Knowledge

Admissible ordinal

Source 📝

898: 594: 176: 112: 529: 392: 441: 360: 853: 549: 501: 461: 415: 333: 313: 273: 196: 481: 293: 210:
ordinals, for example). But all these ordinals are still countable. Therefore, admissible ordinals seem to be the recursive analogue of regular
879: 693:, Studies in Logic and the Foundations of Mathematics, vol. 105, North-Holland Publishing Co., Amsterdam-New York, p. 238, 939: 137:
admissible ordinals are exactly those constructed in a manner similar to the Church–Kleene ordinal, but for Turing machines with
554: 144: 722: 698: 80: 506: 932: 49: 365: 420: 814:(1984), ch. 2, "The Constructible Universe, p.95. Perspectives in Mathematical Logic, Springer-Verlag. 963: 338: 119: 202:. There exists a theory of large ordinals in this manner that is highly parallel to that of (small) 958: 775:
Kahle, Reinhard; Setzer, Anton (2010), "An extended predicative definition of the Mahlo universe",
610: 198:-th ordinal that is either admissible or a limit of admissibles; an ordinal that is both is called 925: 203: 615: 605: 32: 762: 688: 668: 650:, Proc. Sympos. Pure Math., vol. 42, Amer. Math. Soc., Providence, RI, pp. 259–269, 534: 486: 446: 400: 318: 298: 258: 181: 913: 784: 757: 708: 663: 115: 8: 466: 278: 694: 745: 651: 620: 123: 780: 753: 704: 659: 655: 211: 749: 909: 798: 684: 207: 138: 41: 21: 779:, Ontos Math. Log., vol. 2, Ontos Verlag, Heusenstamm, pp. 315–340, 952: 226: 134: 61: 843:(1978), pp.419--420. Perspectives in Mathematical Logic, ISBN 3-540-07904-1. 130: 643: 45: 905: 17: 866: 854:
Transfinite Recursion, Constructible Sets, and Analogues of Cardinals
799:
An introduction to the fine structure of the constructible hierarchy
315:, in fact this may be take as the definition of admissibility. The 740:
Friedman, Sy D. (2010), "Constructibility and class forcing",
897: 74:-collection. The term was coined by Richard Platek in 1966. 397:
The Friedman-Jensen-Sacks theorem states that countable
275:
is an admissible ordinal iff there is a standard model
646:(1985), "Fine structure theory and its applications", 869:" (1973), pp.361--362. Annals of Mathematical Logic 6 557: 537: 509: 489: 469: 449: 423: 403: 368: 341: 321: 301: 281: 261: 184: 147: 83: 589:{\displaystyle \langle L_{\alpha },\in ,A\rangle } 588: 543: 523: 495: 475: 455: 435: 409: 386: 354: 327: 307: 287: 267: 190: 170: 106: 171:{\displaystyle \omega _{\alpha }^{\mathrm {CK} }} 950: 126:uncountable cardinal is an admissible ordinal. 335:th admissible ordinal is sometimes denoted by 933: 483:. Equivalently, for any countable admissible 690:Fundamentals of generalized recursion theory 583: 558: 77:The first two admissible ordinals are ω and 822: 820: 774: 107:{\displaystyle \omega _{1}^{\mathrm {CK} }} 940: 926: 638: 636: 744:, Springer, Dordrecht, pp. 557–604, 727:(p.151). Association for Symbolic Logic, 679: 677: 517: 817: 739: 642: 221:is an admissible ordinal if and only if 880:The Theory of Countable Analytical Sets 683: 633: 524:{\displaystyle A\subseteq \mathbb {N} } 951: 674: 463:is the least ordinal not recursive in 742:Handbook of set theory. Vols. 1, 2, 3 648:Recursion theory (Ithaca, N.Y., 1982) 892: 856:" (1967), p.11. Accessed 2023-07-15. 417:is admissible iff there exists some 801:(1974) (p.38). Accessed 2021-05-06. 387:{\displaystyle \tau _{\alpha }^{0}} 13: 867:Gaps in the Constructible Universe 830:(1976). Cambridge University Press 436:{\displaystyle A\subseteq \omega } 162: 159: 98: 95: 14: 975: 896: 872: 859: 846: 841:Recursion-Theoretic Hierarchies 355:{\displaystyle \tau _{\alpha }} 295:of KP whose set of ordinals is 833: 828:Admissible Sets and Structures 804: 791: 768: 733: 715: 1: 626: 912:. You can help Knowledge by 596:is an admissible structure. 206:(one can define recursively 7: 750:10.1007/978-1-4020-5764-9_9 599: 229:and there does not exist a 10: 980: 891: 656:10.1090/pspum/042/791062 611:Large countable ordinals 200:recursively inaccessible 141:. One sometimes writes 50:Kripke–Platek set theory 865:W. Marek, M. Srebrny, " 724:Higher Recursion Theory 544:{\displaystyle \alpha } 496:{\displaystyle \alpha } 456:{\displaystyle \alpha } 410:{\displaystyle \alpha } 328:{\displaystyle \alpha } 308:{\displaystyle \alpha } 268:{\displaystyle \alpha } 191:{\displaystyle \alpha } 908:-related article is a 616:Constructible universe 590: 545: 525: 497: 477: 457: 437: 411: 388: 356: 329: 309: 289: 269: 237:for which there is a Σ 192: 172: 108: 729:Perspectives in Logic 591: 546: 526: 498: 478: 458: 438: 412: 389: 357: 330: 310: 290: 270: 193: 173: 120:Church–Kleene ordinal 109: 777:Ways of proof theory 761:. See in particular 667:. See in particular 555: 535: 507: 487: 467: 447: 421: 401: 366: 339: 319: 299: 279: 259: 182: 145: 116:nonrecursive ordinal 81: 383: 167: 103: 56:is admissible when 52:); in other words, 606:α-recursion theory 586: 551:minimal such that 541: 521: 493: 473: 453: 433: 407: 384: 369: 352: 325: 305: 285: 265: 188: 168: 148: 118:, also called the 104: 84: 29:admissible ordinal 921: 920: 476:{\displaystyle A} 288:{\displaystyle M} 971: 964:Set theory stubs 942: 935: 928: 900: 893: 883: 878:A. S. Kechris, " 876: 870: 863: 857: 850: 844: 837: 831: 824: 815: 812:Constructibility 808: 802: 795: 789: 787: 772: 766: 760: 737: 731: 719: 713: 711: 681: 672: 666: 640: 621:Regular cardinal 595: 593: 592: 587: 570: 569: 550: 548: 547: 542: 530: 528: 527: 522: 520: 502: 500: 499: 494: 482: 480: 479: 474: 462: 460: 459: 454: 442: 440: 439: 434: 416: 414: 413: 408: 393: 391: 390: 385: 382: 377: 361: 359: 358: 353: 351: 350: 334: 332: 331: 326: 314: 312: 311: 306: 294: 292: 291: 286: 274: 272: 271: 266: 212:cardinal numbers 197: 195: 194: 189: 177: 175: 174: 169: 166: 165: 156: 129:By a theorem of 113: 111: 110: 105: 102: 101: 92: 46:transitive model 979: 978: 974: 973: 972: 970: 969: 968: 959:Ordinal numbers 949: 948: 947: 946: 889: 887: 886: 877: 873: 864: 860: 851: 847: 838: 834: 825: 818: 809: 805: 796: 792: 773: 769: 738: 734: 720: 716: 701: 685:Fitting, Melvin 682: 675: 644:Friedman, Sy D. 641: 634: 629: 602: 565: 561: 556: 553: 552: 536: 533: 532: 516: 508: 505: 504: 488: 485: 484: 468: 465: 464: 448: 445: 444: 422: 419: 418: 402: 399: 398: 378: 373: 367: 364: 363: 346: 342: 340: 337: 336: 320: 317: 316: 300: 297: 296: 280: 277: 276: 260: 257: 256: 247:) mapping from 246: 240: 204:large cardinals 183: 180: 179: 158: 157: 152: 146: 143: 142: 94: 93: 88: 82: 79: 78: 73: 69: 38: 12: 11: 5: 977: 967: 966: 961: 945: 944: 937: 930: 922: 919: 918: 901: 885: 884: 871: 858: 845: 839:P. G. Hinman, 832: 816: 810:K. J. Devlin, 803: 790: 767: 732: 714: 699: 673: 631: 630: 628: 625: 624: 623: 618: 613: 608: 601: 598: 585: 582: 579: 576: 573: 568: 564: 560: 540: 519: 515: 512: 503:, there is an 492: 472: 452: 432: 429: 426: 406: 381: 376: 372: 349: 345: 324: 304: 284: 264: 242: 238: 187: 164: 161: 155: 151: 100: 97: 91: 87: 71: 65: 42:admissible set 34: 22:ordinal number 9: 6: 4: 3: 2: 976: 965: 962: 960: 957: 956: 954: 943: 938: 936: 931: 929: 924: 923: 917: 915: 911: 907: 902: 899: 895: 894: 890: 881: 875: 868: 862: 855: 849: 842: 836: 829: 823: 821: 813: 807: 800: 794: 786: 782: 778: 771: 764: 759: 755: 751: 747: 743: 736: 730: 726: 725: 721:G. E. Sacks, 718: 710: 706: 702: 700:0-444-86171-8 696: 692: 691: 686: 680: 678: 670: 665: 661: 657: 653: 649: 645: 639: 637: 632: 622: 619: 617: 614: 612: 609: 607: 604: 603: 597: 580: 577: 574: 571: 566: 562: 538: 513: 510: 490: 470: 450: 430: 427: 424: 404: 395: 379: 374: 370: 347: 343: 322: 302: 282: 262: 254: 250: 245: 236: 232: 228: 227:limit ordinal 224: 220: 215: 213: 209: 205: 201: 185: 153: 149: 140: 136: 132: 127: 125: 121: 117: 89: 85: 75: 68: 63: 62:limit ordinal 59: 55: 51: 47: 43: 39: 37: 30: 26: 23: 19: 914:expanding it 903: 888: 874: 861: 852:S. Kripke, " 848: 840: 835: 827: 826:J. Barwise, 811: 806: 793: 776: 770: 741: 735: 728: 723: 717: 689: 647: 396: 252: 248: 243: 234: 230: 222: 218: 217:Notice that 216: 199: 128: 76: 66: 57: 53: 44:(that is, a 35: 28: 24: 15: 797:K. Devlin, 763:p. 560 669:p. 265 114:(the least 953:Categories 906:set theory 627:References 443:such that 18:set theory 584:⟩ 575:∈ 567:α 559:⟨ 539:α 514:⊆ 491:α 451:α 431:ω 428:⊆ 405:α 375:α 371:τ 348:α 344:τ 323:α 303:α 263:α 186:α 154:α 150:ω 135:countable 86:ω 687:(1981), 600:See also 178:for the 122:). Any 785:2883363 758:2768687 709:0644315 664:0791062 531:making 139:oracles 124:regular 783:  756:  707:  697:  662:  133:, the 40:is an 27:is an 20:, an 904:This 251:onto 233:< 225:is a 208:Mahlo 131:Sacks 64:and L 60:is a 910:stub 695:ISBN 746:doi 652:doi 362:or 70:⊧ Σ 48:of 31:if 16:In 955:: 819:^ 781:MR 754:MR 752:, 705:MR 703:, 676:^ 660:MR 658:, 635:^ 394:. 255:. 241:(L 214:. 941:e 934:t 927:v 916:. 882:" 788:. 765:. 748:: 712:. 671:. 654:: 581:A 578:, 572:, 563:L 518:N 511:A 471:A 425:A 380:0 283:M 253:α 249:γ 244:α 239:1 235:α 231:γ 223:α 219:α 163:K 160:C 99:K 96:C 90:1 72:0 67:α 58:α 54:α 36:α 33:L 25:α

Index

set theory
ordinal number
Lα
admissible set
transitive model
Kripke–Platek set theory
limit ordinal
nonrecursive ordinal
Church–Kleene ordinal
regular
Sacks
countable
oracles
large cardinals
Mahlo
cardinal numbers
limit ordinal
α-recursion theory
Large countable ordinals
Constructible universe
Regular cardinal


Friedman, Sy D.
doi
10.1090/pspum/042/791062
MR
0791062
p. 265

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.