Knowledge

Unconventional computing

Source 📝

574: 756:
memristors, spintronic memories, and transistors, and can be trained using a range of software-based approaches, including error backpropagation and canonical learning rules. The field of neuromorphic engineering seeks to understand how the design and structure of artificial neural systems affects their computation, representation of information, adaptability, and overall function, with the ultimate aim of creating systems that exhibit similar properties to those found in nature. Wetware computers, which are composed of living neurons, are a conceptual form of neuromorphic computing that has been explored in limited prototypes.
796:
ranging from patterns that stabilize into homogeneity to those that become extremely complex and potentially Turing-complete. Amorphous computing refers to the study of computational systems using large numbers of parallel processors with limited computational ability and local interactions, regardless of the physical substrate. Examples of naturally occurring amorphous computation can be found in developmental biology, molecular biology, neural networks, and chemical engineering. The goal of amorphous computation is to understand and engineer novel systems through the characterization of amorphous algorithms as abstractions.
737:
including artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, and more, which can be implemented using traditional electronic hardware or alternative physical media such as biomolecules or trapped-ion quantum computing devices. It also includes the study of understanding biological systems through engineering semi-synthetic organisms and viewing natural processes as information processing. The concept of the universe itself as a computational mechanism has also been proposed.
706: 714:
membranes, and the communication between compartments and with the external environment plays a critical role in the computation. P systems are hierarchical and can be represented graphically, with rules governing the production, consumption, and movement of objects within and between regions. While these systems have largely remained theoretical, some have been shown to have the potential to solve NP-complete problems and have been proposed as hardware implementations for unconventional computing.
326:
made up of individual non-linear units that are connected in recurrent loops, allowing it to store information. Training is performed only at the readout stage, as the reservoir dynamics are fixed, and this framework allows for the use of naturally available systems, both classical and quantum mechanical, to reduce the effective computational cost. One key benefit of reservoir computing is that it allows for a simple and fast learning algorithm, as well as hardware implementation through
455: 365:
tangible user interfaces include the coupling of physical representations to underlying digital information and the embodiment of mechanisms for interactive control. There are five defining properties of tangible user interfaces, including the ability to multiplex both input and output in space, concurrent access and manipulation of interface components, strong specific devices, spatially aware computational devices, and spatial reconfigurability of devices.
838:. Ternary computers use trits, or ternary digits, which can be defined in several ways, including unbalanced ternary, fractional unbalanced ternary, balanced ternary, and unknown-state logic. Ternary quantum computers use qutrits instead of trits. Ternary computing has largely been replaced by binary computers, but it has been proposed for use in high-speed, low-power consumption devices using the Josephson junction as a balanced ternary memory cell. 399: 292: 145: 535:
potential to solve certain computational problems, such as integer factorization, significantly faster than classical computers. However, there are several challenges to building practical quantum computers, including the difficulty of maintaining qubits' quantum states and the need for error correction. Quantum complexity theory is the study of the computational complexity of problems with respect to quantum computers.
621: 883:
where the precision of the computation increases as the bit stream is extended. Stochastic computing can be used in iterative systems to achieve faster convergence, but it can also be costly due to the need for random bit stream generation and is vulnerable to failure if the assumption of independent bit streams is not met. It is also limited in its ability to perform certain digital functions.
612:
and several components that interact with their surroundings, such as sensors. MEMS and NEMS technology differ from molecular nanotechnology or molecular electronics in that they also consider factors such as surface chemistry and the effects of ambient electromagnetism and fluid dynamics. Applications of these technologies include accelerometers and sensors for detecting chemical substances.
463:
can consume a significant amount of energy in the process of converting electronic energy to photons and back. All-optical computers aim to eliminate the need for these conversions, leading to reduced electrical power consumption. Applications of optical computing include synthetic-aperture radar and optical correlators, which can be used for object detection, tracking, and classification.
350: 811:
and introducing small random changes to create a new generation. The population of solutions is subjected to natural or artificial selection and mutation, resulting in evolution towards increased fitness according to the chosen fitness function. Evolutionary computation has proven effective in various problem settings and has applications in both computer science and evolutionary biology.
882:
Stochastic computing is a method of computation that represents continuous values as streams of random bits and performs complex operations using simple bit-wise operations on the streams. It can be viewed as a hybrid analog/digital computer and is characterized by its progressive precision property,
810:
Evolutionary computation is a type of artificial intelligence and soft computing that uses algorithms inspired by biological evolution to find optimized solutions to a wide range of problems. It involves generating an initial set of candidate solutions, stochastically removing less desired solutions,
303:
A billiard-ball computer is a type of mechanical computer that uses the motion of spherical billiard balls to perform computations. In this model, the wires of a Boolean circuit are represented by paths for the balls to travel on, the presence or absence of a ball on a path encodes the signal on that
651:
Molecular computing is an unconventional form of computing that utilizes chemical reactions to perform computations. Data is represented by variations in chemical concentrations, and the goal of this type of computing is to use the smallest stable structures, such as single molecules, as electronic
611:
Microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) are technologies that involve the use of microscopic devices with moving parts, ranging in size from micrometers to nanometers. These devices typically consist of a central processing unit (such as an integrated circuit)
477:
Spintronics is a field of study that involves the use of the intrinsic spin and magnetic moment of electrons in solid-state devices. It differs from traditional electronics in that it exploits the spin of electrons as an additional degree of freedom, which has potential applications in data storage
94:
A model of computation describes how the output of a mathematical function is computed given its input. The model describes how units of computations, memories, and communications are organized. The computational complexity of an algorithm can be measured given a model of computation. Using a model
686:
DNA computing is a branch of unconventional computing that uses DNA and molecular biology hardware to perform calculations. It is a form of parallel computing that can solve certain specialized problems faster and more efficiently than traditional electronic computers. While DNA computing does not
592:
Superconducting computing is a form of cryogenic computing that utilizes the unique properties of superconductors, including zero resistance wires and ultrafast switching, to encode, process, and transport data using single flux quanta. It is often used in quantum computing and requires cooling to
534:
and entanglement, to perform calculations. Quantum computers use qubits, which are analogous to classical bits but can exist in multiple states simultaneously, to perform operations. While current quantum computers may not yet outperform classical computers in practical applications, they have the
515:
Fluidics, or fluidic logic, is the use of fluid dynamics to perform analog or digital operations in environments where electronics may be unreliable, such as those exposed to high levels of electromagnetic interference or ionizing radiation. Fluidic devices operate without moving parts and can use
492:
Atomtronics is a form of computing that involves the use of ultra-cold atoms in coherent matter-wave circuits, which can have components similar to those found in electronic or optical systems. These circuits have potential applications in several fields, including fundamental physics research and
462:
Optical computing is a type of computing that uses light waves, often produced by lasers or incoherent sources, for data processing, storage, and communication. While this technology has the potential to offer higher bandwidth than traditional computers, which use electrons, optoelectronic devices
795:
Cellular automata are discrete models of computation consisting of a grid of cells in a finite number of states, such as on and off. The state of each cell is determined by a fixed rule based on the states of the cell and its neighbors. There are four primary classifications of cellular automata,
379:
The term "human computer" refers to individuals who perform mathematical calculations manually, often working in teams and following fixed rules. In the past, teams of people were employed to perform long and tedious calculations, and the work was divided to be completed in parallel. The term has
325:
Reservoir computing is a computational framework derived from recurrent neural network theory that involves mapping input signals into higher-dimensional computational spaces through the dynamics of a fixed, non-linear system called a reservoir. The reservoir, which can be virtual or physical, is
214:
in nature. Analog computers were widely used in scientific and industrial applications, and were often faster than digital computers at the time. However, they started to become obsolete in the 1950s and 1960s and are now mostly used in specific applications such as aircraft flight simulators and
852:
Reversible computing is a type of unconventional computing where the computational process can be reversed to some extent. In order for a computation to be reversible, the relation between states and their successors must be one-to-one, and the process must not result in an increase in physical
755:
Neuromorphic computing involves using electronic circuits to mimic the neurobiological architectures found in the human nervous system, with the goal of creating artificial neural systems that are inspired by biological ones. These systems can be implemented using a variety of hardware, such as
671:
Peptide computing is a computational model that uses peptides and antibodies to solve NP-complete problems and has been shown to be computationally universal. It offers advantages over DNA computing, such as a larger number of building blocks and more flexible interactions, but has not yet been
434:
is a field of study that focuses on the coordination and control of multiple robots as a system. Inspired by the emergent behavior observed in social insects, swarm robotics involves the use of relatively simple individual rules to produce complex group behaviors through local communication and
364:
Tangible computing refers to the use of physical objects as user interfaces for interacting with digital information. This approach aims to take advantage of the human ability to grasp and manipulate physical objects in order to facilitate collaboration, learning, and design. Characteristics of
867:
Chaos computing is a type of unconventional computing that utilizes chaotic systems to perform computation. Chaotic systems can be used to create logic gates and can be rapidly switched between different patterns, making them useful for fault-tolerant applications and parallel computing. Chaos
736:
Biological computing, also known as bio-inspired computing or natural computation, is the study of using models inspired by biology to solve computer science problems, particularly in the fields of artificial intelligence and machine learning. It encompasses a range of computational paradigms
713:
Membrane computing, also known as P systems, is a subfield of computer science that studies distributed and parallel computing models based on the structure and function of biological membranes. In these systems, objects such as symbols or strings are processed within compartments defined by
307:
A domino computer is a mechanical computer that uses standing dominoes to represent the amplification or logic gating of digital signals. These constructs can be used to demonstrate digital concepts and can even be used to build simple information processing modules.
652:
components. This field, also known as chemical computing or reaction-diffusion computing, is distinct from the related fields of conductive polymers and organic electronics, which use molecules to affect the bulk properties of materials.
413:, or collaborative robots, are designed for direct interaction with humans within shared spaces and can be used for a variety of tasks, including information provision, logistics, and unergonomic tasks in industrial environments. 2824:
Eshraghian, Jason K.; Ward, Max; Neftci, Emre; Wang, Xinxin; Lenz, Gregor; Dwivedi, Girish; Bennamoun, Mohammed; Jeong, Doo Seok; Lu, Wei D. (1 October 2021). "Training Spiking Neural Networks Using Lessons from Deep Learning".
435:
interaction with the environment. This approach is characterized by the use of large numbers of simple robots and promotes scalability through the use of local communication methods such as radio frequency or infrared.
258:, which have dominated computer science for more than half a century". These methods model their computational operations based on non-standard paradigms, and are currently mostly in the research and development stage. 566:. They both construct a system (a circuit) that represents the physical problem at hand, and then leverage their respective physics properties of the system to seek the "minimum". Neuromorphic quantum computing and 691:, it can perform a high number of parallel computations simultaneously. However, DNA computing has slower processing speeds, and it is more difficult to analyze the results compared to digital computers. 508: 1028: 853:
entropy. Quantum circuits are reversible as long as they do not collapse quantum states, and reversible functions are bijective, meaning they have the same number of inputs as outputs.
775: 2620:
van de Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J.; Keene, Scott T.; Faria, Grégorio C.; Agarwal, Sapan; Marinella, Matthew J.; Alec Talin, A.; Salleo, Alberto (April 2017).
2186:
Broughton, Michael; Verdon, Guillaume; McCourt, Trevor; Martinez, Antonio J.; Yoo, Jae Hyeon; Isakov, Sergei V.; Massey, Philip; Halavati, Ramin; Niu, Murphy Yuezhen (2021-08-26),
250:
Unconventional computing is, according to a conference description, "an interdisciplinary research area with the main goal to enrich or go beyond the standard models, such as the
530:
Quantum computing, perhaps the most well-known and developed unconventional computing method, is a type of computation that utilizes the principles of quantum mechanics, such as
1410:
1613 'R. B.' Yong Mans Gleanings 1, I have read the truest computer of Times, and the best Arithmetician that ever breathed, and he reduceth thy dayes into a short number.
163:
Mechanical computers retain some interest today, both in research and as analogue computers. Some mechanical computers have a theoretical or didactic relevance, such as
98:
A wide variety of models are commonly used; some closely resemble the workings of (idealized) conventional computers, while others do not. Some commonly used models are
1210:
Tanaka, Gouhei; Yamane, Toshiyuki; Héroux, Jean Benoit; Nakane, Ryosho; Kanazawa, Naoki; Takeda, Seiji; Numata, Hidetoshi; Nakano, Daiju; Hirose, Akira (2019-07-01).
409:, or HRI, is the study of interactions between humans and robots. It involves contributions from fields such as artificial intelligence, robotics, and psychology. 573: 1684:; Miniatura, C.; Kwek, L.-C.; Aghamalyan, D.; Ahufinger, V.; Anderson, D.; Andrei, N.; Arnold, A. S.; Baker, M.; Bell, T. A.; Bland, T.; Brantut, J. P. (2021). 178:
While some are actually simulated, others are not. No attempt is made to build a functioning computer through the mechanical collisions of billiard balls. The
478:
and transfer, as well as quantum and neuromorphic computing. Spintronic systems are often created using dilute magnetic semiconductors and Heusler alloys.
1032: 95:
allows studying the performance of algorithms independently of the variations that are specific to particular implementations and specific technology.
311:
Both billiard-ball computers and domino computers are examples of unconventional computing methods that use physical objects to perform computation.
2468: 1522:
Kim, S. K.; Goda, K.; Fard, A. M.; Jalali, B. (2011). "Optical time-domain analog pattern correlator for high-speed real-time image recognition".
516:
nonlinear amplification, similar to transistors in electronic digital logic. Fluidics are also used in nanotechnology and military applications.
1604: 943: 2464: 1076: 1848: 1600: 1190: 2514: 2382: 243:
based on digital electronics, with extensive integration made possible following the invention of the transistor and the scaling of
380:
also been used more recently to describe individuals with exceptional mental arithmetic skills, also known as mental calculators.
1002: 562:
and neuromorphic quantum computing are physics-based unconventional computing approaches to computations and don't follow the
2937: 2904: 2448: 2365: 1865: 1815: 1506: 1481: 1345: 1148: 17: 1753:; von Klitzing, Wolf (2022-06-14). "Colloquium : Atomtronic circuits: From many-body physics to quantum technologies". 1421: 2070:
Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe (2018-02-26).
1931: 1369:
Kim, Mi Jeong; Maher, Mary Lou (30 May 2008). "The Impact of Tangible User Interfaces on Designers' Spatial Cognition".
2507: 1012: 969: 892: 543:
Neuromorphic Quantum Computing (abbreviated as 'n.quantum computing') is an unconventional type of computing that uses
327: 2912: 2334: 1914: 231:, a mechanical integrator for calculating the area of an arbitrary 2D shape, are also examples of analog computing. 2929: 2429:
M. Sakthi Balan; Kamala Krithivasan; Y. Sivasubramanyam (2002). "Peptide Computing - Universality and Complexity".
723: 357: 602: 2622:"A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing" 2959: 606: 2675:
Maan, A. K.; Jayadevi, D. A.; James, A. P. (2016-01-01). "A Survey of Memristive Threshold Logic Circuits".
928: 638: 389: 1573:
Wolf, S. A.; Chtchelkanova, A. Y.; Treger, D. M. (2006). "Spintronics—A retrospective and perspective".
2895: 988: 785: 587: 262: 805: 789: 781: 563: 544: 273:
These are unintuitive and pedagogical examples that a computer can be made out of almost anything.
251: 240: 2793:
Neuromorphic Circuits With Neural Modulation Enhancing the Information Content of Neural Signaling
2131:"Deep Autoregressive Models for the Efficient Variational Simulation of Many-Body Quantum Systems" 406: 344: 60:
and used at the First International Conference on Unconventional Models of Computation in 1998.
2351: 835: 746: 282: 164: 72:
allows for a variety of methods of computation. Computing technology was first developed using
1330:
Proceedings of the 2nd international conference on Tangible and embedded interaction - TEI '08
1187: 261:
This computing behavior can be "simulated" using classical silicon-based micro-transistors or
202:, which are continuous physical quantities, to model and solve problems. These signals can be 2315: 1471: 531: 224: 103: 2405: 304:
wire, and gates are simulated by collisions of balls at points where their paths intersect.
2694: 2633: 2326: 2281: 2152: 2095: 2028: 1772: 1749:
Amico, Luigi; Anderson, Dana; Boshier, Malcolm; Brantut, Jean-Philippe; Kwek, Leong-Chuan;
1707: 1531: 1292: 1105: 1085: 877: 868:
computing has been applied to various fields such as meteorology, physiology, and finance.
847: 731: 688: 646: 89: 73: 2130: 1624: 8: 2550:
G.Rozenberg, T.Back, J.Kok, Editors, Handbook of Natural Computing, Springer Verlag, 2012
2349: 769: 320: 153: 139: 2698: 2637: 2285: 2156: 2099: 2032: 1897:
Franklin, Diana; Chong, Frederic T. (2004). "Challenges in Reliable Quantum Computing".
1776: 1711: 1535: 1296: 1089: 672:
practically realized due to the limited availability of specific monoclonal antibodies.
2826: 2806: 2773: 2726: 2684: 2602: 2357:
Introduction to Nanoscale Science and Technology (Nanostructure Science and Technology)
2271: 2239: 2215: 2191: 2142: 2085: 2018: 1986: 1879: 1788: 1762: 1731: 1697: 1555: 1386: 1351: 1282: 1223: 1109: 897: 700: 642: 426: 215:
teaching control systems in universities. Examples of analog computing devices include
203: 123: 53: 2484: 2006: 2933: 2908: 2900: 2810: 2765: 2718: 2710: 2657: 2649: 2606: 2594: 2574: 2488: 2444: 2397: 2361: 2330: 2297: 2168: 2129:
Sharir, Or; Levine, Yoav; Wies, Noam; Carleo, Giuseppe; Shashua, Amnon (2020-01-16).
2111: 2052: 2044: 1910: 1871: 1861: 1821: 1811: 1792: 1735: 1723: 1547: 1502: 1477: 1341: 1310: 1251: 1243: 1144: 1008: 965: 825: 765: 727: 666: 567: 559: 552: 548: 525: 449: 227:, a mechanical device that calculates the positions of planets and the Moon, and the 2847:"Hananel-Hazan/bindsnet: Simulation of spiking neural networks (SNNs) using PyTorch" 2777: 2071: 1883: 1559: 1355: 1113: 507: 2796: 2757: 2730: 2702: 2641: 2586: 2480: 2436: 2428: 2289: 2164: 2160: 2103: 2036: 1957: 1902: 1853: 1780: 1715: 1660: 1650: 1582: 1539: 1450: 1390: 1378: 1333: 1300: 1233: 1164: 1136: 1128: 1093: 908: 750: 353: 172: 115: 99: 2538: 1685: 2560: 2355: 2260:"Superconducting quantum many-body circuits for quantum simulation and computing" 1843: 1839: 1784: 1655: 1638: 1238: 1211: 1194: 1101: 1071: 862: 286: 191: 179: 119: 111: 1140: 987:: The Emperor's New Mind. Oxford University Press, 1990. See also corresponding 2890: 2761: 2706: 2590: 2430: 2076: 1305: 1270: 1067: 957: 944:"Unconventional Computing: A Brief Subjective History, CDMTCS Report 480, 2015" 431: 422: 374: 255: 244: 107: 77: 2107: 1825: 1455: 1438: 1382: 2953: 2769: 2714: 2653: 2598: 2440: 2401: 2301: 2115: 2048: 1949: 1875: 1857: 1750: 1727: 1681: 1497:
Feitelson, Dror G. (1988). "Chapter 3: Optical Image and Signal Processing".
1314: 1247: 984: 831: 681: 198: 76:
systems and then evolved into the use of electronic devices. Other fields of
2867: 2846: 2801: 2040: 1906: 1337: 493:
the development of practical devices such as sensors and quantum computers.
2722: 2661: 2621: 2492: 2172: 2056: 1950:"Neuromrophic Quantum Computing | Quromorphic Project | Fact Sheet | H2020" 1551: 1255: 1127:
Durand-Lose, Jérôme (2002), "Computing inside the billiard ball model", in
705: 555:, can be computed equally efficiently with neuromorphic quantum computing. 458:
Realization of a photonic controlled-NOT gate for use in quantum computing
1543: 778: 487: 472: 340: 69: 2236:
MemComputing vs. Quantum Computing: some analogies and major differences
2212:
MemComputing vs. Quantum Computing: some analogies and major differences
1665: 1586: 265:
computing technologies, but it aims to achieve a new kind of computing.
223:, and complex mechanisms for process control and protective relays. The 2435:. Lecture Notes in Computer Science. Vol. 2340. pp. 290–299. 2007:"Solving the quantum many-body problem with artificial neural networks" 1271:"Multiplexed networks: reservoir computing with virtual and real nodes" 1097: 454: 228: 216: 211: 157: 57: 2293: 1719: 2645: 2188:
TensorFlow Quantum: A Software Framework for Quantum Machine Learning
774: 207: 127: 42: 2259: 398: 291: 144: 2831: 2745: 2689: 2323: 2276: 2244: 2220: 2196: 2147: 2090: 2023: 1991: 1961: 1767: 1702: 1287: 1228: 625: 620: 502: 220: 1627:. Sciencemag.org (16 November 2001). Retrieved on 21 October 2013. 182:
is another theoretically interesting mechanical computing scheme.
2575:"Neuromorphic electronics based on copying and pasting the brain" 296: 2619: 2471:(2001). "Strategies for the development of a peptide computer". 1029:"Gears of war: When mechanical analog computers ruled the waves" 2851: 2573:
Ham, Donhee; Park, Hongkun; Hwang, Sungwoo; Kim, Kinam (2021).
2069: 902: 168: 2185: 1198: 1053: 834:, or base 3, in its calculations rather than the more common 410: 393: 2381:
Kumar, Ambar; Mahato, Akash Kumar; Singh, Akashdeep (2014).
759: 349: 1748: 1625:
Spintronics: A Spin-Based Electronics Vision for the Future
1437:
Dorigo, Marco; Birattari, Mauro; Brambill, Manuele (2014).
1212:"Recent advances in physical reservoir computing: A review" 2390:
International Journal of Innovative Research in Technology
1686:"Roadmap on Atomtronics: State of the art and perspective" 2795:. International Conference on Neuromorphic Systems 2020. 2677:
IEEE Transactions on Neural Networks and Learning Systems
2258:
Wilkinson, Samuel A.; Hartmann, Michael J. (2020-06-08).
1679: 2823: 2463: 1209: 551:, which are algorithms that run on a realistic model of 239:
Most modern computers are electronic computers with the
1572: 1436: 1408:(Third ed.). Oxford University Press. March 2008. 962:
Models Of Computation: Exploring the Power of Computing
2128: 1601:"Physics Profile: "Stu Wolf: True D! Hollywood Story"" 570:
share similar physical properties during computation.
547:
to perform quantum operations. It was suggested that
2383:"Chemical Computing: The different way of computing" 1981:
Pehle, Christian; Wetterich, Christof (2021-03-30),
2791:Alzahrani, Rami A.; Parker, Alice C. (2020-07-28). 1499:
Optical Computing: A Survey for Computer Scientists
1422:"I, Cobot: Future collaboration of man and machine" 830:Ternary computing is a type of computing that uses 196:An analog computer is a type of computer that uses 45:by any of a wide range of new or unusual methods. 1639:"Spintronics based random access memory: a review" 2923: 2674: 2257: 2005:Carleo, Giuseppe; Troyer, Matthias (2017-02-10). 1521: 1000: 596: 538: 2951: 2380: 2790: 2572: 1473:Mind at Light Speed: A New Kind of Intelligence 356:, a tangible computing device installed in the 234: 156:were used in industry before the advent of the 2743: 1980: 1930:Pakkin, Scott; Coles, Patrick (10 June 2019). 1066: 1896: 1838: 1630: 1004:Holographic Visions: A History of New Science 148:Hamann Manus R, a digital mechanical computer 2004: 1808:Quantum computing : an applied approach 1362: 1077:International Journal of Theoretical Physics 1054:"Unconventional computation Conference 2007" 581: 80:provide additional avenues for development. 2544: 1929: 1849:Quantum Computation and Quantum Information 1126: 929:"Unconventional Models of Computation 1998" 799: 2343: 814: 655: 383: 2865: 2830: 2800: 2688: 2668: 2374: 2275: 2243: 2233: 2219: 2209: 2195: 2146: 2089: 2072:"Neural-network quantum state tomography" 2022: 1990: 1766: 1701: 1664: 1654: 1496: 1454: 1304: 1286: 1268: 1237: 1227: 1181: 978: 760:Cellular automata and amorphous computing 687:provide any new capabilities in terms of 2917: 2744:Zhou, You; Ramanathan, S. (2015-08-01). 2553: 1368: 1328:Ishii, Hiroshi (2008). "Tangible bits". 1269:Röhm, André; Lüdge, Kathy (2018-08-03). 773: 717: 704: 619: 572: 506: 453: 397: 348: 290: 143: 83: 2314: 1575:IBM Journal of Research and Development 1501:. Cambridge, Massachusetts: MIT Press. 994: 941: 871: 841: 615: 133: 14: 2952: 2746:"Mott Memory and Neuromorphic Devices" 2234:Di Ventra, Massimiliano (2022-03-23), 2210:Di Ventra, Massimiliano (2022-03-23), 1805: 1799: 1636: 1157: 956: 632: 593:cryogenic temperatures for operation. 314: 2559:A.Brabazon, M.O'Neill, S.McGarraghy. 1899:Nano, Quantum and Molecular Computing 1469: 1427:(2015-11-15). Retrieved on 2016-01-19 1327: 1135:, Springer-Verlag, pp. 135–160, 694: 438: 334: 268: 2508:"Introduction to Membrane Computing" 2320:Nanocomputers and Swarm Intelligence 1932:"The Problem with Quantum Computers" 1197:, a detailed description written by 1021: 819: 660: 519: 443: 1680:Amico, L.; Boshier, M.; Birkl, G.; 1165:"Domino computer - Everything2.com" 276: 185: 27:Computing by new or unusual methods 24: 2859: 2784: 1476:. Simon and Schuster. p. 34. 893:Network computing (disambiguation) 856: 416: 368: 25: 2971: 2926:Explorations in Quantum Computing 1275:Journal of Physics Communications 252:Von Neumann computer architecture 2505: 1637:Bhatti, S.; et al. (2017). 675: 511:A flip flop made using fluidics. 167:, while hydraulic ones like the 2884: 2839: 2817: 2737: 2613: 2566: 2531: 2520:from the original on 2011-07-22 2499: 2485:10.1093/bioinformatics/17.4.364 2457: 2422: 2308: 2251: 2227: 2203: 2179: 2122: 2063: 1998: 1974: 1942: 1923: 1890: 1832: 1742: 1673: 1618: 1593: 1566: 1515: 1490: 1463: 1430: 1415: 1397: 1321: 1262: 1203: 740: 724:Biologically-inspired computing 2165:10.1103/PhysRevLett.124.020503 1983:Neuromorphic quantum computing 1120: 1074:(1982), "Conservative logic", 1060: 1046: 950: 935: 921: 628:, useful as a molecular switch 624:Graphical representation of a 603:Microelectromechanical systems 597:Microelectromechanical systems 539:Neuromorphic quantum computing 481: 466: 13: 1: 1852:(10th anniversary ed.). 1810:. Cham: Springer. p. 3. 914: 709:Nine Region Membrane Computer 607:Nanoelectromechanical systems 63: 2561:Natural Computing Algorithms 1954:CORDIS | European Commission 1785:10.1103/RevModPhys.94.041001 1656:10.1016/j.mattod.2017.07.007 1239:10.1016/j.neunet.2019.03.005 1031:. 2014-03-18. Archived from 788:" in the cellular automaton 358:Children's Creativity Museum 235:Electronic digital computers 7: 1141:10.1007/978-1-4471-0129-1_6 886: 639:Molecular scale electronics 496: 10: 2976: 2924:Colin P. Williams (2011). 2762:10.1109/JPROC.2015.2431914 2707:10.1109/TNNLS.2016.2547842 2591:10.1038/s41928-021-00646-1 2539:U.S. patent 20,090,124,506 1371:Human–Computer Interaction 1007:. OUP Oxford. p. 90. 1001:Johnston, Sean F. (2006). 875: 860: 845: 823: 803: 763: 744: 721: 698: 679: 664: 636: 600: 585: 523: 500: 485: 470: 447: 420: 387: 372: 338: 318: 280: 189: 137: 87: 50:unconventional computation 2899:, Penguin Books, London, 2354:; Evoy, Stephane (2004). 2108:10.1038/s41567-018-0048-5 1755:Reviews of Modern Physics 1456:10.4249/scholarpedia.1463 1406:Oxford English Dictionary 1383:10.1080/07370020802016415 1133:Collision-Based Computing 588:Superconducting computing 582:Superconducting computing 2441:10.1007/3-540-48017-X_27 1858:10.1017/CBO9780511976667 1306:10.1088/2399-6528/aad56d 1193:August 16, 2006, at the 806:Evolutionary computation 800:Evolutionary computation 564:von Neumann architecture 402:Human-robot interaction. 241:Von Neumann architecture 31:Unconventional computing 2896:Darwin's Dangerous Idea 2802:10.1145/3407197.3407204 2750:Proceedings of the IEEE 2563:, Springer Verlag, 2015 2352:Ventra, Massimiliano Di 2264:Applied Physics Letters 2135:Physical Review Letters 2041:10.1126/science.aag2302 1907:10.1007/1-4020-8068-9_8 1338:10.1145/1347390.1347392 815:Mathematical approaches 656:Biochemistry approaches 407:Human-robot interaction 390:Human–robot interaction 384:Human-robot interaction 345:Tangible user interface 175:were used effectively. 165:billiard-ball computers 39:nonstandard computation 2350:Hughes, James E. Jr.; 792: 747:Neuromorphic computing 710: 629: 578: 545:neuromorphic computing 512: 459: 403: 361: 300: 283:billiard-ball computer 149: 104:random-access machines 68:The general theory of 2327:John Wiley & Sons 1806:Hidary, Jack (2019). 790:Conway's Game of Life 777: 718:Biological approaches 708: 623: 576: 510: 457: 401: 352: 294: 225:Antikythera mechanism 147: 84:Models of Computation 35:alternative computing 18:Alternative computing 2960:Classes of computers 2360:. Berlin: Springer. 1901:. pp. 247–266. 1544:10.1364/ol.36.000220 1470:Nolte, D.D. (2001). 878:Stochastic computing 872:Stochastic computing 848:Reversible computing 842:Reversible computing 732:Biological computing 689:computability theory 647:Molecular logic gate 616:Chemistry approaches 154:mechanical computers 134:Mechanical computing 90:Model of computation 2699:2016arXiv160407121M 2638:2017NatMa..16..414V 2286:2020ApPhL.116w0501W 2157:2020PhRvL.124b0503S 2100:2018NatPh..14..447T 2033:2017Sci...355..602C 1936:Scientific American 1777:2022RvMP...94d1001A 1712:2021AVSQS...3c9201A 1690:AVS Quantum Science 1587:10.1147/rd.501.0101 1536:2011OptL...36..220K 1297:2018JPhCo...2h5007R 1090:1982IJTP...21..219F 770:Amorphous computing 633:Molecular computing 577:A quantum computer. 553:quantum computation 328:physical reservoirs 321:Reservoir computing 315:Reservoir computing 299:built from dominoes 140:Mechanical computer 2932:. pp. 25–29. 2579:Nature Electronics 1098:10.1007/BF01857727 964:. Addison-Wesley. 905:hydraulic computer 898:WDR paper computer 793: 711: 701:membrane computing 695:Membrane computing 643:Chemical computing 630: 579: 549:quantum algorithms 513: 460: 439:Physics approaches 427:swarm intelligence 404: 362: 335:Tangible computing 301: 269:Generic approaches 150: 54:Cristian S. Calude 2939:978-1-84628-887-6 2905:978-0-14-016734-4 2683:(99): 1734–1746. 2450:978-3-540-43775-8 2367:978-1-4020-7720-3 2294:10.1063/5.0008202 2017:(6325): 602–606. 1867:978-0-511-99277-3 1817:978-3-030-23922-0 1720:10.1116/5.0026178 1508:978-0-262-06112-4 1483:978-0-7432-0501-6 1347:978-1-60558-004-3 1150:978-1-4471-0129-1 1129:Adamatzky, Andrew 826:Ternary computing 820:Ternary computing 766:Cellular automata 728:natural computing 667:peptide computing 661:Peptide computing 568:quantum computing 560:quantum computing 558:Both traditional 526:Quantum computing 520:Quantum computing 450:Optical computing 444:Optical computing 124:cellular automata 116:rewriting systems 100:register machines 16:(Redirected from 2967: 2944: 2943: 2921: 2915: 2888: 2882: 2881: 2879: 2878: 2863: 2857: 2856: 2855:. 31 March 2020. 2843: 2837: 2836: 2834: 2821: 2815: 2814: 2804: 2788: 2782: 2781: 2756:(8): 1289–1310. 2741: 2735: 2734: 2692: 2672: 2666: 2665: 2646:10.1038/nmat4856 2626:Nature Materials 2617: 2611: 2610: 2570: 2564: 2557: 2551: 2548: 2542: 2541: 2535: 2529: 2528: 2526: 2525: 2519: 2512: 2506:Păun, Gheorghe. 2503: 2497: 2496: 2461: 2455: 2454: 2426: 2420: 2419: 2417: 2416: 2410: 2404:. Archived from 2387: 2378: 2372: 2371: 2347: 2341: 2340: 2312: 2306: 2305: 2279: 2255: 2249: 2248: 2247: 2231: 2225: 2224: 2223: 2207: 2201: 2200: 2199: 2183: 2177: 2176: 2150: 2126: 2120: 2119: 2093: 2067: 2061: 2060: 2026: 2002: 1996: 1995: 1994: 1978: 1972: 1971: 1969: 1968: 1946: 1940: 1939: 1927: 1921: 1920: 1894: 1888: 1887: 1840:Nielsen, Michael 1836: 1830: 1829: 1803: 1797: 1796: 1770: 1746: 1740: 1739: 1705: 1677: 1671: 1670: 1668: 1658: 1634: 1628: 1622: 1616: 1615: 1613: 1612: 1603:. Archived from 1597: 1591: 1590: 1570: 1564: 1563: 1519: 1513: 1512: 1494: 1488: 1487: 1467: 1461: 1460: 1458: 1439:"Swarm Robotics" 1434: 1428: 1425:The Manufacturer 1419: 1413: 1412: 1401: 1395: 1394: 1366: 1360: 1359: 1325: 1319: 1318: 1308: 1290: 1266: 1260: 1259: 1241: 1231: 1207: 1201: 1188:Domino computers 1185: 1179: 1178: 1176: 1175: 1161: 1155: 1153: 1124: 1118: 1116: 1084:(3–4): 219–253, 1072:Toffoli, Tommaso 1064: 1058: 1057: 1050: 1044: 1043: 1041: 1040: 1025: 1019: 1018: 998: 992: 982: 976: 975: 954: 948: 947: 939: 933: 932: 925: 909:Hypercomputation 751:wetware computer 360:in San Francisco 277:Physical objects 186:Analog computing 173:Water integrator 120:digital circuits 21: 2975: 2974: 2970: 2969: 2968: 2966: 2965: 2964: 2950: 2949: 2948: 2947: 2940: 2922: 2918: 2889: 2885: 2876: 2874: 2866:Sincell, Mark. 2864: 2860: 2845: 2844: 2840: 2822: 2818: 2789: 2785: 2742: 2738: 2673: 2669: 2618: 2614: 2571: 2567: 2558: 2554: 2549: 2545: 2537: 2536: 2532: 2523: 2521: 2517: 2510: 2504: 2500: 2462: 2458: 2451: 2427: 2423: 2414: 2412: 2408: 2385: 2379: 2375: 2368: 2348: 2344: 2337: 2329:. p. 205. 2313: 2309: 2256: 2252: 2232: 2228: 2208: 2204: 2184: 2180: 2127: 2123: 2068: 2064: 2003: 1999: 1979: 1975: 1966: 1964: 1948: 1947: 1943: 1928: 1924: 1917: 1895: 1891: 1868: 1837: 1833: 1818: 1804: 1800: 1747: 1743: 1678: 1674: 1643:Materials Today 1635: 1631: 1623: 1619: 1610: 1608: 1599: 1598: 1594: 1571: 1567: 1520: 1516: 1509: 1495: 1491: 1484: 1468: 1464: 1435: 1431: 1420: 1416: 1403: 1402: 1398: 1367: 1363: 1348: 1332:. pp. xv. 1326: 1322: 1267: 1263: 1216:Neural Networks 1208: 1204: 1195:Wayback Machine 1186: 1182: 1173: 1171: 1169:everything2.com 1163: 1162: 1158: 1151: 1125: 1121: 1068:Fredkin, Edward 1065: 1061: 1052: 1051: 1047: 1038: 1036: 1027: 1026: 1022: 1015: 999: 995: 983: 979: 972: 958:Savage, John E. 955: 951: 940: 936: 927: 926: 922: 917: 889: 880: 874: 865: 863:Chaos computing 859: 857:Chaos computing 850: 844: 828: 822: 817: 808: 802: 772: 764:Main articles: 762: 753: 745:Main articles: 743: 734: 722:Main articles: 720: 703: 697: 684: 678: 669: 663: 658: 649: 637:Main articles: 635: 618: 609: 601:Main articles: 599: 590: 584: 541: 528: 522: 505: 499: 490: 484: 475: 469: 452: 446: 441: 429: 421:Main articles: 419: 417:Swarm computing 396: 388:Main articles: 386: 377: 371: 369:Human computing 347: 339:Main articles: 337: 331: 323: 317: 289: 287:domino computer 281:Main articles: 279: 271: 237: 194: 192:analog computer 188: 180:domino computer 142: 136: 112:lambda calculus 108:Turing machines 92: 86: 66: 33:(also known as 28: 23: 22: 15: 12: 11: 5: 2973: 2963: 2962: 2946: 2945: 2938: 2916: 2891:Daniel Dennett 2883: 2858: 2838: 2816: 2783: 2736: 2667: 2632:(4): 414–418. 2612: 2585:(9): 635–644. 2565: 2552: 2543: 2530: 2498: 2479:(4): 364–368. 2473:Bioinformatics 2469:Rainer Schuler 2456: 2449: 2421: 2373: 2366: 2342: 2335: 2307: 2250: 2226: 2202: 2178: 2121: 2084:(5): 447–450. 2077:Nature Physics 2062: 1997: 1973: 1962:10.3030/828826 1941: 1922: 1915: 1889: 1866: 1831: 1816: 1798: 1751:Minguzzi, Anna 1741: 1672: 1649:(9): 530–548. 1629: 1617: 1592: 1565: 1524:Optics Letters 1514: 1507: 1489: 1482: 1462: 1429: 1414: 1396: 1377:(2): 101–137. 1361: 1346: 1320: 1261: 1202: 1199:David Johnston 1180: 1156: 1149: 1119: 1059: 1045: 1020: 1014:978-0191513886 1013: 993: 985:Penrose, Roger 977: 971:978-0201895391 970: 949: 934: 919: 918: 916: 913: 912: 911: 906: 900: 895: 888: 885: 876:Main article: 873: 870: 861:Main article: 858: 855: 846:Main article: 843: 840: 824:Main article: 821: 818: 816: 813: 804:Main article: 801: 798: 761: 758: 742: 739: 719: 716: 699:Main article: 696: 693: 680:Main article: 677: 674: 665:Main article: 662: 659: 657: 654: 634: 631: 617: 614: 598: 595: 586:Main article: 583: 580: 540: 537: 524:Main article: 521: 518: 501:Main article: 498: 495: 486:Main article: 483: 480: 471:Main article: 468: 465: 448:Main article: 445: 442: 440: 437: 432:Swarm robotics 423:Swarm robotics 418: 415: 385: 382: 375:Human computer 373:Main article: 370: 367: 336: 333: 319:Main article: 316: 313: 278: 275: 270: 267: 256:Turing machine 236: 233: 199:analog signals 190:Main article: 187: 184: 152:Historically, 138:Main article: 135: 132: 88:Main article: 85: 82: 78:modern physics 65: 62: 52:was coined by 26: 9: 6: 4: 3: 2: 2972: 2961: 2958: 2957: 2955: 2941: 2935: 2931: 2927: 2920: 2914: 2913:0-14-016734-X 2910: 2906: 2902: 2898: 2897: 2892: 2887: 2873: 2869: 2868:"Future Tech" 2862: 2854: 2853: 2848: 2842: 2833: 2828: 2820: 2812: 2808: 2803: 2798: 2794: 2787: 2779: 2775: 2771: 2767: 2763: 2759: 2755: 2751: 2747: 2740: 2732: 2728: 2724: 2720: 2716: 2712: 2708: 2704: 2700: 2696: 2691: 2686: 2682: 2678: 2671: 2663: 2659: 2655: 2651: 2647: 2643: 2639: 2635: 2631: 2627: 2623: 2616: 2608: 2604: 2600: 2596: 2592: 2588: 2584: 2580: 2576: 2569: 2562: 2556: 2547: 2540: 2534: 2516: 2509: 2502: 2494: 2490: 2486: 2482: 2478: 2474: 2470: 2466: 2460: 2452: 2446: 2442: 2438: 2434: 2433: 2432:DNA Computing 2425: 2411:on 2015-06-15 2407: 2403: 2399: 2395: 2391: 2384: 2377: 2369: 2363: 2359: 2358: 2353: 2346: 2338: 2336:9781848210097 2332: 2328: 2325: 2321: 2317: 2311: 2303: 2299: 2295: 2291: 2287: 2283: 2278: 2273: 2269: 2265: 2261: 2254: 2246: 2241: 2237: 2230: 2222: 2217: 2213: 2206: 2198: 2193: 2189: 2182: 2174: 2170: 2166: 2162: 2158: 2154: 2149: 2144: 2141:(2): 020503. 2140: 2136: 2132: 2125: 2117: 2113: 2109: 2105: 2101: 2097: 2092: 2087: 2083: 2079: 2078: 2073: 2066: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2025: 2020: 2016: 2012: 2008: 2001: 1993: 1988: 1984: 1977: 1963: 1959: 1955: 1951: 1945: 1937: 1933: 1926: 1918: 1916:1-4020-8067-0 1912: 1908: 1904: 1900: 1893: 1885: 1881: 1877: 1873: 1869: 1863: 1859: 1855: 1851: 1850: 1845: 1844:Chuang, Isaac 1841: 1835: 1827: 1823: 1819: 1813: 1809: 1802: 1794: 1790: 1786: 1782: 1778: 1774: 1769: 1764: 1761:(4): 041001. 1760: 1756: 1752: 1745: 1737: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1704: 1699: 1696:(3): 039201. 1695: 1691: 1687: 1683: 1676: 1667: 1662: 1657: 1652: 1648: 1644: 1640: 1633: 1626: 1621: 1607:on 2011-04-18 1606: 1602: 1596: 1588: 1584: 1580: 1576: 1569: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1518: 1510: 1504: 1500: 1493: 1485: 1479: 1475: 1474: 1466: 1457: 1452: 1448: 1444: 1440: 1433: 1426: 1423: 1418: 1411: 1407: 1400: 1392: 1388: 1384: 1380: 1376: 1372: 1365: 1357: 1353: 1349: 1343: 1339: 1335: 1331: 1324: 1316: 1312: 1307: 1302: 1298: 1294: 1289: 1284: 1281:(8): 085007. 1280: 1276: 1272: 1265: 1257: 1253: 1249: 1245: 1240: 1235: 1230: 1225: 1221: 1217: 1213: 1206: 1200: 1196: 1192: 1189: 1184: 1170: 1166: 1160: 1152: 1146: 1142: 1138: 1134: 1130: 1123: 1115: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1078: 1073: 1069: 1063: 1055: 1049: 1035:on 2018-09-08 1034: 1030: 1024: 1016: 1010: 1006: 1005: 997: 990: 989:article on it 986: 981: 973: 967: 963: 959: 953: 945: 942:C.S. Calude. 938: 930: 924: 920: 910: 907: 904: 901: 899: 896: 894: 891: 890: 884: 879: 869: 864: 854: 849: 839: 837: 836:binary system 833: 832:ternary logic 827: 812: 807: 797: 791: 787: 783: 780: 776: 771: 767: 757: 752: 748: 738: 733: 729: 725: 715: 707: 702: 692: 690: 683: 682:DNA computing 676:DNA computing 673: 668: 653: 648: 644: 640: 627: 622: 613: 608: 604: 594: 589: 575: 571: 569: 565: 561: 556: 554: 550: 546: 536: 533: 532:superposition 527: 517: 509: 504: 494: 489: 479: 474: 464: 456: 451: 436: 433: 428: 424: 414: 412: 408: 400: 395: 391: 381: 376: 366: 359: 355: 351: 346: 342: 332: 329: 322: 312: 309: 305: 298: 293: 288: 284: 274: 266: 264: 259: 257: 253: 248: 246: 242: 232: 230: 226: 222: 218: 213: 209: 205: 201: 200: 193: 183: 181: 176: 174: 170: 166: 161: 159: 155: 146: 141: 131: 129: 125: 121: 117: 113: 109: 105: 101: 96: 91: 81: 79: 75: 71: 61: 59: 55: 51: 46: 44: 40: 36: 32: 19: 2925: 2919: 2894: 2886: 2875:. Retrieved 2871: 2861: 2850: 2841: 2819: 2792: 2786: 2753: 2749: 2739: 2680: 2676: 2670: 2629: 2625: 2615: 2582: 2578: 2568: 2555: 2546: 2533: 2522:. Retrieved 2501: 2476: 2472: 2459: 2431: 2424: 2413:. Retrieved 2406:the original 2393: 2389: 2376: 2356: 2345: 2319: 2310: 2267: 2263: 2253: 2235: 2229: 2211: 2205: 2187: 2181: 2138: 2134: 2124: 2081: 2075: 2065: 2014: 2010: 2000: 1982: 1976: 1965:. Retrieved 1953: 1944: 1935: 1925: 1898: 1892: 1847: 1834: 1807: 1801: 1758: 1754: 1744: 1693: 1689: 1682:Minguzzi, A. 1675: 1666:10356/146755 1646: 1642: 1632: 1620: 1609:. Retrieved 1605:the original 1595: 1578: 1574: 1568: 1530:(2): 220–2. 1527: 1523: 1517: 1498: 1492: 1472: 1465: 1446: 1443:Scholarpedia 1442: 1432: 1424: 1417: 1409: 1405: 1404:"computer". 1399: 1374: 1370: 1364: 1329: 1323: 1278: 1274: 1264: 1219: 1215: 1205: 1183: 1172:. Retrieved 1168: 1159: 1132: 1122: 1081: 1075: 1062: 1048: 1037:. Retrieved 1033:the original 1023: 1003: 996: 980: 961: 952: 937: 923: 881: 866: 851: 829: 809: 794: 754: 741:Neuroscience 735: 712: 685: 670: 650: 610: 591: 557: 542: 529: 514: 491: 476: 461: 430: 405: 378: 363: 324: 310: 306: 302: 272: 260: 249: 238: 197: 195: 177: 162: 151: 97: 93: 67: 49: 47: 38: 34: 30: 29: 1581:: 101–110. 1222:: 100–123. 488:Atomtronics 482:Atomtronics 473:Spintronics 467:Spintronics 341:Claytronics 263:solid state 245:Moore's law 217:slide rules 70:computation 2877:2024-03-01 2832:2109.12894 2690:1604.07121 2524:2022-12-30 2465:Hubert Hug 2415:2015-06-14 2322:. London: 2316:Waldner JB 2277:2003.08838 2245:2203.12031 2221:2203.12031 2197:2003.02989 2148:1902.04057 2091:1703.05334 2024:1606.02318 1992:2005.01533 1967:2024-03-18 1826:1117464128 1768:2107.08561 1703:2008.04439 1611:2022-12-30 1288:1802.08590 1229:1808.04962 1174:2024-05-14 1039:2017-06-14 915:References 784:creating " 782:Glider Gun 229:planimeter 208:mechanical 204:electrical 158:transistor 128:Petri nets 74:mechanical 64:Background 58:John Casti 2811:220794387 2770:0018-9219 2715:2162-237X 2654:1476-4660 2607:240580331 2599:2520-1131 2402:2349-6002 2302:0003-6951 2116:1745-2481 2049:0036-8075 1876:700706156 1793:249642063 1736:235417597 1728:2639-0213 1315:2399-6528 1248:0893-6080 354:SandScape 221:nomograms 212:hydraulic 48:The term 43:computing 2954:Category 2930:Springer 2893:(1995), 2872:Discover 2778:11347598 2723:27164608 2662:28218920 2515:Archived 2493:11301306 2318:(2008). 2173:32004039 2057:28183973 1884:59717455 1846:(2010). 1560:15492810 1552:21263506 1449:: 1463. 1356:18166868 1256:30981085 1191:Archived 1114:37305161 960:(1998). 887:See also 779:Gosper's 626:rotaxane 503:Fluidics 497:Fluidics 254:and the 2731:1798273 2695:Bibcode 2634:Bibcode 2282:Bibcode 2153:Bibcode 2096:Bibcode 2029:Bibcode 2011:Science 1773:Bibcode 1708:Bibcode 1532:Bibcode 1391:1268154 1293:Bibcode 1131:(ed.), 1106:0657156 1086:Bibcode 786:gliders 297:OR gate 171:or the 2936:  2911:  2903:  2852:GitHub 2809:  2776:  2768:  2729:  2721:  2713:  2660:  2652:  2605:  2597:  2491:  2467:& 2447:  2400:  2364:  2333:  2300:  2270:(23). 2171:  2114:  2055:  2047:  1913:  1882:  1874:  1864:  1824:  1814:  1791:  1734:  1726:  1558:  1550:  1505:  1480:  1389:  1354:  1344:  1313:  1254:  1246:  1147:  1112:  1104:  1011:  968:  903:MONIAC 730:, and 645:, and 411:Cobots 169:MONIAC 126:, and 2827:arXiv 2807:S2CID 2774:S2CID 2727:S2CID 2685:arXiv 2603:S2CID 2518:(PDF) 2511:(PDF) 2409:(PDF) 2396:(6). 2386:(PDF) 2272:arXiv 2240:arXiv 2216:arXiv 2192:arXiv 2143:arXiv 2086:arXiv 2019:arXiv 1987:arXiv 1880:S2CID 1789:S2CID 1763:arXiv 1732:S2CID 1698:arXiv 1556:S2CID 1387:S2CID 1352:S2CID 1283:arXiv 1224:arXiv 1110:S2CID 394:Cobot 210:, or 41:) is 2934:ISBN 2909:ISBN 2901:ISBN 2766:ISSN 2719:PMID 2711:ISSN 2658:PMID 2650:ISSN 2595:ISSN 2489:PMID 2445:ISBN 2398:ISSN 2362:ISBN 2331:ISBN 2324:ISTE 2298:ISSN 2169:PMID 2112:ISSN 2053:PMID 2045:ISSN 1911:ISBN 1872:OCLC 1862:ISBN 1822:OCLC 1812:ISBN 1724:ISSN 1548:PMID 1503:ISBN 1478:ISBN 1342:ISBN 1311:ISSN 1252:PMID 1244:ISSN 1145:ISBN 1009:ISBN 966:ISBN 768:and 749:and 605:and 425:and 392:and 343:and 285:and 56:and 2797:doi 2758:doi 2754:103 2703:doi 2642:doi 2587:doi 2481:doi 2437:doi 2290:doi 2268:116 2161:doi 2139:124 2104:doi 2037:doi 2015:355 1958:doi 1903:doi 1854:doi 1781:doi 1716:doi 1661:hdl 1651:doi 1583:doi 1540:doi 1451:doi 1379:doi 1334:doi 1301:doi 1234:doi 1220:115 1137:doi 1094:doi 295:An 37:or 2956:: 2928:. 2907:, 2870:. 2849:. 2805:. 2772:. 2764:. 2752:. 2748:. 2725:. 2717:. 2709:. 2701:. 2693:. 2681:PP 2679:. 2656:. 2648:. 2640:. 2630:16 2628:. 2624:. 2601:. 2593:. 2581:. 2577:. 2513:. 2487:. 2477:17 2475:. 2443:. 2392:. 2388:. 2296:. 2288:. 2280:. 2266:. 2262:. 2238:, 2214:, 2190:, 2167:. 2159:. 2151:. 2137:. 2133:. 2110:. 2102:. 2094:. 2082:14 2080:. 2074:. 2051:. 2043:. 2035:. 2027:. 2013:. 2009:. 1985:, 1956:. 1952:. 1934:. 1909:. 1878:. 1870:. 1860:. 1842:; 1820:. 1787:. 1779:. 1771:. 1759:94 1757:. 1730:. 1722:. 1714:. 1706:. 1692:. 1688:. 1659:. 1647:20 1645:. 1641:. 1579:50 1577:. 1554:. 1546:. 1538:. 1528:36 1526:. 1445:. 1441:. 1385:. 1375:23 1373:. 1350:. 1340:. 1309:. 1299:. 1291:. 1277:. 1273:. 1250:. 1242:. 1232:. 1218:. 1214:. 1167:. 1143:, 1108:, 1102:MR 1100:, 1092:, 1082:21 1080:, 1070:; 726:, 641:, 247:. 219:, 206:, 160:. 130:. 122:, 118:, 114:, 110:, 106:, 102:, 2942:. 2880:. 2835:. 2829:: 2813:. 2799:: 2780:. 2760:: 2733:. 2705:: 2697:: 2687:: 2664:. 2644:: 2636:: 2609:. 2589:: 2583:4 2527:. 2495:. 2483:: 2453:. 2439:: 2418:. 2394:1 2370:. 2339:. 2304:. 2292:: 2284:: 2274:: 2242:: 2218:: 2194:: 2175:. 2163:: 2155:: 2145:: 2118:. 2106:: 2098:: 2088:: 2059:. 2039:: 2031:: 2021:: 1989:: 1970:. 1960:: 1938:. 1919:. 1905:: 1886:. 1856:: 1828:. 1795:. 1783:: 1775:: 1765:: 1738:. 1718:: 1710:: 1700:: 1694:3 1669:. 1663:: 1653:: 1614:. 1589:. 1585:: 1562:. 1542:: 1534:: 1511:. 1486:. 1459:. 1453:: 1447:9 1393:. 1381:: 1358:. 1336:: 1317:. 1303:: 1295:: 1285:: 1279:2 1258:. 1236:: 1226:: 1177:. 1154:. 1139:: 1117:. 1096:: 1088:: 1056:. 1042:. 1017:. 991:. 974:. 946:. 931:. 330:. 20:)

Index

Alternative computing
computing
Cristian S. Calude
John Casti
computation
mechanical
modern physics
Model of computation
register machines
random-access machines
Turing machines
lambda calculus
rewriting systems
digital circuits
cellular automata
Petri nets
Mechanical computer

mechanical computers
transistor
billiard-ball computers
MONIAC
Water integrator
domino computer
analog computer
analog signals
electrical
mechanical
hydraulic
slide rules

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.