Knowledge

Aliasing

Source 📝

1299: 1345: 1684: 43: 1648:: if they have low angular resolution, then as one moves past them, say from left-to-right, the 2D image does not initially change (so it appears to move left), then as one moves to the next angular image, the image suddenly changes (so it jumps right) – and the frequency and amplitude of this side-to-side movement corresponds to the angular resolution of the image (and, for frequency, the speed of the viewer's lateral movement), which is the angular aliasing of the 4D light field. 1285: 1309: 346: 1503: 757: 1528:. That is typically approximated by filtering the original signal to attenuate high frequency components before it is sampled. These attenuated high frequency components still generate low-frequency aliases, but typically at low enough amplitudes that they do not cause problems. A filter chosen in anticipation of a certain sample frequency is called an 63: 487: 1748:
The aliasing distortion in the lower frequencies is increasingly obvious with higher fundamental frequencies, and while the bandlimited sawtooth is still clear at 1760 Hz, the aliased sawtooth is degraded and harsh with a buzzing audible at frequencies lower than the fundamental.
258:. Temporal aliasing frequencies in video and cinematography are determined by the frame rate of the camera, but the relative intensity of the aliased frequencies is determined by the shutter timing (exposure time) or the use of a temporal aliasing reduction filter during filming. 325:, which creates low-frequency aliases, can produce the same result, with less effort, as frequency-shifting the signal to lower frequencies before sampling at the lower rate. Some digital channelizers exploit aliasing in this way for computational efficiency.  (See 90:. The speed of the "camera", moving towards the right, constantly increases at the same rate with the objects sliding to the left. Halfway through the 24-second loop, the objects appear to suddenly shift and head in the reverse direction, towards the right. 1535:
The filtered signal can subsequently be reconstructed, by interpolation algorithms, without significant additional distortion. Most sampled signals are not simply stored and reconstructed. But the fidelity of a theoretical reconstruction (via the
1757:
A form of spatial aliasing can also occur in antenna arrays or microphone arrays used to estimate the direction of arrival of a wave signal, as in geophysical exploration by seismic waves. Waves must be sampled more densely than two points per
1572:(LO) frequency as the desired signal, but on the wrong side of the LO, can end up at the same IF frequency as the wanted one. If it is strong enough it can interfere with reception of the desired signal. This unwanted signal is known as an 1506:
Illustration of 4 waveforms reconstructed from samples taken at six different rates. Two of the waveforms are sufficiently sampled to avoid aliasing at all six rates. The other two illustrate increasing distortion (aliasing) at the lower
1618:. While Tukey did significant work in factorial experiments and was certainly aware of aliasing in fractional designs, it cannot be determined whether his use of "aliasing" in signal processing was consciously inspired by such designs. 204:
is performed by a display or printer device, and by the eyes and the brain. If the image data is processed incorrectly during sampling or reconstruction, the reconstructed image will differ from the original image, and an alias is seen.
752:{\displaystyle \sin(2\pi (f+Nf_{\rm {s}})t+\phi )=\left\{{\begin{array}{ll}+\sin(2\pi (f+Nf_{\rm {s}})t+\phi ),&f+Nf_{\rm {s}}\geq 0\\-\sin(2\pi |f+Nf_{\rm {s}}|t-\phi ),&f+Nf_{\rm {s}}<0\\\end{array}}\right.} 473:
of the samples produces equally strong responses at all those frequencies. Without collateral information, the frequency of the original function is ambiguous. So the functions and their frequencies are said to be
1702: 226:
Temporal aliasing is a major concern in the sampling of video and audio signals. Music, for instance, may contain high-frequency components that are inaudible to humans. If a piece of music is sampled at 32,000
836: 412:
are an important type of periodic function, because realistic signals are often modeled as the summation of many sinusoids of different frequencies and different amplitudes (for example, with a
243:(DAC). The high frequencies in the analog signal will appear as lower frequencies (wrong alias) in the recorded digital sample and, hence, cannot be reproduced by the DAC. To prevent this, an 81: 400:
Fourier transform of just the available samples. The presence of two components means the samples can fit at least two different sinusoids, one of which is the true frequency (upper-right).
1700: 189: 353:
Animation depicts a sequence of sinusoids, each with a higher frequency than the previous ones. These "true" signals are also being sampled (blue dots) at a constant frequency/rate,
216:
techniques avoid such poor pixelizations. Aliasing can be caused either by the sampling stage or the reconstruction stage; these may be distinguished by calling sampling aliasing
277:, which produces a constant number of samples per second. Some of the most dramatic and subtle examples of aliasing occur when the signal being sampled also has periodic content. 1599:
and Tukey in 1958. In their preface to the Dover reprint of this paper, they point out that the idea of aliasing had been illustrated graphically by Stumpf ten years prior.
254:, whereby a spoked wheel appears to rotate too slowly or even backwards. Aliasing has changed its apparent frequency of rotation. A reversal of direction can be described as a 1162: 1701: 966: 901: 1072: 1013: 1108: 381: 1854: 1198:
The figures below offer additional depictions of aliasing, due to sampling. A graph of amplitude vs frequency (not time) for a single sinusoid at frequency  
125:
from samples which causes the reconstructed signal to differ from the original continuous signal. Aliasing that occurs in signals sampled in time, for instance in
1190:
exceeds the Nyquist frequency, the reconstruction matches the actual waveform (upper left frame). After that, it is the low frequency alias of the upper frame.
1032:
Aliasing matters when one attempts to reconstruct the original waveform from its samples. The most common reconstruction technique produces the smallest of the
19:
This article is about aliasing in signal processing, including computer graphics. For accessing the same data using different names in computer programming, see
1188: 921: 856: 1733:
of 440 Hz (A4), the second two having fundamental frequency of 880 Hz (A5), and the final two at 1760 Hz (A6). The sawtooths alternate between
1737:(non-aliased) sawtooths and aliased sawtooths and the sampling rate is 22050 Hz. The bandlimited sawtooths are synthesized from the sawtooth waveform's 1583:
The first written use of the terms "alias" and "aliasing" in signal processing appears to be in a 1949 unpublished Bell Laboratories technical memorandum by
1667:", as the image appears to rotate on its axis) can similarly be seen as loss of angular resolution, all angular frequencies being aliased to 0 (constant). 2243: 2030: 1302:
Fig.4: The Fourier transform of music sampled at 44,100 samples/sec exhibits symmetry (called "folding") around the Nyquist frequency (22,050 Hz).
2101:
Tukey, John W.; Hamming, R. W. (1984) . "Mathematics 596: An introduction to the frequency analysis of time series". In Brillinger, David R. (ed.).
1524:  is met for the highest frequency component of the original signal, then it is met for all the frequency components, a condition called the 164:
should then be used when restoring the sampled signal to the continuous domain or converting a signal from a lower to a higher sampling rate. For
391:
Fourier transform of the sinusoid (not the samples). The single non-zero component, depicting the actual frequency, means there is no ambiguity.
1821: 295:, has no upper bound. Some amount of aliasing always occurs when such functions are sampled. Functions whose frequency content is bounded ( 2180: 1708:
440 Hz bandlimited, 440 Hz aliased, 880 Hz bandlimited, 880 Hz aliased, 1760 Hz bandlimited, 1760 Hz aliased
1537: 765: 1263:).  No matter what function we choose to change the amplitude vs frequency, the graph will exhibit symmetry between 0 and   1602:
The 1949 Bell technical report refers to aliasing as though it is a well-known concept, but does not offer a source for the term.
1348:
Two complex sinusoids, colored gold and cyan, that fit the same sets of real and imaginary sample points when sampled at the rate (
2236: 1298: 2176: 1914: 1626:
Aliasing occurs whenever the use of discrete elements to capture or produce a continuous signal causes frequency ambiguity.
1244:) of the 4 dots if we were to adjust the frequency and amplitude of the sinusoid along the solid red segment (between   2281: 1525: 286: 326: 160:(AAF) to the input signal before sampling and when converting a signal from a higher to a lower sampling rate. Suitable 2481: 2229: 420:). Understanding what aliasing does to the individual sinusoids is useful in understanding what happens to their sum. 2271: 2110: 2085: 1939: 1870: 2445: 2426: 1611: 405:
Using the same samples (now in orange), the default reconstruction algorithm produces the lower-frequency sinusoid.
24: 2367: 1693: 169: 2312: 1964: 330: 1170:. The lower left frame of Fig.2 depicts the typical reconstruction result of the available samples. Until 2408: 269:) per degree or per radian, or samples per mm in the focal plane of the camera. Audio signals are sampled ( 1962:(1958). "The measurement of power spectra from the point of view of communications engineering - Part I". 2388: 1615: 1404: 1274: 274: 240: 2486: 2361: 2338: 2204: 2168: 2028:
Jenkins, G. M.; Priestley, M. B. (1957). "Discussion (Symposium on Spectral Approach to Time Series)".
1344: 838:. For example, a snapshot of the lower right frame of Fig.2 shows a component at the actual frequency 2355: 2252: 1292:
of amplitude varying with frequency. The dashed red lines are the corresponding paths of the aliases.
1113: 303:, the original function can, in theory, be perfectly reconstructed from the infinite set of samples. 173: 299:) have an infinite duration in the time domain. If sampled at a high enough rate, determined by the 2302: 1553: 1312:
Fig.5: Graph of frequency aliasing, showing folding frequency and periodicity. Frequencies above
926: 861: 250:
In video or cinematography, temporal aliasing results from the limited frame rate, and causes the
48:
This full-sized image shows what a properly sampled image of a brick wall should look like with a
2297: 1776: 1035: 971: 1930:
Tukey, John W.; Hamming, R. W. (1984) . "Measuring noise color". In Brillinger, David R. (ed.).
1415:
is necessary to distinguish them. In that case, the frequencies of the aliases are given by just
1561: 261:
Like the video camera, most sampling schemes are periodic; that is, they have a characteristic
1077: 86:
The motion of the 'camera' at a constant shutter speed creates temporal aliasing known as the
2210: 1730: 213: 201: 165: 161: 122: 356: 2421: 2350: 2333: 1983: 1955: 1725:
The qualitative effects of aliasing can be heard in the following audio demonstration. Six
1638: 1596: 1529: 244: 157: 20: 317:
Sometimes aliasing is used intentionally on signals with no low-frequency content, called
8: 2014: 1811: 1645: 130: 2378: 2373: 2345: 2062: 1886: 1845: 1816: 1412: 1173: 906: 841: 470: 262: 255: 251: 87: 1591:. That paper includes an example of frequency aliasing dating back to 1922. The first 2435: 2393: 2383: 2307: 2276: 2172: 2136: 2106: 2081: 1992:
The Measurement of Power Spectra from the Point of View of Communications Engineering
1935: 1910: 1898: 1866: 1855:
ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques
1742: 1607: 1024: 417: 292: 291:
Actual signals have a finite duration and their frequency content, as defined by the
236: 98: 53: 2266: 2141: 2058: 1858: 1806: 1801: 1569: 1240:  would look like the 4 black dots in Fig.3. The red lines depict the paths ( 118: 209: 138: 69: 2162: 1588: 1557: 1408: 153: 49: 1629:
Spatial aliasing, particular of angular frequency, can occur when reproducing a
62: 1841: 1771: 1738: 1664: 1603: 413: 2198: 2049:
Finney, D. J. (1945). "The fractional replication of factorial arrangements".
1110:
be the unique minimum.  A necessary and sufficient condition for that is
553: 239:
for this sampling rate) will cause aliasing when the music is reproduced by a
2475: 2455: 2450: 2398: 1906: 1796: 1726: 322: 312: 228: 177: 142: 126: 2221: 1556:. When the receiver shifts multiple signals down to lower frequencies, from 247:
is used to remove components above the Nyquist frequency prior to sampling.
2440: 2431: 110: 2125: 1288:
Fig.3: The black dots are aliases of each other. The solid red line is an
265:
in time or in space. Digital cameras provide a certain number of samples (
42: 2328: 1862: 1791: 1786: 1734: 1660: 1630: 334: 106: 2139:, "Beamwidth and useable bandwidth of delay-steered microphone arrays", 2460: 2158: 1987: 1959: 1759: 1717: 1634: 1584: 1565: 1284: 188: 114: 2216: 2213:
by La Vida Leica, discusses its purpose and effect on recorded images
409: 270: 1241: 1656: 1652: 1490:  to 0).  Consequently, complex sinusoids do not exhibit 1308: 345: 193: 80: 68:
When the resolution is reduced, aliasing appears in the form of a
1781: 831:{\displaystyle f_{_{N}}(f)\triangleq \left|f+Nf_{\rm {s}}\right|} 762:
we can write all the alias frequencies as positive values: 
1729:
are played in succession, with the first two sawtooths having a
1568:, an unwanted signal, from an RF frequency equally far from the 1273:  Folding is often observed in practice when viewing the 1995: 266: 232: 1610:
credit Tukey with introducing it in this context, though an
105:
is the overlapping of frequency components resulting from a
1540:) is a customary measure of the effectiveness of sampling. 1502: 746: 1839: 1822:
Nyquist–Shannon sampling theorem § Critical frequency
2164:
Physically Based Rendering: From Theory to Implementation
1357:) indicated by the grid lines. The case shown here is: 1644:
This aliasing is visible in images such as posters with
1552:
evolved from radio engineering because of the action of
1976: 2217:
Interactive examples demonstrating the aliasing effect
1948: 212:
observed in a poorly pixelized image of a brick wall.
1903:
Multirate Signal Processing for Communication Systems
1595:
use of the term "aliasing" in this context is due to
1176: 1116: 1080: 1038: 974: 929: 909: 864: 844: 768: 490: 359: 2021: 1982: 1954: 1762:, or the wave arrival direction becomes ambiguous. 2031:Journal of the Royal Statistical Society, Series B 1182: 1156: 1102: 1066: 1007: 960: 915: 895: 850: 830: 751: 375: 231:(Hz), any frequency components at or above 16,000 192:Dots in the sky due to spatial aliasing caused by 478:of each other. Noting the trigonometric identity 2473: 2027: 340: 2069: 137:. Aliasing in spatially sampled signals (e.g., 2094: 1074:frequencies. So it is usually important that 968:decreases. The point at which they are equal 2251: 2237: 2011:Grundlagen und Methoden der Periodenforschung 1633:or sound field with discrete elements, as in 2100: 2076:Tukey, John W. (1992). Cox, David R. (ed.). 1929: 1923: 1847:Reconstruction filters in computer-graphics 1663:glasses (in 3D films the effect is called " 1614:had been introduced a few years earlier in 2244: 2230: 2119: 152:Aliasing is generally avoided by applying 23:. For aliasing in statistical design, see 1501: 1343: 1307: 1297: 1283: 1277:of real-valued samples, such as Fig.4.. 1208:  and some of its aliases at   344: 280: 187: 2130: 2105:. Vol. 1. Wadsworth. p. 571. 1833: 1655:on viewer movement in 2D images and in 1538:Whittaker–Shannon interpolation formula 2474: 2126:The (New) Stanford Light Field Archive 2048: 2008: 1897: 1879: 423:When sampling a function at frequency 208:An example of spatial aliasing is the 2225: 2075: 2042: 2002: 1934:. Vol. 1. Wadsworth. p. 5. 1891: 168:, the types of anti-aliasing include 2103:The Collected Works of John W. Tukey 2078:The Collected Works of John W. Tukey 1932:The Collected Works of John W. Tukey 1752: 1399: 2200:Aliasing by a sampling oscilloscope 2161:; Humphreys, Greg. (28 June 2010). 1887:"Time Filter Technical Explanation" 1621: 1543: 1497: 1336:whose value is given by this graph. 442:), the following functions of time 331:Nyquist rate (relative to sampling) 306: 13: 2151: 2063:10.1111/j.1469-1809.1943.tb02333.x 1857:. Vol. 22. pp. 221–228. 1682: 1480:  also increases (from   1015:is an axis of symmetry called the 817: 730: 687: 633: 592: 524: 200:When a digital image is viewed, a 14: 2498: 2207:by Tektronix Application Engineer 2192: 1741:such that no harmonics above the 923:increases during the animation, 450:yield identical sets of samples: 2282:Nyquist–Shannon sampling theorem 1716:Problems playing this file? See 1698: 1675: 1670: 1407:are waveforms whose samples are 287:Nyquist–Shannon sampling theorem 79: 61: 41: 25:Aliasing (factorial experiments) 2368:Discrete-time Fourier transform 1157:{\displaystyle f_{s}/2>|f|,} 858:and another component at alias 1147: 1139: 1097: 1091: 1061: 1055: 1002: 975: 955: 949: 890: 884: 791: 785: 707: 694: 668: 658: 610: 598: 574: 565: 542: 530: 506: 497: 183: 170:fast approximate anti-aliasing 1: 2313:Statistical signal processing 1965:Bell System Technical Journal 1827: 1612:analogous concept of aliasing 341:Sampling sinusoidal functions 220:and reconstruction aliasing 196:resized to a lower resolution 1616:fractional factorial designs 1450:  increases from   961:{\displaystyle f_{_{-1}}(f)} 896:{\displaystyle f_{_{-1}}(f)} 327:Sampling (signal processing) 7: 2211:Anti-Aliasing Filter Primer 2183:Sampling and reconstruction 1765: 1446:  Therefore, as   1067:{\displaystyle f_{_{N}}(f)} 1008:{\displaystyle (f=f_{s}/2)} 275:analog-to-digital converter 241:digital-to-analog converter 10: 2503: 2362:Discrete Fourier transform 2339:Matched Z-transform method 2080:. Vol. 7. Wadsworth. 1905:. Upper Saddle River, NJ: 1193: 310: 284: 113:. This overlap results in 18: 2482:Digital signal processing 2407: 2356:Discrete cosine transform 2321: 2290: 2259: 2253:Digital signal processing 2187:. Retrieved 3 March 2013. 1554:superheterodyne receivers 1511:When the condition   174:multisample anti-aliasing 101:and related disciplines, 2389:Post's inversion formula 2303:Digital image processing 1103:{\displaystyle f_{0}(f)} 162:reconstruction filtering 16:Signal processing effect 2298:Audio signal processing 2145:, 1985, 64, pp. 983–995 1777:Glossary of video terms 1580:of the desired signal. 123:signal is reconstructed 1694:Sawtooth aliasing demo 1687: 1548:Historically the term 1508: 1396: 1337: 1303: 1293: 1184: 1158: 1104: 1068: 1009: 962: 917: 897: 852: 832: 753: 406: 377: 376:{\displaystyle f_{s}.} 197: 35:An example of aliasing 2009:Stumpf, Karl (1937). 1731:fundamental frequency 1686: 1505: 1411:, and the concept of 1347: 1311: 1301: 1287: 1185: 1159: 1105: 1069: 1010: 963: 918: 898: 853: 833: 754: 378: 348: 281:Bandlimited functions 214:Spatial anti-aliasing 191: 166:spatial anti-aliasing 158:anti-aliasing filters 2422:Anti-aliasing filter 2351:Constant-Q transform 2334:Advanced z-transform 1885:Tessive, LLC (2010). 1863:10.1145/54852.378514 1639:wave field synthesis 1530:anti-aliasing filter 1174: 1114: 1078: 1036: 972: 927: 907: 862: 842: 766: 488: 357: 245:anti-aliasing filter 145:) is referred to as 133:, is referred to as 21:Aliasing (computing) 1899:Harris, Frederic J. 1812:Stroboscopic effect 1646:lenticular printing 467:= 0, ±1, ±2, ±3,... 131:stroboscopic effect 2379:Integral transform 2374:Impulse invariance 2346:Bilinear transform 2137:Flanagan, James L. 2051:Annals of Eugenics 1842:Netravali, Arun N. 1840:Mitchell, Don P.; 1817:Wagon-wheel effect 1688: 1509: 1413:negative frequency 1397: 1338: 1304: 1294: 1275:frequency spectrum 1180: 1154: 1100: 1064: 1005: 958: 913: 893: 848: 828: 749: 744: 471:frequency spectrum 407: 373: 263:sampling frequency 256:negative frequency 252:wagon-wheel effect 229:samples per second 198: 88:wagon wheel effect 2487:Signal processing 2469: 2468: 2394:Starred transform 2384:Laplace transform 2308:Speech processing 2277:Estimation theory 2177:978-0-12-375079-2 2142:AT&T Tech. J. 1916:978-0-13-146511-4 1907:Prentice Hall PTR 1753:Direction finding 1743:Nyquist frequency 1703: 1608:Maurice Priestley 1526:Nyquist criterion 1405:Complex sinusoids 1400:Complex sinusoids 1342: 1341: 1254:  and   1230:  and   1183:{\displaystyle f} 1167:Nyquist condition 1025:Nyquist frequency 1018:folding frequency 916:{\displaystyle f} 851:{\displaystyle f} 293:Fourier transform 237:Nyquist frequency 135:temporal aliasing 99:signal processing 2494: 2267:Detection theory 2246: 2239: 2232: 2223: 2222: 2201: 2146: 2134: 2128: 2123: 2117: 2116: 2098: 2092: 2091: 2073: 2067: 2066: 2046: 2040: 2039: 2025: 2019: 2018: 2006: 2000: 1999: 1980: 1974: 1973: 1952: 1946: 1945: 1927: 1921: 1920: 1895: 1889: 1883: 1877: 1876: 1852: 1837: 1807:Spectral leakage 1802:Spectral density 1705: 1704: 1685: 1622:Angular aliasing 1570:local oscillator 1544:Historical usage 1523: 1498:Sample frequency 1489: 1479: 1463: 1454:  to   1453: 1449: 1445: 1395: 1356: 1335: 1321: 1280: 1279: 1272: 1262: 1253: 1239: 1229: 1218: 1207: 1189: 1187: 1186: 1181: 1163: 1161: 1160: 1155: 1150: 1142: 1131: 1126: 1125: 1109: 1107: 1106: 1101: 1090: 1089: 1073: 1071: 1070: 1065: 1054: 1053: 1052: 1051: 1021:, also known as 1014: 1012: 1011: 1006: 998: 993: 992: 967: 965: 964: 959: 948: 947: 946: 945: 922: 920: 919: 914: 902: 900: 899: 894: 883: 882: 881: 880: 857: 855: 854: 849: 837: 835: 834: 829: 827: 823: 822: 821: 820: 784: 783: 782: 781: 758: 756: 755: 750: 748: 745: 735: 734: 733: 697: 692: 691: 690: 671: 638: 637: 636: 597: 596: 595: 529: 528: 527: 468: 449: 441: 431: 382: 380: 379: 374: 369: 368: 307:Bandpass signals 154:low-pass filters 147:spatial aliasing 83: 65: 45: 2502: 2501: 2497: 2496: 2495: 2493: 2492: 2491: 2472: 2471: 2470: 2465: 2403: 2317: 2286: 2272:Discrete signal 2255: 2250: 2199: 2195: 2190: 2169:Morgan Kaufmann 2154: 2152:Further reading 2149: 2135: 2131: 2124: 2120: 2113: 2099: 2095: 2088: 2074: 2070: 2047: 2043: 2026: 2022: 2007: 2003: 1984:Blackman, R. B. 1981: 1977: 1956:Blackman, R. B. 1953: 1949: 1942: 1928: 1924: 1917: 1901:(August 2006). 1896: 1892: 1884: 1880: 1873: 1850: 1844:(August 1988). 1838: 1834: 1830: 1768: 1755: 1723: 1722: 1714: 1712: 1711: 1710: 1709: 1706: 1699: 1696: 1689: 1683: 1678: 1673: 1624: 1589:Richard Hamming 1546: 1518: 1512: 1500: 1488: 1481: 1473: 1472: 1465: 1461: 1455: 1451: 1447: 1443: 1428: 1427: 1420: 1409:complex numbers 1402: 1394: 1387: 1380: 1373: 1372: 1364: 1358: 1355: 1349: 1333: 1327: 1319: 1313: 1270: 1264: 1261: 1255: 1251: 1245: 1238: 1231: 1227: 1220: 1216: 1209: 1206: 1199: 1196: 1175: 1172: 1171: 1146: 1138: 1127: 1121: 1117: 1115: 1112: 1111: 1085: 1081: 1079: 1076: 1075: 1047: 1044: 1043: 1039: 1037: 1034: 1033: 994: 988: 984: 973: 970: 969: 938: 935: 934: 930: 928: 925: 924: 908: 905: 904: 873: 870: 869: 865: 863: 860: 859: 843: 840: 839: 816: 815: 811: 801: 797: 777: 774: 773: 769: 767: 764: 763: 743: 742: 729: 728: 724: 713: 693: 686: 685: 681: 667: 646: 645: 632: 631: 627: 616: 591: 590: 586: 552: 548: 523: 522: 518: 489: 486: 485: 458: 451: 443: 440: 433: 430: 424: 401: 392: 383: 364: 360: 358: 355: 354: 343: 315: 309: 289: 283: 186: 95: 94: 93: 92: 91: 84: 75: 74: 73: 66: 58: 57: 46: 37: 36: 28: 17: 12: 11: 5: 2500: 2490: 2489: 2484: 2467: 2466: 2464: 2463: 2458: 2453: 2448: 2443: 2438: 2429: 2424: 2419: 2413: 2411: 2405: 2404: 2402: 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2365: 2359: 2353: 2348: 2343: 2342: 2341: 2336: 2325: 2323: 2319: 2318: 2316: 2315: 2310: 2305: 2300: 2294: 2292: 2288: 2287: 2285: 2284: 2279: 2274: 2269: 2263: 2261: 2257: 2256: 2249: 2248: 2241: 2234: 2226: 2220: 2219: 2214: 2208: 2194: 2193:External links 2191: 2189: 2188: 2155: 2153: 2150: 2148: 2147: 2129: 2118: 2111: 2093: 2086: 2068: 2041: 2020: 2001: 1998:. p. vii. 1975: 1947: 1940: 1922: 1915: 1890: 1878: 1871: 1831: 1829: 1826: 1825: 1824: 1819: 1814: 1809: 1804: 1799: 1794: 1789: 1784: 1779: 1774: 1772:Brillouin zone 1767: 1764: 1754: 1751: 1739:Fourier series 1727:sawtooth waves 1713: 1707: 1697: 1692: 1691: 1690: 1681: 1680: 1679: 1677: 1674: 1672: 1669: 1623: 1620: 1604:Gwilym Jenkins 1545: 1542: 1516: 1499: 1496: 1486: 1470: 1469: 1459: 1441: 1425: 1424: 1401: 1398: 1392: 1385: 1378: 1370: 1369: 1362: 1353: 1340: 1339: 1331: 1317: 1305: 1295: 1268: 1259: 1249: 1236: 1225: 1214: 1204: 1195: 1192: 1179: 1153: 1149: 1145: 1141: 1137: 1134: 1130: 1124: 1120: 1099: 1096: 1093: 1088: 1084: 1063: 1060: 1057: 1050: 1046: 1042: 1004: 1001: 997: 991: 987: 983: 980: 977: 957: 954: 951: 944: 941: 937: 933: 912: 892: 889: 886: 879: 876: 872: 868: 847: 826: 819: 814: 810: 807: 804: 800: 796: 793: 790: 787: 780: 776: 772: 760: 759: 747: 741: 738: 732: 727: 723: 720: 717: 714: 712: 709: 706: 703: 700: 696: 689: 684: 680: 677: 674: 670: 666: 663: 660: 657: 654: 651: 648: 647: 644: 641: 635: 630: 626: 623: 620: 617: 615: 612: 609: 606: 603: 600: 594: 589: 585: 582: 579: 576: 573: 570: 567: 564: 561: 558: 555: 554: 551: 547: 544: 541: 538: 535: 532: 526: 521: 517: 514: 511: 508: 505: 502: 499: 496: 493: 456: 438: 428: 414:Fourier series 372: 367: 363: 342: 339: 311:Main article: 308: 305: 285:Main article: 282: 279: 202:reconstruction 185: 182: 143:digital images 139:moiré patterns 85: 78: 77: 76: 67: 60: 59: 52:of sufficient 47: 40: 39: 38: 34: 33: 32: 31: 15: 9: 6: 4: 3: 2: 2499: 2488: 2485: 2483: 2480: 2479: 2477: 2462: 2459: 2457: 2456:Undersampling 2454: 2452: 2451:Sampling rate 2449: 2447: 2444: 2442: 2439: 2437: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2414: 2412: 2410: 2406: 2400: 2399:Zak transform 2397: 2395: 2392: 2390: 2387: 2385: 2382: 2380: 2377: 2375: 2372: 2369: 2366: 2363: 2360: 2357: 2354: 2352: 2349: 2347: 2344: 2340: 2337: 2335: 2332: 2331: 2330: 2327: 2326: 2324: 2320: 2314: 2311: 2309: 2306: 2304: 2301: 2299: 2296: 2295: 2293: 2289: 2283: 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2264: 2262: 2258: 2254: 2247: 2242: 2240: 2235: 2233: 2228: 2227: 2224: 2218: 2215: 2212: 2209: 2206: 2202: 2197: 2196: 2186: 2184: 2178: 2174: 2170: 2167: 2165: 2160: 2157: 2156: 2144: 2143: 2138: 2133: 2127: 2122: 2114: 2112:0-534-03303-2 2108: 2104: 2097: 2089: 2087:0-534-05104-9 2083: 2079: 2072: 2064: 2060: 2056: 2052: 2045: 2037: 2033: 2032: 2024: 2017:. p. 45. 2016: 2012: 2005: 1997: 1993: 1989: 1985: 1979: 1971: 1967: 1966: 1961: 1957: 1951: 1943: 1941:0-534-03303-2 1937: 1933: 1926: 1918: 1912: 1908: 1904: 1900: 1894: 1888: 1882: 1874: 1872:0-89791-275-6 1868: 1864: 1860: 1856: 1849: 1848: 1843: 1836: 1832: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1798: 1797:Sinc function 1795: 1793: 1790: 1788: 1785: 1783: 1780: 1778: 1775: 1773: 1770: 1769: 1763: 1761: 1750: 1746: 1745:are present. 1744: 1740: 1736: 1732: 1728: 1721: 1719: 1695: 1676:Audio example 1671:More examples 1668: 1666: 1662: 1658: 1654: 1649: 1647: 1642: 1640: 1636: 1632: 1627: 1619: 1617: 1613: 1609: 1605: 1600: 1598: 1594: 1590: 1586: 1581: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1541: 1539: 1533: 1531: 1527: 1522: 1515: 1504: 1495: 1493: 1485: 1477: 1468: 1458: 1440: 1436: 1432: 1423: 1418: 1414: 1410: 1406: 1391: 1384: 1377: 1368: 1361: 1352: 1346: 1330: 1325: 1316: 1310: 1306: 1300: 1296: 1291: 1286: 1282: 1281: 1278: 1276: 1267: 1258: 1248: 1243: 1235: 1224: 1213: 1203: 1191: 1177: 1169: 1168: 1151: 1143: 1135: 1132: 1128: 1122: 1118: 1094: 1086: 1082: 1058: 1048: 1045: 1040: 1030: 1028: 1027: 1026: 1020: 1019: 999: 995: 989: 985: 981: 978: 952: 942: 939: 936: 931: 910: 887: 877: 874: 871: 866: 845: 824: 812: 808: 805: 802: 798: 794: 788: 778: 775: 770: 739: 736: 725: 721: 718: 715: 710: 704: 701: 698: 682: 678: 675: 672: 664: 661: 655: 652: 649: 642: 639: 628: 624: 621: 618: 613: 607: 604: 601: 587: 583: 580: 577: 571: 568: 562: 559: 556: 549: 545: 539: 536: 533: 519: 515: 512: 509: 503: 500: 494: 491: 484: 483: 482: 481: 477: 472: 466: 462: 455: 447: 437: 427: 421: 419: 415: 411: 404: 399: 395: 390: 386: 370: 365: 361: 352: 347: 338: 336: 332: 328: 324: 323:Undersampling 320: 314: 313:Undersampling 304: 302: 298: 294: 288: 278: 276: 272: 268: 264: 259: 257: 253: 248: 246: 242: 238: 234: 230: 224: 223: 222:postaliasing. 219: 215: 211: 210:moiré pattern 206: 203: 195: 190: 181: 179: 178:supersampling 175: 171: 167: 163: 159: 155: 150: 148: 144: 140: 136: 132: 128: 127:digital audio 124: 120: 116: 112: 108: 104: 100: 89: 82: 71: 70:moiré pattern 64: 55: 51: 44: 30: 26: 22: 2446:Quantization 2441:Oversampling 2432:Nyquist rate 2427:Downsampling 2416: 2182: 2163: 2140: 2132: 2121: 2102: 2096: 2077: 2071: 2054: 2050: 2044: 2035: 2029: 2023: 2010: 2004: 1994:. New York: 1991: 1978: 1969: 1963: 1950: 1931: 1925: 1902: 1893: 1881: 1846: 1835: 1756: 1747: 1724: 1715: 1661:stereoscopic 1659:produced by 1651:The lack of 1650: 1643: 1628: 1625: 1601: 1592: 1582: 1577: 1573: 1566:heterodyning 1549: 1547: 1534: 1520: 1513: 1510: 1491: 1483: 1475: 1466: 1456: 1438: 1434: 1430: 1421: 1416: 1403: 1389: 1382: 1375: 1366: 1359: 1350: 1328: 1323: 1314: 1289: 1265: 1256: 1246: 1233: 1222: 1211: 1201: 1197: 1166: 1165: 1031: 1023: 1022: 1017: 1016: 761: 479: 475: 464: 460: 453: 445: 435: 425: 422: 408: 402: 397: 394:Lower right: 393: 388: 385:Upper right: 384: 350: 318: 316: 300: 296: 290: 260: 249: 225: 221: 217: 207: 199: 151: 146: 134: 111:Nyquist rate 102: 96: 29: 2329:Z-transform 2181:Chapter 7 ( 2159:Pharr, Matt 2057:: 291–301. 1988:J. W. Tukey 1960:J. W. Tukey 1792:Sinc filter 1787:Kell factor 1735:bandlimited 1635:3D displays 1631:light field 1164:called the 432:(intervals 403:Lower left: 351:Upper left: 335:Filter bank 297:bandlimited 218:prealiasing 184:Description 107:sample rate 2476:Categories 2461:Upsampling 2322:Techniques 2291:Sub-fields 2013:. Berlin: 1828:References 1760:wavelength 1718:media help 1641:of sound. 1585:John Tukey 389:continuous 273:) with an 115:distortion 109:below the 54:resolution 2436:frequency 1972:(1): 216. 1593:published 940:− 875:− 795:≜ 705:ϕ 702:− 665:π 656:⁡ 650:− 640:≥ 608:ϕ 572:π 563:⁡ 540:ϕ 504:π 495:⁡ 452:{sin(2π( 418:transform 410:Sinusoids 321:signals. 301:bandwidth 271:digitized 121:when the 119:artifacts 2417:Aliasing 2409:Sampling 2038:(1): 59. 2015:Springer 1990:(1959). 1766:See also 1657:3-D film 1653:parallax 1597:Blackman 1550:aliasing 1519:/2 > 1322:have an 398:discrete 319:bandpass 194:halftone 172:(FXAA), 103:aliasing 2205:YouTube 1782:Jaggies 1492:folding 1464:  1290:example 1219:  1194:Folding 476:aliases 129:or the 2370:(DTFT) 2260:Theory 2175:  2109:  2084:  1938:  1913:  1869:  1665:yawing 1507:rates. 1419:  1326:below 903:. As 469:}. A 463:+ φ), 349:Fig.2 333:, and 267:pixels 176:, and 50:screen 2364:(DFT) 2358:(DCT) 1996:Dover 1851:(PDF) 1578:alias 1574:image 1324:alias 235:(the 2173:ISBN 2107:ISBN 2082:ISBN 1936:ISBN 1911:ISBN 1867:ISBN 1606:and 1587:and 1433:) = 1386:gold 1381:) = 1379:gold 1363:cyan 1242:loci 1232:1.6 1221:1.4 1210:0.4 1200:0.6 1136:> 737:< 454:f+Nf 396:The 387:The 2203:on 2059:doi 1859:doi 1637:or 1576:or 1564:by 1560:to 1439:N f 1334:/2, 653:sin 560:sin 492:sin 416:or 337:.) 156:or 141:in 117:or 97:In 2478:: 2434:/ 2179:. 2171:. 2055:12 2053:. 2036:19 2034:. 1986:; 1970:37 1968:. 1958:; 1909:. 1865:. 1853:. 1562:IF 1558:RF 1532:. 1521:f 1494:. 1476:f 1471:−1 1437:+ 1431:f 1388:– 1371:−1 1365:= 1320:/2 1252:/2 1029:. 459:) 434:1/ 329:, 233:Hz 180:. 149:. 2245:e 2238:t 2231:v 2185:) 2166:. 2115:. 2090:. 2065:. 2061:: 1944:. 1919:. 1875:. 1861:: 1720:. 1517:s 1514:f 1487:s 1484:f 1482:– 1478:) 1474:( 1467:f 1462:, 1460:s 1457:f 1452:0 1448:f 1444:. 1442:s 1435:f 1429:( 1426:N 1422:f 1417:: 1393:s 1390:f 1383:f 1376:f 1374:( 1367:f 1360:f 1354:s 1351:f 1332:s 1329:f 1318:s 1315:f 1271:. 1269:s 1266:f 1260:s 1257:f 1250:s 1247:f 1237:s 1234:f 1228:, 1226:s 1223:f 1217:, 1215:s 1212:f 1205:s 1202:f 1178:f 1152:, 1148:| 1144:f 1140:| 1133:2 1129:/ 1123:s 1119:f 1098:) 1095:f 1092:( 1087:0 1083:f 1062:) 1059:f 1056:( 1049:N 1041:f 1003:) 1000:2 996:/ 990:s 986:f 982:= 979:f 976:( 956:) 953:f 950:( 943:1 932:f 911:f 891:) 888:f 885:( 878:1 867:f 846:f 825:| 818:s 813:f 809:N 806:+ 803:f 799:| 792:) 789:f 786:( 779:N 771:f 740:0 731:s 726:f 722:N 719:+ 716:f 711:, 708:) 699:t 695:| 688:s 683:f 679:N 676:+ 673:f 669:| 662:2 659:( 643:0 634:s 629:f 625:N 622:+ 619:f 614:, 611:) 605:+ 602:t 599:) 593:s 588:f 584:N 581:+ 578:f 575:( 569:2 566:( 557:+ 550:{ 546:= 543:) 537:+ 534:t 531:) 525:s 520:f 516:N 513:+ 510:f 507:( 501:2 498:( 480:: 465:N 461:t 457:s 448:) 446:t 444:( 439:s 436:f 429:s 426:f 371:. 366:s 362:f 72:. 56:. 27:.

Index

Aliasing (computing)
Aliasing (factorial experiments)
Fig 1a
screen
resolution
Fig 1b
moiré pattern
Fig 2
wagon wheel effect
signal processing
sample rate
Nyquist rate
distortion
artifacts
signal is reconstructed
digital audio
stroboscopic effect
moiré patterns
digital images
low-pass filters
anti-aliasing filters
reconstruction filtering
spatial anti-aliasing
fast approximate anti-aliasing
multisample anti-aliasing
supersampling

halftone
reconstruction
moiré pattern

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.