Knowledge

Arnoldi iteration

Source 📝

2522: 1904: 2124: 1554: 2517:{\displaystyle {\tilde {H}}_{n}={\begin{bmatrix}h_{1,1}&h_{1,2}&h_{1,3}&\cdots &h_{1,n}\\h_{2,1}&h_{2,2}&h_{2,3}&\cdots &h_{2,n}\\0&h_{3,2}&h_{3,3}&\cdots &h_{3,n}\\\vdots &\ddots &\ddots &\ddots &\vdots \\\vdots &&0&h_{n,n-1}&h_{n,n}\\0&\cdots &\cdots &0&h_{n+1,n}\end{bmatrix}}} 1899:{\displaystyle H_{n}={\begin{bmatrix}h_{1,1}&h_{1,2}&h_{1,3}&\cdots &h_{1,n}\\h_{2,1}&h_{2,2}&h_{2,3}&\cdots &h_{2,n}\\0&h_{3,2}&h_{3,3}&\cdots &h_{3,n}\\\vdots &\ddots &\ddots &\ddots &\vdots \\0&\cdots &0&h_{n,n-1}&h_{n,n}\end{bmatrix}}.} 2751:
Due to practical storage consideration, common implementations of Arnoldi methods typically restart after a fixed number of iterations. One approach is the Implicitly Restarted Arnoldi Method (IRAM) by Lehoucq and Sorensen, which was popularized in the free and open source software package
332: 2586:. Also Francis' algorithm itself can be considered to be related to power iterations, operating on nested Krylov subspace. In fact, the most basic form of Francis' algorithm appears to be to choose 2113: 2739: 1474: 798: 1986: 1951: 532: 384: 188: 444: 236: 224: 1507: 746: 2742:
Arnoldi iteration demonstrating convergence of Ritz values (red) to the eigenvalues (black) of a 400x400 matrix, composed of uniform random values on the domain
408: 118: 65:
The Arnoldi method belongs to a class of linear algebra algorithms that give a partial result after a small number of iterations, in contrast to so-called
3034: 1479:
The orthogonalization method has to be specifically chosen such that the lower Arnoldi/Krylov components are removed from higher Krylov vectors. As
3155: 3180: 3175: 3027: 2756:. Another approach is the Krylov-Schur Algorithm by G. W. Stewart, which is more stable and simpler to implement than IRAM. 2885: 2765: 813: 927:
One less than the dimension of the Krylov subspace, or equivalently the *degree* of the Krylov space. Must be >= 1.
3201: 3134: 3020: 2996: 2981: 2966: 2050: 3165: 3092: 2847:
R. B. Lehoucq & D. C. Sorensen (1996). "Deflation Techniques for an Implicitly Restarted Arnoldi Iteration".
843: 1418: 3124: 2886:"ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods" 2578:
is a Hessenberg matrix of modest size, its eigenvalues can be computed efficiently, for instance with the
2037:. This optimality problem has a unique solution if and only if the Arnoldi iteration does not break down. 751: 2947:
W. E. Arnoldi, "The principle of minimized iterations in the solution of the matrix eigenvalue problem,"
1960: 1925: 506: 358: 3078: 73:). The partial result in this case being the first few vectors of the basis the algorithm is building. 70: 3129: 2583: 1998: 3043: 346: 166: 327:{\displaystyle K_{n}={\begin{bmatrix}b&Ab&A^{2}b&\cdots &A^{n-1}b\end{bmatrix}}.} 455: 342: 2794: 2619:
It is often observed in practice that some of the Ritz eigenvalues converge to eigenvalues of
824:. In most applications of the Arnoldi iteration, including the eigenvalue algorithm below and 413: 193: 3088: 2648:
can be approximated. Typically, the Ritz eigenvalues converge to the largest eigenvalues of
1482: 3083: 2613: 2553: 724: 51: 31: 3005:
comes with ARPACK built-in. Both stored and implicit matrices can be analyzed through the
8: 3062: 2723:
However, the details are not fully understood yet. This is in contrast to the case where
190:. However, much potentially useful computation is wasted by using only the final result, 2834: 2795:"The principle of minimized iterations in the solution of the matrix eigenvalue problem" 939:
An m x (n + 1) array, where the columns are an orthonormal basis of the Krylov subspace.
393: 103: 20: 3006: 2911: 92:
An intuitive method for finding the largest (in absolute value) eigenvalue of a given
2992: 2977: 2962: 2931: 2816: 2732: 1396: 77: 3098: 2923: 2864: 2856: 2806: 2728: 2030: 47: 35: 3139: 900:"""Compute a basis of the (n + 1)-Krylov subspace of the matrix A. 351: 121: 55: 3057: 23: 2927: 2889: 2860: 3195: 3103: 2935: 2820: 81: 59: 3012: 2579: 125: 2954: 2556:
is to compute the eigenvalues in the Krylov subspace. The eigenvalues of
387: 160: 43: 2811: 2869: 2660:
should be used instead. This can be related to the characterization of
338: 39: 3119: 2605:. Improved versions include one or more shifts, and higher powers of 2738: 2716:(and thus the Ritz eigenvalues) will be close to the eigenvalues of 349:. The resulting set of vectors is thus an orthogonal basis of the 2883: 2989:
Preconditioned Arnoldi Methods for Systems of Nonlinear Equations
2547: 163:
corresponding to the eigenvalue with the largest absolute value,
69:
which must complete to give any useful results (see for example,
1997:
can be characterized by the following optimality condition. The
800:. This ensures the orthogonality of all the generated vectors. 3170: 3160: 3002: 2753: 903:
This is the space spanned by the vectors {b, Ab, ..., A^n b}.
847: 825: 390:
good approximations of the eigenvectors corresponding to the
152:
normalizing the result after every application of the matrix
58:, which makes it particularly useful when dealing with large 2846: 945:
An (n + 1) x n array. A on basis Q. It is upper Hessenberg.
87: 2669:
as the matrix whose characteristic polynomial minimizes ||
835:-loop takes one matrix-vector product and approximately 4 2976:, Society for Industrial and Applied Mathematics, 1997. 2837:
Washington State University. Retrieved 14 December 2022
2731:. In that situation, the Arnoldi iteration becomes the 2155: 1576: 1337: 258: 2127: 2053: 1963: 1928: 1557: 1485: 1421: 754: 727: 509: 416: 396: 361: 239: 196: 169: 106: 76:
When applied to Hermitian matrices it reduces to the
2884:
R. B. Lehoucq; D. C. Sorensen & C. Yang (1998).
226:. This suggests that instead, we form the so-called 2912:"A Krylov--Schur Algorithm for Large Eigenproblems" 2516: 2107: 1980: 1945: 1898: 1501: 1468: 792: 740: 526: 438: 402: 378: 326: 218: 182: 112: 1953:with the Arnoldi vectors as an orthogonal basis; 3193: 2916:SIAM Journal on Matrix Analysis and Applications 2849:SIAM Journal on Matrix Analysis and Applications 2959:Numerical Methods for Large Eigenvalue Problems 16:Iterative method for approximating eigenvectors 2746: 2548:Finding eigenvalues with the Arnoldi iteration 2108:{\displaystyle AQ_{n}=Q_{n+1}{\tilde {H}}_{n}} 2044:matrices in subsequent iterations is given by 1173:# Subtract the projections on previous vectors 458:to produce a sequence of orthonormal vectors, 410:largest eigenvalues, for the same reason that 386:. We may expect the vectors of this basis to 337:The columns of this matrix are not in general 3028: 1284:# Add the produced vector to the list, unless 828:, the algorithm has converged at this point. 3042: 54:by constructing an orthonormal basis of the 2684:|| in the following way. A good way to get 534:. Explicitly, the algorithm is as follows: 3035: 3021: 812:is the zero vector. This happens when the 2868: 2810: 2735:, for which the theory is more complete. 80:. The Arnoldi iteration was invented by 38:. Arnoldi finds an approximation to the 2737: 2644:eigenvalues, and not all eigenvalues of 2552:The idea of the Arnoldi iteration as an 2535:matrix formed by adding an extra row to 1526:by construction, they are orthogonal to 449: 88:Krylov subspaces and the power iteration 3166:Basic Linear Algebra Subprograms (BLAS) 2972:Lloyd N. Trefethen and David Bau, III, 2909: 2792: 446:approximates the dominant eigenvector. 3194: 1469:{\displaystyle H_{n}=Q_{n}^{*}AQ_{n}.} 124:: starting with an arbitrary initial 3016: 2961:, Manchester University Press, 1992. 2652:. To get the smallest eigenvalues of 2692:) small is to choose the polynomial 793:{\displaystyle q_{1},\dots ,q_{k-1}} 721:-loop projects out the component of 2766:generalized minimal residual method 1338:Properties of the Arnoldi iteration 1083:# Use it as the first Krylov vector 341:, but we can extract an orthogonal 13: 2609:may be applied in a single steps. 1981:{\displaystyle {\mathcal {K}}_{n}} 1967: 1946:{\displaystyle {\mathcal {K}}_{n}} 1932: 1308:# If that happens, stop iterating. 527:{\displaystyle {\mathcal {K}}_{n}} 513: 379:{\displaystyle {\mathcal {K}}_{n}} 365: 14: 3213: 2949:Quarterly of Applied Mathematics 1149:# Generate a new candidate vector 2799:Quarterly of Applied Mathematics 2768:(GMRES) is a method for solving 1957:is orthogonally projected onto 1399:) matrix formed by the numbers 803:The algorithm breaks down when 454:The Arnoldi iteration uses the 159:This sequence converges to the 34:and an important example of an 2951:, volume 9, pages 17–29, 1951. 2903: 2877: 2840: 2827: 2786: 2135: 2093: 347:Gram–Schmidt orthogonalization 1: 2779: 2656:, the inverse (operation) of 1509:can be expressed in terms of 456:modified Gram–Schmidt process 2776:based on Arnoldi iteration. 1038:# Normalize the input vector 842:In the programming language 183:{\displaystyle \lambda _{1}} 7: 2759: 2747:Restarted Arnoldi iteration 1412:computed by the algorithm: 1359:matrix formed by the first 839:floating point operations. 10: 3218: 3079:System of linear equations 2612:This is an example of the 921:Initial vector (length m). 71:Householder transformation 3148: 3130:Cache-oblivious algorithm 3112: 3071: 3050: 2928:10.1137/S0895479800371529 2861:10.1137/S0895479895281484 2601:to the full dimension of 2040:The relation between the 1999:characteristic polynomial 540:with an arbitrary vector 503:span the Krylov subspace 46:of general (possibly non- 3202:Numerical linear algebra 3181:General purpose software 3044:Numerical linear algebra 2974:Numerical Linear Algebra 852: 439:{\displaystyle A^{n-1}b} 219:{\displaystyle A^{n-1}b} 2910:Stewart, G. W. (2002). 2793:Arnoldi, W. E. (1951). 2582:, or somewhat related, 345:, via a method such as 2888:. SIAM. Archived from 2743: 2712:. Hence, the zeros of 2518: 2109: 1982: 1947: 1900: 1503: 1502:{\displaystyle Aq_{i}} 1470: 794: 742: 528: 483:, such that for every 440: 404: 380: 328: 220: 184: 114: 3176:Specialized libraries 3089:Matrix multiplication 3084:Matrix decompositions 2741: 2519: 2110: 1983: 1948: 1901: 1504: 1471: 795: 748:in the directions of 743: 741:{\displaystyle q_{k}} 529: 450:The Arnoldi iteration 441: 405: 381: 329: 221: 185: 115: 2708:is an eigenvalue of 2704:) is small whenever 2614:Rayleigh-Ritz method 2554:eigenvalue algorithm 2125: 2051: 1961: 1926: 1555: 1483: 1419: 942:h : numpy.array 936:Q : numpy.array 846:with support of the 752: 725: 507: 414: 394: 359: 237: 194: 167: 104: 32:eigenvalue algorithm 3063:Numerical stability 2987:Jaschke, Leonhard: 1449: 918:b : array_like 912:A : array_like 2835:Francis' Algorithm 2833:David S. Watkins. 2744: 2584:Francis' algorithm 2514: 2508: 2105: 1978: 1943: 1896: 1887: 1499: 1466: 1435: 948:""" 831:Every step of the 814:minimal polynomial 790: 738: 524: 479:, ..., called the 436: 400: 376: 324: 315: 216: 180: 110: 3189: 3188: 2812:10.1090/qam/42792 2733:Lanczos iteration 2640:, it has at most 2138: 2096: 2031:monic polynomials 1918:can be viewed as 870:arnoldi_iteration 672: := ‖ 403:{\displaystyle n} 113:{\displaystyle A} 78:Lanczos algorithm 28:Arnoldi iteration 3209: 3099:Matrix splitting 3037: 3030: 3023: 3014: 3013: 3001:Implementation: 2940: 2939: 2907: 2901: 2900: 2898: 2897: 2881: 2875: 2874: 2872: 2844: 2838: 2831: 2825: 2824: 2814: 2790: 2597:, and extending 2567:Ritz eigenvalues 2523: 2521: 2520: 2515: 2513: 2512: 2505: 2504: 2459: 2458: 2441: 2440: 2413: 2377: 2376: 2354: 2353: 2336: 2335: 2311: 2310: 2288: 2287: 2270: 2269: 2252: 2251: 2232: 2231: 2209: 2208: 2191: 2190: 2173: 2172: 2146: 2145: 2140: 2139: 2131: 2114: 2112: 2111: 2106: 2104: 2103: 2098: 2097: 2089: 2085: 2084: 2066: 2065: 1987: 1985: 1984: 1979: 1977: 1976: 1971: 1970: 1952: 1950: 1949: 1944: 1942: 1941: 1936: 1935: 1922:in the subspace 1905: 1903: 1902: 1897: 1892: 1891: 1884: 1883: 1866: 1865: 1798: 1797: 1775: 1774: 1757: 1756: 1732: 1731: 1709: 1708: 1691: 1690: 1673: 1672: 1653: 1652: 1630: 1629: 1612: 1611: 1594: 1593: 1567: 1566: 1508: 1506: 1505: 1500: 1498: 1497: 1475: 1473: 1472: 1467: 1462: 1461: 1448: 1443: 1431: 1430: 1363:Arnoldi vectors 1333: 1330: 1327: 1324: 1321: 1318: 1315: 1312: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1261: 1258: 1255: 1252: 1249: 1246: 1243: 1240: 1237: 1234: 1231: 1228: 1225: 1222: 1219: 1216: 1213: 1210: 1207: 1204: 1201: 1198: 1195: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1069: 1066: 1063: 1060: 1057: 1054: 1051: 1048: 1045: 1042: 1039: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 1003: 1000: 997: 994: 991: 988: 985: 982: 979: 976: 973: 970: 967: 964: 961: 958: 955: 952: 949: 946: 943: 940: 937: 934: 931: 928: 925: 922: 919: 916: 913: 910: 907: 904: 901: 898: 895: 892: 889: 886: 883: 880: 877: 874: 871: 868: 865: 862: 859: 856: 799: 797: 796: 791: 789: 788: 764: 763: 747: 745: 744: 739: 737: 736: 682: 533: 531: 530: 525: 523: 522: 517: 516: 445: 443: 442: 437: 432: 431: 409: 407: 406: 401: 385: 383: 382: 377: 375: 374: 369: 368: 333: 331: 330: 325: 320: 319: 309: 308: 283: 282: 249: 248: 225: 223: 222: 217: 212: 211: 189: 187: 186: 181: 179: 178: 151: 119: 117: 116: 111: 36:iterative method 3217: 3216: 3212: 3211: 3210: 3208: 3207: 3206: 3192: 3191: 3190: 3185: 3144: 3140:Multiprocessing 3108: 3104:Sparse problems 3067: 3046: 3041: 2944: 2943: 2908: 2904: 2895: 2893: 2882: 2878: 2845: 2841: 2832: 2828: 2791: 2787: 2782: 2762: 2749: 2683: 2668: 2631: 2596: 2590:to be equal to 2577: 2565:are called the 2564: 2550: 2543: 2507: 2506: 2488: 2484: 2482: 2477: 2472: 2467: 2461: 2460: 2448: 2444: 2442: 2424: 2420: 2418: 2412: 2406: 2405: 2400: 2395: 2390: 2385: 2379: 2378: 2366: 2362: 2360: 2355: 2343: 2339: 2337: 2325: 2321: 2319: 2313: 2312: 2300: 2296: 2294: 2289: 2277: 2273: 2271: 2259: 2255: 2253: 2241: 2237: 2234: 2233: 2221: 2217: 2215: 2210: 2198: 2194: 2192: 2180: 2176: 2174: 2162: 2158: 2151: 2150: 2141: 2130: 2129: 2128: 2126: 2123: 2122: 2099: 2088: 2087: 2086: 2074: 2070: 2061: 2057: 2052: 2049: 2048: 2028: 2024: 2009: 1996: 1972: 1966: 1965: 1964: 1962: 1959: 1958: 1937: 1931: 1930: 1929: 1927: 1924: 1923: 1917: 1886: 1885: 1873: 1869: 1867: 1849: 1845: 1843: 1838: 1833: 1827: 1826: 1821: 1816: 1811: 1806: 1800: 1799: 1787: 1783: 1781: 1776: 1764: 1760: 1758: 1746: 1742: 1740: 1734: 1733: 1721: 1717: 1715: 1710: 1698: 1694: 1692: 1680: 1676: 1674: 1662: 1658: 1655: 1654: 1642: 1638: 1636: 1631: 1619: 1615: 1613: 1601: 1597: 1595: 1583: 1579: 1572: 1571: 1562: 1558: 1556: 1553: 1552: 1544: 1535: 1525: 1515: 1493: 1489: 1484: 1481: 1480: 1457: 1453: 1444: 1439: 1426: 1422: 1420: 1417: 1416: 1411: 1394: 1385: 1376: 1369: 1350: 1340: 1335: 1334: 1331: 1328: 1325: 1322: 1319: 1316: 1313: 1310: 1307: 1304: 1301: 1298: 1295: 1292: 1289: 1286: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1262: 1259: 1256: 1253: 1250: 1247: 1244: 1241: 1238: 1235: 1232: 1229: 1226: 1223: 1220: 1217: 1214: 1211: 1208: 1205: 1202: 1199: 1196: 1193: 1190: 1187: 1184: 1181: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1109: 1106: 1103: 1100: 1097: 1094: 1091: 1088: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1058: 1055: 1052: 1049: 1046: 1043: 1040: 1037: 1034: 1031: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 998: 995: 992: 989: 986: 983: 980: 977: 974: 971: 968: 965: 962: 959: 956: 953: 950: 947: 944: 941: 938: 935: 932: 929: 926: 923: 920: 917: 915:An m × m array. 914: 911: 908: 905: 902: 899: 896: 893: 890: 887: 884: 881: 878: 875: 872: 869: 866: 863: 860: 857: 854: 811: 778: 774: 759: 755: 753: 750: 749: 732: 728: 726: 723: 722: 715: 714: 700: 691: 681: 673: 671: 658: 650: 639: 630: 622: 614: 605: 575: 562: 546: 518: 512: 511: 510: 508: 505: 504: 502: 493: 481:Arnoldi vectors 478: 471: 464: 452: 421: 417: 415: 412: 411: 395: 392: 391: 370: 364: 363: 362: 360: 357: 356: 352:Krylov subspace 314: 313: 298: 294: 292: 287: 278: 274: 272: 264: 254: 253: 244: 240: 238: 235: 234: 201: 197: 195: 192: 191: 174: 170: 168: 165: 164: 132: 130: 122:power iteration 105: 102: 101: 90: 60:sparse matrices 56:Krylov subspace 17: 12: 11: 5: 3215: 3205: 3204: 3187: 3186: 3184: 3183: 3178: 3173: 3168: 3163: 3158: 3152: 3150: 3146: 3145: 3143: 3142: 3137: 3132: 3127: 3122: 3116: 3114: 3110: 3109: 3107: 3106: 3101: 3096: 3086: 3081: 3075: 3073: 3069: 3068: 3066: 3065: 3060: 3058:Floating point 3054: 3052: 3048: 3047: 3040: 3039: 3032: 3025: 3017: 3011: 3010: 2999: 2985: 2970: 2952: 2942: 2941: 2922:(3): 601–614. 2902: 2876: 2855:(4): 789–821. 2839: 2826: 2784: 2783: 2781: 2778: 2761: 2758: 2748: 2745: 2681: 2664: 2627: 2594: 2573: 2560: 2549: 2546: 2539: 2525: 2524: 2511: 2503: 2500: 2497: 2494: 2491: 2487: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2462: 2457: 2454: 2451: 2447: 2443: 2439: 2436: 2433: 2430: 2427: 2423: 2419: 2417: 2414: 2411: 2408: 2407: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2380: 2375: 2372: 2369: 2365: 2361: 2359: 2356: 2352: 2349: 2346: 2342: 2338: 2334: 2331: 2328: 2324: 2320: 2318: 2315: 2314: 2309: 2306: 2303: 2299: 2295: 2293: 2290: 2286: 2283: 2280: 2276: 2272: 2268: 2265: 2262: 2258: 2254: 2250: 2247: 2244: 2240: 2236: 2235: 2230: 2227: 2224: 2220: 2216: 2214: 2211: 2207: 2204: 2201: 2197: 2193: 2189: 2186: 2183: 2179: 2175: 2171: 2168: 2165: 2161: 2157: 2156: 2154: 2149: 2144: 2137: 2134: 2116: 2115: 2102: 2095: 2092: 2083: 2080: 2077: 2073: 2069: 2064: 2060: 2056: 2026: 2022: 2005: 1992: 1988:. The matrix 1975: 1969: 1940: 1934: 1913: 1907: 1906: 1895: 1890: 1882: 1879: 1876: 1872: 1868: 1864: 1861: 1858: 1855: 1852: 1848: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1828: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1801: 1796: 1793: 1790: 1786: 1782: 1780: 1777: 1773: 1770: 1767: 1763: 1759: 1755: 1752: 1749: 1745: 1741: 1739: 1736: 1735: 1730: 1727: 1724: 1720: 1716: 1714: 1711: 1707: 1704: 1701: 1697: 1693: 1689: 1686: 1683: 1679: 1675: 1671: 1668: 1665: 1661: 1657: 1656: 1651: 1648: 1645: 1641: 1637: 1635: 1632: 1628: 1625: 1622: 1618: 1614: 1610: 1607: 1604: 1600: 1596: 1592: 1589: 1586: 1582: 1578: 1577: 1575: 1570: 1565: 1561: 1540: 1530: 1520: 1513: 1496: 1492: 1488: 1477: 1476: 1465: 1460: 1456: 1452: 1447: 1442: 1438: 1434: 1429: 1425: 1403: 1395:be the (upper 1390: 1381: 1374: 1367: 1346: 1339: 1336: 853: 807: 787: 784: 781: 777: 773: 770: 767: 762: 758: 735: 731: 705: 696: 687: 677: 662: 654: 641: 635: 626: 618: 610: 596: 570: 558: 554:= 2, 3, ... 544: 536: 521: 515: 498: 491: 487:, the vectors 476: 469: 462: 451: 448: 435: 430: 427: 424: 420: 399: 373: 367: 335: 334: 323: 318: 312: 307: 304: 301: 297: 293: 291: 288: 286: 281: 277: 273: 271: 268: 265: 263: 260: 259: 257: 252: 247: 243: 215: 210: 207: 204: 200: 177: 173: 128: 109: 89: 86: 67:direct methods 24:linear algebra 15: 9: 6: 4: 3: 2: 3214: 3203: 3200: 3199: 3197: 3182: 3179: 3177: 3174: 3172: 3169: 3167: 3164: 3162: 3159: 3157: 3154: 3153: 3151: 3147: 3141: 3138: 3136: 3133: 3131: 3128: 3126: 3123: 3121: 3118: 3117: 3115: 3111: 3105: 3102: 3100: 3097: 3094: 3090: 3087: 3085: 3082: 3080: 3077: 3076: 3074: 3070: 3064: 3061: 3059: 3056: 3055: 3053: 3049: 3045: 3038: 3033: 3031: 3026: 3024: 3019: 3018: 3015: 3008: 3004: 3000: 2998: 2997:2-84976-001-3 2994: 2990: 2986: 2983: 2982:0-89871-361-7 2979: 2975: 2971: 2968: 2967:0-7190-3386-1 2964: 2960: 2956: 2953: 2950: 2946: 2945: 2937: 2933: 2929: 2925: 2921: 2917: 2913: 2906: 2892:on 2007-06-26 2891: 2887: 2880: 2871: 2866: 2862: 2858: 2854: 2850: 2843: 2836: 2830: 2822: 2818: 2813: 2808: 2804: 2800: 2796: 2789: 2785: 2777: 2775: 2771: 2767: 2757: 2755: 2740: 2736: 2734: 2730: 2726: 2721: 2719: 2715: 2711: 2707: 2703: 2699: 2695: 2691: 2687: 2680: 2676: 2672: 2667: 2663: 2659: 2655: 2651: 2647: 2643: 2639: 2635: 2630: 2626: 2622: 2617: 2615: 2610: 2608: 2604: 2600: 2593: 2589: 2585: 2581: 2576: 2572: 2568: 2563: 2559: 2555: 2545: 2542: 2538: 2534: 2530: 2509: 2501: 2498: 2495: 2492: 2489: 2485: 2479: 2474: 2469: 2464: 2455: 2452: 2449: 2445: 2437: 2434: 2431: 2428: 2425: 2421: 2415: 2409: 2402: 2397: 2392: 2387: 2382: 2373: 2370: 2367: 2363: 2357: 2350: 2347: 2344: 2340: 2332: 2329: 2326: 2322: 2316: 2307: 2304: 2301: 2297: 2291: 2284: 2281: 2278: 2274: 2266: 2263: 2260: 2256: 2248: 2245: 2242: 2238: 2228: 2225: 2222: 2218: 2212: 2205: 2202: 2199: 2195: 2187: 2184: 2181: 2177: 2169: 2166: 2163: 2159: 2152: 2147: 2142: 2132: 2121: 2120: 2119: 2100: 2090: 2081: 2078: 2075: 2071: 2067: 2062: 2058: 2054: 2047: 2046: 2045: 2043: 2038: 2036: 2032: 2021: 2017: 2013: 2008: 2004: 2000: 1995: 1991: 1973: 1956: 1938: 1921: 1916: 1912: 1893: 1888: 1880: 1877: 1874: 1870: 1862: 1859: 1856: 1853: 1850: 1846: 1840: 1835: 1830: 1823: 1818: 1813: 1808: 1803: 1794: 1791: 1788: 1784: 1778: 1771: 1768: 1765: 1761: 1753: 1750: 1747: 1743: 1737: 1728: 1725: 1722: 1718: 1712: 1705: 1702: 1699: 1695: 1687: 1684: 1681: 1677: 1669: 1666: 1663: 1659: 1649: 1646: 1643: 1639: 1633: 1626: 1623: 1620: 1616: 1608: 1605: 1602: 1598: 1590: 1587: 1584: 1580: 1573: 1568: 1563: 1559: 1551: 1550: 1549: 1548:We then have 1546: 1543: 1539: 1533: 1529: 1523: 1519: 1512: 1494: 1490: 1486: 1463: 1458: 1454: 1450: 1445: 1440: 1436: 1432: 1427: 1423: 1415: 1414: 1413: 1410: 1406: 1402: 1398: 1393: 1389: 1384: 1380: 1373: 1366: 1362: 1358: 1354: 1349: 1345: 851: 849: 845: 840: 838: 834: 829: 827: 823: 820:is of degree 819: 815: 810: 806: 801: 785: 782: 779: 775: 771: 768: 765: 760: 756: 733: 729: 720: 712: 708: 704: 699: 695: 690: 686: 680: 676: 669: 665: 661: 657: 653: 648: 644: 638: 634: 629: 625: 621: 617: 613: 609: 603: 599: 595: 591: 588: 584: 581: 578: 573: 569: 566: 561: 557: 553: 550: 547:with norm 1. 543: 539: 535: 519: 501: 497: 490: 486: 482: 475: 468: 461: 457: 447: 433: 428: 425: 422: 418: 397: 389: 371: 354: 353: 348: 344: 340: 321: 316: 310: 305: 302: 299: 295: 289: 284: 279: 275: 269: 266: 261: 255: 250: 245: 241: 233: 232: 231: 229: 228:Krylov matrix 213: 208: 205: 202: 198: 175: 171: 162: 157: 155: 149: 146: 142: 139: 135: 127: 123: 107: 99: 95: 85: 83: 82:W. E. Arnoldi 79: 74: 72: 68: 63: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 22: 3051:Key concepts 2988: 2973: 2958: 2948: 2919: 2915: 2905: 2894:. Retrieved 2890:the original 2879: 2852: 2848: 2842: 2829: 2805:(1): 17–29. 2802: 2798: 2788: 2773: 2769: 2763: 2750: 2724: 2722: 2717: 2713: 2709: 2705: 2701: 2697: 2693: 2689: 2685: 2678: 2674: 2670: 2665: 2661: 2657: 2653: 2649: 2645: 2641: 2637: 2633: 2628: 2624: 2620: 2618: 2611: 2606: 2602: 2598: 2591: 2587: 2580:QR algorithm 2574: 2570: 2566: 2561: 2557: 2551: 2540: 2536: 2532: 2528: 2526: 2117: 2041: 2039: 2034: 2019: 2015: 2011: 2010:minimizes || 2006: 2002: 1993: 1989: 1954: 1919: 1914: 1910: 1908: 1547: 1541: 1537: 1531: 1527: 1521: 1517: 1510: 1478: 1408: 1404: 1400: 1391: 1387: 1382: 1378: 1371: 1364: 1360: 1356: 1352: 1347: 1343: 1341: 924:n : int 841: 836: 832: 830: 821: 817: 808: 804: 802: 718: 716: 710: 706: 702: 697: 693: 688: 684: 678: 674: 667: 663: 659: 655: 651: 646: 642: 636: 632: 627: 623: 619: 615: 611: 607: 601: 597: 593: 589: 586: 582: 579: 576: 571: 567: 564: 559: 555: 551: 548: 541: 537: 499: 495: 488: 484: 480: 473: 466: 459: 453: 350: 336: 227: 158: 153: 147: 144: 140: 137: 133: 131:, calculate 97: 93: 91: 75: 66: 64: 44:eigenvectors 27: 18: 2955:Yousef Saad 2870:1911/101832 1909:The matrix 1351:denote the 683:‖ 161:eigenvector 40:eigenvalues 3093:algorithms 2991:. (2004). 2896:2007-06-30 2780:References 2696:such that 2033:of degree 2029:among all 1397:Hessenberg 1386:, and let 909:---------- 906:Parameters 606: := 549:Repeat for 339:orthogonal 3120:CPU cache 3009:function. 2936:0895-4798 2821:0033-569X 2729:Hermitian 2475:⋯ 2470:⋯ 2435:− 2410:⋮ 2403:⋮ 2398:⋱ 2393:⋱ 2388:⋱ 2383:⋮ 2358:⋯ 2292:⋯ 2213:⋯ 2136:~ 2094:~ 1860:− 1836:⋯ 1824:⋮ 1819:⋱ 1814:⋱ 1809:⋱ 1804:⋮ 1779:⋯ 1713:⋯ 1634:⋯ 1446:∗ 850:library: 783:− 769:… 692: := 631: := 563: := 426:− 303:− 290:⋯ 206:− 172:λ 84:in 1951. 48:Hermitian 21:numerical 3196:Category 3149:Software 3113:Hardware 3072:Problems 2760:See also 2623:. Since 2569:. Since 592:− 1 52:matrices 2531:+1)-by- 2527:is an ( 1536:, ..., 1516:, ..., 1377:, ..., 933:------- 930:Returns 494:, ..., 120:is the 100:matrix 3171:LAPACK 3161:MATLAB 3007:eigs() 3003:Matlab 2995:  2980:  2965:  2934:  2819:  2754:ARPACK 2118:where 1323:return 1311:return 1245:linalg 1059:linalg 855:import 844:Python 126:vector 30:is an 26:, the 3156:ATLAS 1161:range 1095:range 1020:shape 1008:zeros 972:zeros 957:1e-12 858:numpy 848:NumPy 826:GMRES 538:Start 343:basis 150:, ... 3135:SIMD 2993:ISBN 2978:ISBN 2963:ISBN 2932:ISSN 2817:ISSN 2764:The 2636:-by- 1355:-by- 1342:Let 1302:else 1275:> 1251:norm 1200:conj 1065:norm 717:The 583:from 388:span 42:and 3125:TLB 2924:doi 2865:hdl 2857:doi 2807:doi 2727:is 2632:is 2001:of 1545:, 1278:eps 1203:(), 1188:dot 1152:for 1131:dot 1086:for 951:eps 894:int 867:def 816:of 640:− h 577:for 156:. 19:In 3198:: 2957:, 2930:. 2920:23 2918:. 2914:. 2863:. 2853:17 2851:. 2815:. 2801:. 2797:. 2772:= 2770:Ax 2720:. 2616:. 2592:Ae 2544:. 2025:|| 1534:+2 1524:+1 1370:, 1269:if 1239:np 1182:np 1170:): 1158:in 1125:np 1116:): 1092:in 1053:np 1035:)) 1011:(( 1002:np 993:)) 975:(( 966:np 897:): 864:np 861:as 837:mk 713:−1 701:/ 670:−1 649:−1 604:−1 587:to 585:1 574:−1 472:, 465:, 355:, 230:: 143:, 136:, 134:Ab 96:× 62:. 50:) 3095:) 3091:( 3036:e 3029:t 3022:v 2984:. 2969:. 2938:. 2926:: 2899:. 2873:. 2867:: 2859:: 2823:. 2809:: 2803:9 2774:b 2725:A 2718:A 2714:p 2710:A 2706:x 2702:x 2700:( 2698:p 2694:p 2690:A 2688:( 2686:p 2682:1 2679:q 2677:) 2675:A 2673:( 2671:p 2666:n 2662:H 2658:A 2654:A 2650:A 2646:A 2642:n 2638:n 2634:n 2629:n 2625:H 2621:A 2607:A 2603:A 2599:n 2595:1 2588:b 2575:n 2571:H 2562:n 2558:H 2541:n 2537:H 2533:n 2529:n 2510:] 2502:n 2499:, 2496:1 2493:+ 2490:n 2486:h 2480:0 2465:0 2456:n 2453:, 2450:n 2446:h 2438:1 2432:n 2429:, 2426:n 2422:h 2416:0 2374:n 2371:, 2368:3 2364:h 2351:3 2348:, 2345:3 2341:h 2333:2 2330:, 2327:3 2323:h 2317:0 2308:n 2305:, 2302:2 2298:h 2285:3 2282:, 2279:2 2275:h 2267:2 2264:, 2261:2 2257:h 2249:1 2246:, 2243:2 2239:h 2229:n 2226:, 2223:1 2219:h 2206:3 2203:, 2200:1 2196:h 2188:2 2185:, 2182:1 2178:h 2170:1 2167:, 2164:1 2160:h 2153:[ 2148:= 2143:n 2133:H 2101:n 2091:H 2082:1 2079:+ 2076:n 2072:Q 2068:= 2063:n 2059:Q 2055:A 2042:Q 2035:n 2027:2 2023:1 2020:q 2018:) 2016:A 2014:( 2012:p 2007:n 2003:H 1994:n 1990:H 1974:n 1968:K 1955:A 1939:n 1933:K 1920:A 1915:n 1911:H 1894:. 1889:] 1881:n 1878:, 1875:n 1871:h 1863:1 1857:n 1854:, 1851:n 1847:h 1841:0 1831:0 1795:n 1792:, 1789:3 1785:h 1772:3 1769:, 1766:3 1762:h 1754:2 1751:, 1748:3 1744:h 1738:0 1729:n 1726:, 1723:2 1719:h 1706:3 1703:, 1700:2 1696:h 1688:2 1685:, 1682:2 1678:h 1670:1 1667:, 1664:2 1660:h 1650:n 1647:, 1644:1 1640:h 1627:3 1624:, 1621:1 1617:h 1609:2 1606:, 1603:1 1599:h 1591:1 1588:, 1585:1 1581:h 1574:[ 1569:= 1564:n 1560:H 1542:n 1538:q 1532:i 1528:q 1522:i 1518:q 1514:1 1511:q 1495:i 1491:q 1487:A 1464:. 1459:n 1455:Q 1451:A 1441:n 1437:Q 1433:= 1428:n 1424:H 1409:k 1407:, 1405:j 1401:h 1392:n 1388:H 1383:n 1379:q 1375:2 1372:q 1368:1 1365:q 1361:n 1357:n 1353:m 1348:n 1344:Q 1332:h 1329:, 1326:Q 1320:h 1317:, 1314:Q 1305:: 1299:h 1296:/ 1293:v 1290:= 1287:Q 1281:: 1272:h 1266:) 1263:2 1260:, 1257:v 1254:( 1248:. 1242:. 1236:= 1233:h 1230:Q 1227:* 1224:h 1221:- 1218:v 1215:= 1212:v 1209:) 1206:v 1197:. 1194:Q 1191:( 1185:. 1179:= 1176:h 1167:k 1164:( 1155:j 1146:) 1143:Q 1140:, 1137:A 1134:( 1128:. 1122:= 1119:v 1113:1 1110:+ 1107:n 1104:, 1101:1 1098:( 1089:k 1080:) 1077:2 1074:, 1071:b 1068:( 1062:. 1056:. 1050:/ 1047:b 1044:= 1041:Q 1032:1 1029:+ 1026:n 1023:, 1017:. 1014:A 1005:. 999:= 996:Q 990:n 987:, 984:1 981:+ 978:n 969:. 963:= 960:h 954:= 891:: 888:n 885:, 882:b 879:, 876:A 873:( 833:k 822:k 818:A 809:k 805:q 786:1 780:k 776:q 772:, 766:, 761:1 757:q 734:k 730:q 719:j 711:k 709:, 707:k 703:h 698:k 694:q 689:k 685:q 679:k 675:q 668:k 666:, 664:k 660:h 656:j 652:q 647:k 645:, 643:j 637:k 633:q 628:k 624:q 620:k 616:q 612:j 608:q 602:k 600:, 598:j 594:h 590:k 580:j 572:k 568:q 565:A 560:k 556:q 552:k 545:1 542:q 520:n 514:K 500:n 496:q 492:1 489:q 485:n 477:3 474:q 470:2 467:q 463:1 460:q 434:b 429:1 423:n 419:A 398:n 372:n 366:K 322:. 317:] 311:b 306:1 300:n 296:A 285:b 280:2 276:A 270:b 267:A 262:b 256:[ 251:= 246:n 242:K 214:b 209:1 203:n 199:A 176:1 154:A 148:b 145:A 141:b 138:A 129:b 108:A 98:m 94:m

Index

numerical
linear algebra
eigenvalue algorithm
iterative method
eigenvalues
eigenvectors
Hermitian
matrices
Krylov subspace
sparse matrices
Householder transformation
Lanczos algorithm
W. E. Arnoldi
power iteration
vector
eigenvector
orthogonal
basis
Gram–Schmidt orthogonalization
Krylov subspace
span
modified Gram–Schmidt process
minimal polynomial
GMRES
Python
NumPy
Hessenberg
characteristic polynomial
monic polynomials
eigenvalue algorithm

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.