi 3012:303 2989:doi 2944:PMC 2934:doi 2893:doi 2854:doi 2811:doi 2768:doi 2670:doi 2666:425 2627:doi 2582:PMC 2572:doi 2560:103 2523:PMC 2513:doi 2472:doi 2433:doi 2429:320 2398:doi 2363:doi 2328:doi 2324:317 2285:doi 2248:PMC 2240:doi 2228:331 2185:doi 2148:PMC 2140:doi 2087:PMC 2079:doi 2075:184 2032:doi 1986:doi 1943:doi 1906:PMC 1896:doi 1855:PMC 1845:doi 1798:doi 1753:doi 1693:PMC 1683:doi 1671:108 1630:PMC 1622:doi 1618:172 1572:doi 1529:doi 1492:PMC 1484:doi 1443:PMC 1435:doi 1388:doi 1366:263 1333:PMC 1325:doi 1321:193 1280:PMC 1270:doi 1258:103 1221:PMC 1213:doi 1164:PMC 1156:doi 1102:PMC 1092:doi 1043:doi 1004:doi 959:PMC 951:doi 947:130 904:doi 826:PMC 818:doi 806:603 763:doi 704:doi 654:doi 617:doi 571:PMC 561:doi 512:doi 508:100 416:In 3825:: 3735:+ 3283:. 3275:. 3265:12 3263:. 3240:. 3232:. 3224:. 3212:. 3208:. 3179:. 3171:. 3159:61 3157:. 3153:. 3124:. 3114:. 3100:. 3096:. 3073:. 3063:. 3049:. 3045:. 3022:. 3010:. 2987:. 2977:47 2975:. 2952:. 2942:. 2928:. 2924:. 2901:. 2889:13 2887:. 2883:. 2860:. 2848:. 2825:. 2817:. 2805:. 2782:. 2774:. 2762:. 2758:. 2676:. 2664:. 2641:. 2633:. 2625:. 2615:63 2613:. 2590:. 2580:. 2570:. 2558:. 2554:. 2531:. 2521:. 2507:. 2503:. 2480:. 2468:19 2466:. 2462:. 2439:. 2427:. 2404:. 2394:19 2392:. 2369:. 2359:15 2357:. 2334:. 2322:. 2299:. 2291:. 2281:11 2279:. 2256:. 2246:. 2238:. 2226:. 2222:. 2199:. 2191:. 2181:62 2179:. 2156:. 2146:. 2138:. 2128:72 2126:. 2122:. 2095:. 2085:. 2073:. 2069:. 2046:. 2038:. 2028:57 2026:. 2000:. 1992:. 1982:10 1980:. 1957:. 1949:. 1939:19 1937:. 1914:. 1904:. 1890:. 1886:. 1863:. 1853:. 1839:. 1835:. 1812:. 1804:. 1794:61 1792:. 1769:. 1761:. 1749:19 1747:. 1743:. 1724:. 1701:. 1691:. 1681:. 1669:. 1665:. 1638:. 1628:. 1616:. 1612:. 1586:. 1578:. 1568:63 1566:. 1543:. 1535:. 1523:. 1500:. 1490:. 1478:. 1474:. 1451:. 1441:. 1431:41 1429:. 1425:. 1402:. 1394:. 1386:. 1378:. 1364:. 1341:. 1331:. 1319:. 1315:. 1288:. 1278:. 1268:. 1256:. 1252:. 1229:. 1219:. 1209:26 1207:. 1203:. 1186:^ 1172:. 1162:. 1152:13 1150:. 1146:. 1124:^ 1110:. 1100:. 1086:. 1082:. 1059:. 1051:. 1039:66 1037:. 1033:. 1010:. 1002:. 992:38 990:. 967:. 957:. 945:. 941:. 918:. 910:. 898:. 894:. 876:^ 848:^ 834:. 824:. 816:. 804:. 800:. 777:. 769:. 753:. 728:. 720:. 712:. 700:50 698:. 694:. 675:. 648:. 623:. 615:. 593:^ 579:. 569:. 559:. 549:95 547:. 543:. 520:. 506:. 502:. 470:. 436:. 335:. 51:. 3435:/ 3321:e 3314:t 3307:v 3291:. 3271:: 3248:. 3228:: 3220:: 3187:. 3165:: 3132:. 3108:: 3102:7 3081:. 3057:: 3051:8 3030:. 3018:: 2995:. 2991:: 2983:: 2960:. 2936:: 2930:3 2909:. 2895:: 2868:. 2856:: 2833:. 2813:: 2807:6 2790:. 2770:: 2764:9 2737:. 2712:. 2684:. 2672:: 2649:. 2629:: 2621:: 2598:. 2574:: 2566:: 2539:. 2515:: 2509:7 2488:. 2474:: 2447:. 2435:: 2412:. 2400:: 2377:. 2365:: 2342:. 2330:: 2307:. 2287:: 2264:. 2242:: 2234:: 2207:. 2187:: 2164:. 2142:: 2134:: 2103:. 2081:: 2054:. 2034:: 2008:. 1988:: 1965:. 1945:: 1922:. 1898:: 1892:5 1871:. 1847:: 1841:3 1820:. 1800:: 1777:. 1755:: 1726:1 1709:. 1685:: 1677:: 1646:. 1624:: 1594:. 1574:: 1551:. 1531:: 1525:8 1508:. 1486:: 1480:8 1459:. 1437:: 1410:. 1390:: 1382:: 1372:: 1349:. 1327:: 1296:. 1272:: 1264:: 1237:. 1215:: 1180:. 1158:: 1118:. 1094:: 1088:6 1067:. 1045:: 1018:. 1006:: 998:: 975:. 953:: 926:. 906:: 900:9 870:. 842:. 820:: 812:: 785:. 765:: 755:1 736:. 706:: 660:. 656:: 650:2 633:. 619:: 587:. 563:: 555:: 528:. 514:: 226:. 193:. 20:)

Index

Adaptive potential
adaptive evolution
genetic diversity
adaptive
natural selection
mutations
DNA sequences with no function
adaptation
genotype–phenotype
genomes
Andreas Wagner
enzyme
alleles
Massimo Pigliucci
quantitative genetics
population genetics
evolution of sexual reproduction
mutation rate
sexual
asexual reproduction
outcrossing
inbreeding
dispersal
evolutionary capacitor
sexual selection
natural selection
effective population size
selection coefficient
genetic drift
genetic draft

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑