Knowledge

Analytic capacity

Source 📝

1834:-sigma-finite case, Pertti Mattila proved in 1986 that the conjecture is false, but his proof did not specify which implication of the conjecture fails. Subsequent work by Jones and Muray produced an example of a set with zero Favard length and positive analytic capacity, explicitly disproving one of the directions of the conjecture. As of 2023 it is not known whether the other implication holds but some progress has been made towards a positive answer by Chang and Tolsa. 261: 1546: 427: 1624: 912: 761: 103: 1033: 1810: 667: 488: 1726: 1435: 545: 304: 1403: 819: 1344: 1065: 597: 1306: 1274: 965:) = 0. However, analytic capacity is a purely complex-analytic concept, and much more work needs to be done in order to obtain a more geometric characterization. 1554: 837: 678: 339: 256:{\displaystyle \gamma (K)=\sup\{|f'(\infty )|;\ f\in {\mathcal {H}}^{\infty }(\mathbf {C} \setminus K),\ \|f\|_{\infty }\leq 1,\ f(\infty )=0\}} 984: 1740: 602: 2092: 2073: 433: 1626:
denotes the orthogonal projection in direction θ. By the results described above, Vitushkin's conjecture is true when dim
1541:{\displaystyle \gamma (K)=0\ \iff \ \int _{0}^{\pi }{\mathcal {H}}^{1}(\operatorname {proj} _{\theta }(K))\,d\theta =0} 2025: 1677: 939: 269: 1883: 1202: 1362: 2111: 1878: 496: 1638: 1662:
proved that analytic capacity is countably semiadditive. That is, there exists an absolute constant
1181:
Given the partial correspondence between the 1-dimensional Hausdorff measure of a compact subset of
789: 74: 1311: 1038: 946:
is removable. This motivated Painlevé to pose a more general question in 1880: "Which subsets of
943: 550: 1279: 1247: 311: 1873: 1230:
is the union of 4 squares of side length 1/4 and these squares are located in the corners of
8: 1110: 1092: 2014: 1974: 1936: 2088: 2069: 2021: 1992: 1917: 1843: 1815:
David's and Tolsa's theorems together imply that Vitushkin's conjecture is true when
1118: 39: 2085:
Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory
1984: 1909: 1852: 307: 36: 17: 1619:{\displaystyle \operatorname {proj} _{\theta }(x,y):=x\cos \theta +y\sin \theta } 1206: 2009: 25: 1201:) = 0. However, this conjecture is false. A counterexample was first given by 907:{\displaystyle \gamma (A)=\sup\{\gamma (K):K\subset A,\,K{\text{ compact}}\}.} 756:{\displaystyle \gamma (K)=\sup \left|{\frac {1}{2\pi }}\int _{C}f(z)dz\right|} 422:{\displaystyle f'(\infty ):=\lim _{z\to \infty }z\left(f(z)-f(\infty )\right)} 2105: 1996: 1921: 330: 94: 32: 1898:"Smooth Maps, Null-Sets for Integralgeometric Measure and Analytic Capacity" 2037:
Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral
1824: 1659: 934:, every function which is bounded and holomorphic on the set Ω \  70: 1962: 1091:. Its existence can be proved by using a normal family argument involving 1988: 1897: 1028:{\displaystyle f\in {\mathcal {H}}^{\infty }(\mathbf {C} \setminus K)} 59: 1913: 1641:
published a proof in 1998 of Vitushkin's conjecture for the case dim
1098: 1979: 1805:{\displaystyle \gamma (K)\leq C\sum _{i=1}^{\infty }\gamma (K_{i})} 326: 2053:
G. David, Unrectifiable 1-sets have vanishing analytic capacity,
1937:"Positive analytic capacity but zero Buffon needle probability" 1176: 1846: – in Euclidean space, a measure of that set's "size" 662:{\displaystyle f'(\infty )\neq \lim _{z\to \infty }f'(z)} 2043:
J. Garnett, Positive length but zero analytic capacity,
1185:
and its analytic capacity, it might be conjectured that
917: 672:
Equivalently, the analytic capacity may be defined as
1743: 1680: 1557: 1438: 1429:
be a compact set. Vitushkin's conjecture states that
1365: 1314: 1282: 1250: 1041: 987: 840: 792: 681: 605: 553: 499: 436: 342: 272: 106: 1848:
Pages displaying wikidata descriptions as a fallback
483:{\displaystyle f(\infty ):=\lim _{z\to \infty }f(z)} 62:of the space of bounded analytic functions outside 2013: 1804: 1720: 1618: 1540: 1397: 1338: 1300: 1268: 1059: 1027: 906: 813: 755: 661: 591: 539: 482: 421: 298: 255: 2016:Geometry of sets and measures in Euclidean spaces 1099:Analytic capacity in terms of Hausdorff dimension 2103: 2039:. Lecture Notes in Mathematics. Springer-Verlag. 981:, there exists a unique extremal function, i.e. 856: 697: 627: 453: 364: 122: 73:in the 1940s while studying the removability of 1721:{\displaystyle K=\bigcup _{i=1}^{\infty }K_{i}} 1209:in his 1970 paper. This latter example is the 97:. Then its analytic capacity is defined to be 2087:. Progress in Mathematics. Birkhäuser Basel. 940:Riemann's theorem for removable singularities 1967:Journal of the European Mathematical Society 1048: 1042: 898: 859: 250: 211: 204: 125: 1871: 299:{\displaystyle {\mathcal {H}}^{\infty }(U)} 1960: 1464: 1460: 1177:Positive length but zero analytic capacity 938:has an analytic extension to all of Ω. By 2066:Vitushkin's Conjecture for Removable Sets 1978: 1961:Chang, Alan; Tolsa, Xavier (2020-10-05). 1525: 1416: 930:if, whenever Ω is an open set containing 889: 778:satisfying the same conditions as above: 2063: 2008: 1895: 1223: := × be the unit square. Then, 2104: 1934: 1244:is the union of 4 squares (denoted by 2082: 2034: 918:Removable sets and Painlevé's problem 35:is a number that denotes "how big" a 1398:{\displaystyle H^{1}(K)={\sqrt {2}}} 1155:) > 0. However, the case when dim 831:is an arbitrary set, then we define 1963:"Analytic capacity and projections" 968: 13: 1935:Jones, Peter W.; Murai, Takafumi. 1778: 1703: 1486: 1003: 997: 799: 637: 617: 511: 463: 443: 408: 374: 354: 282: 276: 238: 215: 176: 170: 144: 16:In the mathematical discipline of 14: 2123: 2068:. Universitext. Springer-Verlag. 1016: 540:{\displaystyle f'(\infty )=g'(0)} 189: 1012: 774:and the supremum is taken over 185: 1083:). This function is called the 77:of bounded analytic functions. 2020:. Cambridge University Press. 1954: 1944:Pacific Journal of Mathematics 1928: 1889: 1865: 1799: 1786: 1753: 1747: 1583: 1571: 1522: 1519: 1513: 1497: 1461: 1448: 1442: 1382: 1376: 1350:to be the intersection of all 1211:linear four corners Cantor set 1173:) ∈ (0, ∞] is more difficult. 1022: 1008: 871: 865: 850: 844: 802: 796: 739: 733: 691: 685: 656: 650: 634: 620: 614: 586: 572: 563: 557: 534: 528: 514: 508: 477: 471: 460: 446: 440: 411: 405: 396: 390: 371: 357: 351: 293: 287: 241: 235: 195: 181: 151: 147: 141: 129: 116: 110: 50:can become. Roughly speaking, 1: 1858: 814:{\displaystyle f(\infty )=0.} 80: 1872:Solomentsev, E. D. (2001) , 1308:being in the corner of some 1205:, and a much simpler one by 957:is removable if and only if 782:is bounded analytic outside 7: 1879:Encyclopedia of Mathematics 1837: 1339:{\displaystyle Q_{n-1}^{k}} 1060:{\displaystyle \|f\|\leq 1} 592:{\displaystyle g(z)=f(1/z)} 69:It was first introduced by 58:) measures the size of the 10: 2128: 2064:Dudziak, James J. (2010). 1213:, constructed as follows: 1301:{\displaystyle Q_{n}^{j}} 1276:) of side length 4, each 1269:{\displaystyle Q_{n}^{j}} 1896:Mattila, Pertti (1986). 786:, the bound is one, and 953:It is easy to see that 770:is a contour enclosing 2083:Tolsa, Xavier (2014). 2045:Proc. Amer. Math. Soc. 1806: 1782: 1722: 1707: 1620: 1542: 1417:Vitushkin's conjecture 1399: 1340: 1302: 1270: 1061: 1029: 908: 815: 757: 663: 593: 541: 484: 423: 300: 257: 2035:Pajot, Hervé (2002). 1902:Annals of Mathematics 1807: 1762: 1737:is a Borel set, then 1723: 1687: 1674:is a compact set and 1621: 1543: 1400: 1341: 1303: 1271: 1117:denote 1-dimensional 1062: 1030: 909: 816: 758: 664: 594: 542: 485: 424: 301: 258: 1741: 1678: 1666:> 0 such that if 1555: 1436: 1363: 1312: 1280: 1248: 1147:) > 1 guarantees 1039: 985: 838: 790: 679: 603: 551: 497: 434: 340: 270: 104: 2055:Rev. Math. Iberoam. 1658:) < ∞. In 2002, 1482: 1335: 1297: 1265: 1111:Hausdorff dimension 599:. However, usually 306:denotes the set of 2112:Analytic functions 1802: 1718: 1616: 1538: 1468: 1395: 1336: 1315: 1298: 1283: 1266: 1251: 1057: 1025: 904: 811: 753: 659: 641: 589: 537: 480: 467: 419: 378: 296: 253: 2094:978-3-319-00595-9 1989:10.4171/JEMS/1004 1973:(12): 4121–4159. 1844:Capacity of a set 1467: 1459: 1393: 1119:Hausdorff measure 973:For each compact 896: 718: 626: 452: 363: 231: 203: 160: 40:analytic function 22:analytic capacity 2119: 2098: 2079: 2075:978-14419-6708-4 2040: 2031: 2019: 2001: 2000: 1982: 1958: 1952: 1951: 1941: 1932: 1926: 1925: 1893: 1887: 1886: 1869: 1853:Conformal radius 1849: 1811: 1809: 1808: 1803: 1798: 1797: 1781: 1776: 1727: 1725: 1724: 1719: 1717: 1716: 1706: 1701: 1625: 1623: 1622: 1617: 1567: 1566: 1547: 1545: 1544: 1539: 1509: 1508: 1496: 1495: 1490: 1489: 1481: 1476: 1465: 1457: 1404: 1402: 1401: 1396: 1394: 1389: 1375: 1374: 1345: 1343: 1342: 1337: 1334: 1329: 1307: 1305: 1304: 1299: 1296: 1291: 1275: 1273: 1272: 1267: 1264: 1259: 1093:Montel's theorem 1085:Ahlfors function 1066: 1064: 1063: 1058: 1034: 1032: 1031: 1026: 1015: 1007: 1006: 1001: 1000: 969:Ahlfors function 950:are removable?" 922:The compact set 913: 911: 910: 905: 897: 894: 820: 818: 817: 812: 762: 760: 759: 754: 752: 748: 729: 728: 719: 717: 706: 668: 666: 665: 660: 649: 640: 613: 598: 596: 595: 590: 582: 546: 544: 543: 538: 527: 507: 489: 487: 486: 481: 466: 428: 426: 425: 420: 418: 414: 377: 350: 305: 303: 302: 297: 286: 285: 280: 279: 262: 260: 259: 254: 229: 219: 218: 201: 188: 180: 179: 174: 173: 158: 154: 140: 132: 18:complex analysis 2127: 2126: 2122: 2121: 2120: 2118: 2117: 2116: 2102: 2101: 2095: 2076: 2050:(1970), 696–699 2028: 2010:Mattila, Pertti 2005: 2004: 1959: 1955: 1939: 1933: 1929: 1914:10.2307/1971273 1894: 1890: 1870: 1866: 1861: 1847: 1840: 1793: 1789: 1777: 1766: 1742: 1739: 1738: 1736: 1712: 1708: 1702: 1691: 1679: 1676: 1675: 1646: 1631: 1562: 1558: 1556: 1553: 1552: 1504: 1500: 1491: 1485: 1484: 1483: 1477: 1472: 1437: 1434: 1433: 1419: 1388: 1370: 1366: 1364: 1361: 1360: 1358: 1330: 1319: 1313: 1310: 1309: 1292: 1287: 1281: 1278: 1277: 1260: 1255: 1249: 1246: 1245: 1242: 1236: 1229: 1222: 1207:John B. Garnett 1203:A. G. Vitushkin 1179: 1160: 1142: 1137:) = 0 while dim 1108: 1101: 1040: 1037: 1036: 1011: 1002: 996: 995: 994: 986: 983: 982: 971: 920: 893: 839: 836: 835: 791: 788: 787: 724: 720: 710: 705: 704: 700: 680: 677: 676: 642: 630: 606: 604: 601: 600: 578: 552: 549: 548: 520: 500: 498: 495: 494: 456: 435: 432: 431: 386: 382: 367: 343: 341: 338: 337: 281: 275: 274: 273: 271: 268: 267: 214: 210: 184: 175: 169: 168: 167: 150: 133: 128: 105: 102: 101: 83: 12: 11: 5: 2125: 2115: 2114: 2100: 2099: 2093: 2080: 2074: 2061: 2060:(1998) 269–479 2051: 2041: 2032: 2026: 2003: 2002: 1953: 1927: 1908:(2): 303–309. 1888: 1863: 1862: 1860: 1857: 1856: 1855: 1850: 1839: 1836: 1801: 1796: 1792: 1788: 1785: 1780: 1775: 1772: 1769: 1765: 1761: 1758: 1755: 1752: 1749: 1746: 1732: 1715: 1711: 1705: 1700: 1697: 1694: 1690: 1686: 1683: 1642: 1627: 1615: 1612: 1609: 1606: 1603: 1600: 1597: 1594: 1591: 1588: 1585: 1582: 1579: 1576: 1573: 1570: 1565: 1561: 1549: 1548: 1537: 1534: 1531: 1528: 1524: 1521: 1518: 1515: 1512: 1507: 1503: 1499: 1494: 1488: 1480: 1475: 1471: 1463: 1456: 1453: 1450: 1447: 1444: 1441: 1418: 1415: 1392: 1387: 1384: 1381: 1378: 1373: 1369: 1354: 1333: 1328: 1325: 1322: 1318: 1295: 1290: 1286: 1263: 1258: 1254: 1240: 1237:. In general, 1234: 1227: 1220: 1193:) = 0 implies 1178: 1175: 1156: 1138: 1129:) = 0 implies 1104: 1100: 1097: 1056: 1053: 1050: 1047: 1044: 1024: 1021: 1018: 1014: 1010: 1005: 999: 993: 990: 970: 967: 919: 916: 915: 914: 903: 900: 892: 888: 885: 882: 879: 876: 873: 870: 867: 864: 861: 858: 855: 852: 849: 846: 843: 810: 807: 804: 801: 798: 795: 764: 763: 751: 747: 744: 741: 738: 735: 732: 727: 723: 716: 713: 709: 703: 699: 696: 693: 690: 687: 684: 658: 655: 652: 648: 645: 639: 636: 633: 629: 625: 622: 619: 616: 612: 609: 588: 585: 581: 577: 574: 571: 568: 565: 562: 559: 556: 536: 533: 530: 526: 523: 519: 516: 513: 510: 506: 503: 491: 490: 479: 476: 473: 470: 465: 462: 459: 455: 451: 448: 445: 442: 439: 429: 417: 413: 410: 407: 404: 401: 398: 395: 392: 389: 385: 381: 376: 373: 370: 366: 362: 359: 356: 353: 349: 346: 329:subset of the 295: 292: 289: 284: 278: 264: 263: 252: 249: 246: 243: 240: 237: 234: 228: 225: 222: 217: 213: 209: 206: 200: 197: 194: 191: 187: 183: 178: 172: 166: 163: 157: 153: 149: 146: 143: 139: 136: 131: 127: 124: 121: 118: 115: 112: 109: 82: 79: 26:compact subset 9: 6: 4: 3: 2: 2124: 2113: 2110: 2109: 2107: 2096: 2090: 2086: 2081: 2077: 2071: 2067: 2062: 2059: 2056: 2052: 2049: 2046: 2042: 2038: 2033: 2029: 2027:0-521-65595-1 2023: 2018: 2017: 2011: 2007: 2006: 1998: 1994: 1990: 1986: 1981: 1976: 1972: 1968: 1964: 1957: 1949: 1945: 1938: 1931: 1923: 1919: 1915: 1911: 1907: 1903: 1899: 1892: 1885: 1881: 1880: 1875: 1868: 1864: 1854: 1851: 1845: 1842: 1841: 1835: 1833: 1828: 1826: 1822: 1818: 1813: 1794: 1790: 1783: 1773: 1770: 1767: 1763: 1759: 1756: 1750: 1744: 1735: 1731: 1728:, where each 1713: 1709: 1698: 1695: 1692: 1688: 1684: 1681: 1673: 1669: 1665: 1661: 1657: 1653: 1649: 1645: 1640: 1636: 1634: 1630: 1613: 1610: 1607: 1604: 1601: 1598: 1595: 1592: 1589: 1586: 1580: 1577: 1574: 1568: 1563: 1559: 1535: 1532: 1529: 1526: 1516: 1510: 1505: 1501: 1492: 1478: 1473: 1469: 1454: 1451: 1445: 1439: 1432: 1431: 1430: 1428: 1424: 1414: 1412: 1408: 1390: 1385: 1379: 1371: 1367: 1357: 1353: 1349: 1331: 1326: 1323: 1320: 1316: 1293: 1288: 1284: 1261: 1256: 1252: 1243: 1233: 1226: 1219: 1214: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1174: 1172: 1168: 1164: 1159: 1154: 1150: 1146: 1141: 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1107: 1096: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1054: 1051: 1045: 1019: 991: 988: 980: 976: 966: 964: 960: 956: 951: 949: 945: 941: 937: 933: 929: 925: 901: 895: compact 890: 886: 883: 880: 877: 874: 868: 862: 853: 847: 841: 834: 833: 832: 830: 826: 821: 808: 805: 793: 785: 781: 777: 773: 769: 749: 745: 742: 736: 730: 725: 721: 714: 711: 707: 701: 694: 688: 682: 675: 674: 673: 670: 653: 646: 643: 631: 623: 610: 607: 583: 579: 575: 569: 566: 560: 554: 531: 524: 521: 517: 504: 501: 474: 468: 457: 449: 437: 430: 415: 402: 399: 393: 387: 383: 379: 368: 360: 347: 344: 336: 335: 334: 332: 331:complex plane 328: 324: 320: 316: 313: 309: 290: 247: 244: 232: 226: 223: 220: 207: 198: 192: 164: 161: 155: 137: 134: 119: 113: 107: 100: 99: 98: 96: 92: 88: 78: 76: 75:singularities 72: 67: 65: 61: 57: 53: 49: 46: \  45: 41: 38: 34: 33:complex plane 30: 27: 23: 19: 2084: 2065: 2057: 2054: 2047: 2044: 2036: 2015: 1970: 1966: 1956: 1950:(1): 99–114. 1947: 1943: 1930: 1905: 1901: 1891: 1877: 1867: 1831: 1829: 1825:sigma-finite 1820: 1816: 1814: 1733: 1729: 1671: 1667: 1663: 1660:Xavier Tolsa 1655: 1651: 1647: 1643: 1637: 1632: 1628: 1550: 1426: 1422: 1420: 1410: 1406: 1355: 1351: 1347: 1238: 1231: 1224: 1217: 1215: 1210: 1198: 1194: 1190: 1186: 1182: 1180: 1170: 1166: 1162: 1157: 1152: 1148: 1144: 1139: 1134: 1130: 1126: 1122: 1114: 1105: 1102: 1088: 1084: 1080: 1076: 1072: 1071:(∞) = 0 and 1068: 978: 974: 972: 962: 958: 954: 952: 947: 935: 931: 927: 923: 921: 828: 824: 822: 783: 779: 775: 771: 767: 765: 671: 492: 322: 318: 314: 265: 90: 86: 84: 71:Lars Ahlfors 68: 63: 55: 51: 47: 43: 28: 21: 15: 1830:In the non 333:. Further, 321:, whenever 1980:1712.00594 1874:"Capacity" 1859:References 1165:) = 1 and 1035:such that 926:is called 493:Note that 81:Definition 1997:1435-9855 1922:0003-486X 1884:EMS Press 1784:γ 1779:∞ 1764:∑ 1757:≤ 1745:γ 1704:∞ 1689:⋃ 1639:Guy David 1614:θ 1611:⁡ 1599:θ 1596:⁡ 1569:⁡ 1564:θ 1530:θ 1511:⁡ 1506:θ 1479:π 1470:∫ 1462:⟺ 1440:γ 1324:− 1052:≤ 1049:‖ 1043:‖ 1017:∖ 1004:∞ 992:∈ 944:singleton 928:removable 881:⊂ 863:γ 842:γ 800:∞ 722:∫ 715:π 683:γ 638:∞ 635:→ 624:≠ 618:∞ 512:∞ 464:∞ 461:→ 444:∞ 409:∞ 400:− 375:∞ 372:→ 355:∞ 312:functions 310:analytic 283:∞ 239:∞ 221:≤ 216:∞ 212:‖ 205:‖ 190:∖ 177:∞ 165:∈ 145:∞ 108:γ 60:unit ball 2106:Category 2012:(1995). 1838:See also 1650:= 1 and 942:, every 647:′ 611:′ 547:, where 525:′ 505:′ 348:′ 138:′ 1413:) = 0. 1346:. Take 1121:. Then 1109:denote 1103:Let dim 308:bounded 95:compact 37:bounded 31:of the 2091:  2072:  2024:  1995:  1920:  1551:where 1466:  1458:  1075:(∞) = 766:where 325:is an 266:Here, 230:  202:  159:  20:, the 1975:arXiv 1940:(PDF) 1635:≠ 1. 1359:then 24:of a 2089:ISBN 2070:ISBN 2022:ISBN 1993:ISSN 1918:ISSN 1560:proj 1502:proj 1421:Let 1405:but 1216:Let 1113:and 327:open 85:Let 1985:doi 1948:133 1910:doi 1906:123 1819:is 1608:sin 1593:cos 1087:of 857:sup 823:If 698:sup 628:lim 454:lim 365:lim 123:sup 93:be 42:on 2108:: 2058:14 2048:21 1991:. 1983:. 1971:22 1969:. 1965:. 1946:. 1942:. 1916:. 1904:. 1900:. 1882:, 1876:, 1827:. 1812:. 1670:⊂ 1587::= 1425:⊂ 1095:. 1073:f′ 1067:, 977:⊂ 827:⊂ 809:0. 669:. 450::= 361::= 317:→ 89:⊂ 66:. 2097:. 2078:. 2030:. 1999:. 1987:: 1977:: 1924:. 1912:: 1832:H 1823:- 1821:H 1817:K 1800:) 1795:i 1791:K 1787:( 1774:1 1771:= 1768:i 1760:C 1754:) 1751:K 1748:( 1734:i 1730:K 1714:i 1710:K 1699:1 1696:= 1693:i 1685:= 1682:K 1672:C 1668:K 1664:C 1656:K 1654:( 1652:H 1648:K 1644:H 1633:K 1629:H 1605:y 1602:+ 1590:x 1584:) 1581:y 1578:, 1575:x 1572:( 1536:0 1533:= 1527:d 1523:) 1520:) 1517:K 1514:( 1498:( 1493:1 1487:H 1474:0 1455:0 1452:= 1449:) 1446:K 1443:( 1427:C 1423:K 1411:K 1409:( 1407:γ 1391:2 1386:= 1383:) 1380:K 1377:( 1372:1 1368:H 1356:n 1352:K 1348:K 1332:k 1327:1 1321:n 1317:Q 1294:j 1289:n 1285:Q 1262:j 1257:n 1253:Q 1241:n 1239:K 1235:0 1232:K 1228:1 1225:K 1221:0 1218:K 1199:K 1197:( 1195:H 1191:K 1189:( 1187:γ 1183:C 1171:K 1169:( 1167:H 1163:K 1161:( 1158:H 1153:K 1151:( 1149:γ 1145:K 1143:( 1140:H 1135:K 1133:( 1131:γ 1127:K 1125:( 1123:H 1115:H 1106:H 1089:K 1081:K 1079:( 1077:γ 1069:f 1055:1 1046:f 1023:) 1020:K 1013:C 1009:( 998:H 989:f 979:C 975:K 963:K 961:( 959:γ 955:K 948:C 936:K 932:K 924:K 902:. 899:} 891:K 887:, 884:A 878:K 875:: 872:) 869:K 866:( 860:{ 854:= 851:) 848:A 845:( 829:C 825:A 806:= 803:) 797:( 794:f 784:K 780:f 776:f 772:K 768:C 750:| 746:z 743:d 740:) 737:z 734:( 731:f 726:C 712:2 708:1 702:| 695:= 692:) 689:K 686:( 657:) 654:z 651:( 644:f 632:z 621:) 615:( 608:f 587:) 584:z 580:/ 576:1 573:( 570:f 567:= 564:) 561:z 558:( 555:g 535:) 532:0 529:( 522:g 518:= 515:) 509:( 502:f 478:) 475:z 472:( 469:f 458:z 447:) 441:( 438:f 416:) 412:) 406:( 403:f 397:) 394:z 391:( 388:f 384:( 380:z 369:z 358:) 352:( 345:f 323:U 319:C 315:U 294:) 291:U 288:( 277:H 251:} 248:0 245:= 242:) 236:( 233:f 227:, 224:1 208:f 199:, 196:) 193:K 186:C 182:( 171:H 162:f 156:; 152:| 148:) 142:( 135:f 130:| 126:{ 120:= 117:) 114:K 111:( 91:C 87:K 64:K 56:K 54:( 52:γ 48:K 44:C 29:K

Index

complex analysis
compact subset
complex plane
bounded
analytic function
unit ball
Lars Ahlfors
singularities
compact
bounded
functions
open
complex plane
Riemann's theorem for removable singularities
singleton
Montel's theorem
Hausdorff dimension
Hausdorff measure
A. G. Vitushkin
John B. Garnett
Guy David
Xavier Tolsa
sigma-finite
Capacity of a set
Conformal radius
"Capacity"
Encyclopedia of Mathematics
EMS Press
"Smooth Maps, Null-Sets for Integralgeometric Measure and Analytic Capacity"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.