Knowledge

Aspect ratio (aeronautics)

Source 📝

293: 38: 277: 261:(energy change per unit time) than a large cylinder in order to produce an equal upward force (momentum change per unit time). This is because giving the same momentum change to a smaller mass of air requires giving it a greater velocity change, and a much greater energy change because energy is proportional to the square of the velocity while momentum is only linearly proportional to the velocity. The aft-leaning component of this change in velocity is proportional to the 304: 315: 525: 378:, the value of the section drag coefficient is an inverse logarithmic function of the characteristic length of the surface, which means that, even if two wings of the same area are flying at equal speeds and equal angles of attack, the section drag coefficient is slightly higher on the wing with the smaller chord. However, this variation is very small when compared to the variation in induced drag with changing wingspan. 260:
As a useful simplification, an airplane in flight can be imagined to affect a cylinder of air with a diameter equal to the wingspan. A large wingspan affects a large cylinder of air, and a small wingspan affects a small cylinder of air. A small air cylinder must be pushed down with a greater power
355:
angular acceleration than one with high aspect ratio, because a high aspect-ratio wing has a higher moment of inertia to overcome. In a steady roll, the longer wing gives a higher roll moment because of the longer moment arm of the aileron. Low aspect-ratio wings are usually used on
340:
for a given load than a short one and therefore requires higher structural-design (architectural and/or material) specifications. Also, longer wings may have some torsion for a given load, and in some applications this torsion is undesirable (e.g. if the warped wing interferes with
498:: Airfields, hangars, and other ground equipment define a maximum wingspan, which cannot be exceeded. To generate enough lift at a given wingspan, the aircraft designer must increase wing area by lengthening the chord, thus lowering the aspect ratio. This limits the 1354:. Both aircraft have very similar performance although they are radically different. The B-47 has a high aspect ratio wing, while the Avro Vulcan has a low aspect ratio wing. They have, however, a very similar wetted aspect ratio. 251: 474: 1287: 950: 603:
By varying the sweep the wing can be optimised for the current flight speed. However, the extra weight and complexity of a moveable wing mean that such a system is not included in many designs.
828: 1546: 757: 833:
The performance of aspect ratio AR related to the lift-to-drag-ratio and wingtip vortices is illustrated in the formula used to calculate the drag coefficient of an aircraft
686: 600:
on the aircraft, and this drag is proportional to the span of the wing. Thus a long span, valuable at low speeds, causes excessive drag at transonic and supersonic speeds.
325:
Although a long, narrow wing with a high aspect ratio has aerodynamic advantages like better lift-to-drag-ratio (see also details below), there are several reasons why not
69:. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. 194: 112: 1028: 592:
In subsonic flow, steeply swept and narrow wings are inefficient compared to a high-aspect-ratio wing. However, as the flow becomes transonic and then supersonic, the
1067: 988: 859: 406: 1098: 1337: 1211: 1133: 1165: 1310: 172: 152: 132: 488:: low aspect ratios have a greater useful internal volume, since the maximum thickness is greater, which can be used to house the fuel tanks, retractable 201: 419: 1223: 546: 268:
It is important to keep in mind that this is a drastic oversimplification, and an airplane wing affects a very large area around itself.
1542: 621:
The aspect ratios of birds' and bats' wings vary considerably. Birds that fly long distances or spend long periods soaring such as
866: 1708: 360:, not only for the higher roll rates, but especially for longer chord and thinner airfoils involved in supersonic flight. 17: 1736: 1403: 1722: 1694: 1677: 1660: 1487: 1437: 1391: 572: 554: 776: 1103: 1751: 1462: 550: 374:, the average chord (length in the direction of wind travel over the wing) is smaller. Due to the effects of 1761: 1072: 764: 31: 1766: 412:
23012 airfoil (at typical lift coefficients) is inversely proportional to chord length to the power 0.129:
1213:, rather than just the wing. It is a better measure of the aerodynamic efficiency of an aircraft than the 629:
often have wings of high aspect ratio. By contrast, birds which require good maneuverability, such as the
1756: 719: 698:
For most wings the length of the chord is not a constant but varies along the wing, so the aspect ratio
1034: 297: 655: 1138: 535: 81: 177: 539: 352: 95: 73: 1002: 1044: 965: 836: 589:. These wings give a high aspect ratio when unswept and a low aspect ratio at maximum sweep. 383: 370:(drag due to shape, frontal area, and surface friction). This is because, for an equal wing 1082: 1624: 1315: 1189: 630: 308: 8: 1214: 1117: 586: 1147: 1363: 1295: 285: 157: 137: 117: 77: 1732: 1718: 1704: 1690: 1673: 1656: 1483: 1458: 1433: 1387: 262: 42: 480:
A 20% increase in chord length would decrease the section drag coefficient by 2.38%.
292: 1665: 1648: 993: 357: 66: 375: 1340: 367: 37: 1745: 1717:, American Institute of Aeronautics and Astronautics, Inc., Washington, DC. 246:{\displaystyle {\text{AR}}\equiv {\frac {b^{2}}{S}}={\frac {b}{\text{SMC}}}} 45:
glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56)
1682: 585:
Aircraft which approach or exceed the speed of sound sometimes incorporate
489: 281: 276: 76:
are often used to predict the aerodynamic efficiency of a wing because the
303: 1351: 1347: 612: 507: 499: 50: 1386:, Chapter 3, (p.103, eighth edition), Pitman Publishing Limited, London 314: 616: 593: 503: 366:: While high aspect wings create less induced drag, they have greater 469:{\displaystyle c_{d}\varpropto {\frac {1}{({\text{chord}})^{0.129}}}.} 622: 597: 1543:
Updating the A380: the prospect of a neo version and what’s involved
524: 265:, which is the force needed to take up that power at that airspeed. 1282:{\displaystyle {\mathit {AR}}_{\mathrm {wet} }={b^{2} \over S_{w}}} 703: 319: 62: 1457:(3 ed.). American Institute of Aeronautics and Astronautics. 342: 337: 626: 1545:" Leehamnews.com, 3 February 2014. Accessed: 21 June 2014. 945:{\displaystyle C_{D}=C_{D0}+{\frac {(C_{L})^{2}}{\pi eAR}}} 409: 58: 1729:
Understanding Aerodynamics: Arguing from the Real Physics
1528:
Dommasch, D.O., Sherby, S.S., and Connolly, T.F. (1961),
1517:
Understanding Aerodynamics: Arguing from the Real Physics
1233: 1186:
considers the whole wetted surface area of the airframe,
695:
is measured parallel to the direction of forward flight.
1672:, Section 5.3 (4th edition), McGraw-Hill. New York, NY. 510:
have an aspect ratio of 9.5, influencing flight economy.
1107: 596:
first generated along the wing's upper surface causes
1318: 1298: 1226: 1192: 1150: 1120: 1085: 1047: 1005: 968: 869: 839: 779: 722: 658: 422: 386: 204: 180: 160: 140: 120: 98: 502:to 80m wide with an aspect ratio of 7.8, while the 280:Extremely high aspect ratio wing (AR=51.33) of the 1331: 1304: 1281: 1205: 1159: 1127: 1092: 1061: 1022: 982: 944: 853: 822: 751: 680: 468: 400: 245: 188: 166: 146: 126: 106: 27:Ratio of an aircraft's wing span to its mean chord 1743: 1477: 154:, which is equal to the ratio of the wingspan 351:: a low aspect-ratio wing will have a higher 1532:, page 128, Pitman Publishing Corp. New York 823:{\displaystyle SMC={S \over b}={b \over AR}} 318:Very low aspect ratio wing (AR=1.55) of the 553:. Unsourced material may be challenged and 114:is the ratio of the square of the wingspan 80:increases with aspect ratio, improving the 1655:, 5th edition, McGraw-Hill. New York, NY. 1346:Illustrative examples are provided by the 1124: 1089: 1058: 1019: 979: 850: 397: 380:For example, the section drag coefficient 573:Learn how and when to remove this message 307:Moderate aspect ratio wing (AR=5.6) of a 1478:Barnard, R. H.; Philpott, D. R. (2010). 1427: 763:For such a wing with varying chord, the 514: 313: 302: 296:High aspect ratio wing (AR=12.8) of the 291: 275: 36: 1404:"Wing Geometry Definitions Interactive" 329:aircraft have high aspect-ratio wings: 72:Aspect ratio and other features of the 14: 1744: 1731:, Section 3.3.5 (1st Edition), Wiley. 1715:Aircraft Design: A Conceptual Approach 1455:Aircraft Design: a Conceptual Approach 1452: 1376: 1177: 1432:(2 ed.). John Wiley & Sons. 84:and the gliding angle of sailplanes. 1689:, Pitman Publishing Limited, London 1535: 551:adding citations to reliable sources 518: 641:For a constant-chord wing of chord 24: 1246: 1243: 1240: 1230: 752:{\displaystyle AR={b^{2} \over S}} 633:, have wings of low aspect ratio. 25: 1778: 1482:(4 ed.). Pearson Education. 606: 82:fuel economy in powered airplanes 702:is defined as the square of the 649:, the aspect ratio is given by: 523: 1701:Introduction to Aircraft Design 1617: 1604: 1591: 1578: 1565: 1552: 1104:circumference-to-diameter ratio 1703:, Cambridge University Press, 1522: 1509: 1496: 1471: 1446: 1421: 1396: 916: 902: 681:{\displaystyle AR={b \over c}} 451: 442: 271: 13: 1: 1642: 1614:, Equation 5.63 (4th edition) 87: 32:Aspect ratio (disambiguation) 1670:Fundamentals of Aerodynamics 1612:Fundamentals of Aerodynamics 1428:Phillips, Warren F. (2010). 255: 189:{\displaystyle {\text{SMC}}} 7: 1625:"The Lifting Fuselage Body" 1357: 959: 174:to the standard mean chord 134:to the projected wing area 107:{\displaystyle {\text{AR}}} 10: 1783: 1453:Raymer, Daniel P. (1999). 1035:zero-lift drag coefficient 636: 610: 29: 1713:Daniel P. Raymer (1989). 1073:aircraft lift coefficient 709:divided by the wing area 336:: A long wing has higher 284:motor glider providing a 1369: 1139:Oswald efficiency number 1023:{\displaystyle C_{D0}\;} 1062:{\displaystyle C_{L}\;} 983:{\displaystyle C_{D}\;} 854:{\displaystyle C_{d}\;} 401:{\displaystyle c_{d}\;} 1653:Introduction to Flight 1627:. Meridian-int-res.com 1610:Anderson, John D. Jr, 1586:Introduction to Flight 1584:Anderson, John D. Jr, 1560:Introduction to Flight 1558:Anderson, John D. Jr, 1382:Kermode, A.C. (1972), 1333: 1306: 1283: 1207: 1161: 1129: 1094: 1093:{\displaystyle \pi \;} 1063: 1024: 984: 946: 855: 824: 753: 691:If the wing is swept, 682: 470: 402: 322: 311: 300: 298:Bombardier Dash 8 Q400 289: 247: 190: 168: 148: 128: 108: 46: 1752:Aircraft aerodynamics 1575:, sub-section 5.13(f) 1530:Airplane Aerodynamics 1334: 1332:{\displaystyle S_{w}} 1307: 1284: 1208: 1206:{\displaystyle S_{w}} 1169:is the aspect ratio. 1162: 1130: 1095: 1064: 1025: 985: 947: 856: 825: 754: 683: 515:Variable aspect ratio 471: 403: 317: 306: 295: 279: 248: 191: 169: 149: 129: 109: 40: 1762:Aircraft wing design 1666:Anderson, John D. Jr 1649:Anderson, John D. Jr 1316: 1296: 1224: 1217:. It is defined as: 1190: 1148: 1118: 1083: 1045: 1003: 966: 867: 837: 777: 720: 656: 631:Eurasian sparrowhawk 587:variable-sweep wings 547:improve this section 420: 384: 309:Piper PA-28 Cherokee 202: 178: 158: 138: 118: 96: 61:is the ratio of its 30:For other uses, see 1767:Wing configurations 1430:Mechanics of Flight 1384:Mechanics of Flight 1184:wetted aspect ratio 1178:Wetted aspect ratio 1128:{\displaystyle e\;} 765:standard mean chord 18:Aspect ratio (wing) 1757:Engineering ratios 1699:John P. Fielding. 1601:, sub-equation 5.8 1541:Hamilton, Scott. " 1364:Wing configuration 1329: 1302: 1279: 1203: 1160:{\displaystyle AR} 1157: 1125: 1090: 1059: 1020: 980: 942: 851: 820: 749: 678: 492:and other systems. 466: 398: 323: 312: 301: 290: 243: 186: 164: 144: 124: 104: 78:lift-to-drag ratio 47: 1709:978-0-521-65722-8 1305:{\displaystyle b} 1277: 1215:wing aspect ratio 1173: 1172: 940: 818: 800: 747: 676: 583: 582: 575: 461: 448: 241: 240: 228: 208: 184: 167:{\displaystyle b} 147:{\displaystyle S} 127:{\displaystyle b} 102: 92:The aspect ratio 16:(Redirected from 1774: 1636: 1635: 1633: 1632: 1621: 1615: 1608: 1602: 1595: 1589: 1582: 1576: 1569: 1563: 1556: 1550: 1549:on 8 April 2014. 1539: 1533: 1526: 1520: 1513: 1507: 1500: 1494: 1493: 1475: 1469: 1468: 1450: 1444: 1443: 1425: 1419: 1418: 1416: 1414: 1400: 1394: 1380: 1338: 1336: 1335: 1330: 1328: 1327: 1311: 1309: 1308: 1303: 1288: 1286: 1285: 1280: 1278: 1276: 1275: 1266: 1265: 1256: 1251: 1250: 1249: 1237: 1236: 1212: 1210: 1209: 1204: 1202: 1201: 1166: 1164: 1163: 1158: 1134: 1132: 1131: 1126: 1099: 1097: 1096: 1091: 1068: 1066: 1065: 1060: 1057: 1056: 1033:is the aircraft 1029: 1027: 1026: 1021: 1018: 1017: 994:drag coefficient 992:is the aircraft 989: 987: 986: 981: 978: 977: 960: 951: 949: 948: 943: 941: 939: 925: 924: 923: 914: 913: 900: 895: 894: 879: 878: 860: 858: 857: 852: 849: 848: 829: 827: 826: 821: 819: 817: 806: 801: 793: 758: 756: 755: 750: 748: 743: 742: 733: 687: 685: 684: 679: 677: 669: 578: 571: 567: 564: 558: 527: 519: 475: 473: 472: 467: 462: 460: 459: 458: 449: 446: 437: 432: 431: 416: 407: 405: 404: 399: 396: 395: 358:fighter aircraft 252: 250: 249: 244: 242: 238: 234: 229: 224: 223: 214: 209: 206: 195: 193: 192: 187: 185: 182: 173: 171: 170: 165: 153: 151: 150: 145: 133: 131: 130: 125: 113: 111: 110: 105: 103: 100: 21: 1782: 1781: 1777: 1776: 1775: 1773: 1772: 1771: 1742: 1741: 1645: 1640: 1639: 1630: 1628: 1623: 1622: 1618: 1609: 1605: 1596: 1592: 1583: 1579: 1570: 1566: 1562:, Equation 5.26 1557: 1553: 1540: 1536: 1527: 1523: 1519:, section 3.3.5 1514: 1510: 1501: 1497: 1490: 1480:Aircraft Flight 1476: 1472: 1465: 1451: 1447: 1440: 1426: 1422: 1412: 1410: 1402: 1401: 1397: 1381: 1377: 1372: 1360: 1323: 1319: 1317: 1314: 1313: 1297: 1294: 1293: 1271: 1267: 1261: 1257: 1255: 1239: 1238: 1229: 1228: 1227: 1225: 1222: 1221: 1197: 1193: 1191: 1188: 1187: 1180: 1149: 1146: 1145: 1119: 1116: 1115: 1084: 1081: 1080: 1052: 1048: 1046: 1043: 1042: 1010: 1006: 1004: 1001: 1000: 973: 969: 967: 964: 963: 926: 919: 915: 909: 905: 901: 899: 887: 883: 874: 870: 868: 865: 864: 844: 840: 838: 835: 834: 810: 805: 792: 778: 775: 774: 770:is defined as 738: 734: 732: 721: 718: 717: 668: 657: 654: 653: 639: 619: 609: 579: 568: 562: 559: 544: 528: 517: 454: 450: 445: 441: 436: 427: 423: 421: 418: 417: 414: 413: 391: 387: 385: 382: 381: 379: 376:Reynolds number 349:Maneuverability 274: 258: 233: 219: 215: 213: 205: 203: 200: 199: 181: 179: 176: 175: 159: 156: 155: 139: 136: 135: 119: 116: 115: 99: 97: 94: 93: 90: 35: 28: 23: 22: 15: 12: 11: 5: 1780: 1770: 1769: 1764: 1759: 1754: 1740: 1739: 1737:978-1119967514 1727:McLean, Doug, 1725: 1711: 1697: 1680: 1663: 1644: 1641: 1638: 1637: 1616: 1603: 1597:Clancy, L.J., 1590: 1588:, section 5.14 1577: 1571:Clancy, L.J., 1564: 1551: 1534: 1521: 1515:McLean, Doug, 1508: 1506:, section 5.15 1502:Clancy, L.J., 1495: 1488: 1470: 1463: 1445: 1438: 1420: 1395: 1374: 1373: 1371: 1368: 1367: 1366: 1359: 1356: 1341:wetted surface 1326: 1322: 1301: 1290: 1289: 1274: 1270: 1264: 1260: 1254: 1248: 1245: 1242: 1235: 1232: 1200: 1196: 1179: 1176: 1175: 1174: 1171: 1170: 1167: 1156: 1153: 1142: 1141: 1135: 1123: 1112: 1111: 1100: 1088: 1077: 1076: 1069: 1055: 1051: 1039: 1038: 1031: 1016: 1013: 1009: 997: 996: 990: 976: 972: 953: 952: 938: 935: 932: 929: 922: 918: 912: 908: 904: 898: 893: 890: 886: 882: 877: 873: 847: 843: 831: 830: 816: 813: 809: 804: 799: 796: 791: 788: 785: 782: 761: 760: 746: 741: 737: 731: 728: 725: 713:. In symbols, 689: 688: 675: 672: 667: 664: 661: 638: 635: 608: 607:Birds and bats 605: 581: 580: 531: 529: 522: 516: 513: 512: 511: 493: 482: 481: 477: 476: 465: 457: 453: 444: 440: 435: 430: 426: 394: 390: 368:parasitic drag 364:Parasitic drag 361: 346: 338:bending stress 273: 270: 257: 254: 237: 232: 227: 222: 218: 212: 163: 143: 123: 89: 86: 26: 9: 6: 4: 3: 2: 1779: 1768: 1765: 1763: 1760: 1758: 1755: 1753: 1750: 1749: 1747: 1738: 1734: 1730: 1726: 1724: 1723:0-930403-51-7 1720: 1716: 1712: 1710: 1706: 1702: 1698: 1696: 1695:0-273-01120-0 1692: 1688: 1684: 1681: 1679: 1678:0-07-295046-3 1675: 1671: 1667: 1664: 1662: 1661:0-07-282569-3 1658: 1654: 1650: 1647: 1646: 1626: 1620: 1613: 1607: 1600: 1594: 1587: 1581: 1574: 1568: 1561: 1555: 1548: 1544: 1538: 1531: 1525: 1518: 1512: 1505: 1499: 1491: 1489:9780273730989 1485: 1481: 1474: 1466: 1460: 1456: 1449: 1441: 1439:9780470539750 1435: 1431: 1424: 1409: 1405: 1399: 1393: 1392:0-273-31623-0 1389: 1385: 1379: 1375: 1365: 1362: 1361: 1355: 1353: 1349: 1344: 1342: 1324: 1320: 1299: 1272: 1268: 1262: 1258: 1252: 1220: 1219: 1218: 1216: 1198: 1194: 1185: 1168: 1154: 1151: 1144: 1143: 1140: 1136: 1121: 1114: 1113: 1109: 1106:of a circle, 1105: 1101: 1086: 1079: 1078: 1074: 1070: 1053: 1049: 1041: 1040: 1036: 1032: 1014: 1011: 1007: 999: 998: 995: 991: 974: 970: 962: 961: 958: 957: 956: 936: 933: 930: 927: 920: 910: 906: 896: 891: 888: 884: 880: 875: 871: 863: 862: 861: 845: 841: 814: 811: 807: 802: 797: 794: 789: 786: 783: 780: 773: 772: 771: 769: 766: 744: 739: 735: 729: 726: 723: 716: 715: 714: 712: 708: 705: 701: 696: 694: 673: 670: 665: 662: 659: 652: 651: 650: 648: 644: 634: 632: 628: 624: 618: 614: 604: 601: 599: 595: 590: 588: 577: 574: 566: 556: 552: 548: 542: 541: 537: 532:This section 530: 526: 521: 520: 509: 505: 501: 497: 496:Airfield size 494: 491: 487: 484: 483: 479: 478: 463: 455: 438: 433: 428: 424: 411: 392: 388: 377: 373: 369: 365: 362: 359: 354: 350: 347: 344: 339: 335: 332: 331: 330: 328: 321: 316: 310: 305: 299: 294: 287: 283: 278: 269: 266: 264: 253: 235: 230: 225: 220: 216: 210: 197: 161: 141: 121: 85: 83: 79: 75: 70: 68: 64: 60: 56: 52: 44: 39: 33: 19: 1728: 1714: 1700: 1687:Aerodynamics 1686: 1683:L. J. Clancy 1669: 1652: 1629:. Retrieved 1619: 1611: 1606: 1599:Aerodynamics 1598: 1593: 1585: 1580: 1573:Aerodynamics 1572: 1567: 1559: 1554: 1537: 1529: 1524: 1516: 1511: 1504:Aerodynamics 1503: 1498: 1479: 1473: 1454: 1448: 1429: 1423: 1411:. Retrieved 1408:grc.nasa.gov 1407: 1398: 1383: 1378: 1345: 1312:is span and 1291: 1183: 1181: 954: 832: 767: 762: 710: 706: 699: 697: 692: 690: 646: 642: 640: 620: 602: 591: 584: 569: 560: 545:Please help 533: 495: 490:landing gear 486:Practicality 485: 371: 363: 348: 333: 326: 324: 267: 263:induced drag 259: 198: 91: 71: 65:to its mean 55:aspect ratio 54: 48: 1352:Avro Vulcan 1348:Boeing B-47 623:albatrosses 613:Bird flight 508:Airbus A350 500:Airbus A380 272:In aircraft 51:aeronautics 1746:Categories 1643:References 1631:2012-10-10 1464:1563472813 617:Bat flight 611:See also: 594:shock wave 504:Boeing 787 334:Structural 88:Definition 1087:π 928:π 645:and span 598:wave drag 563:June 2021 534:does not 434:∝ 286:L/D ratio 256:Mechanism 211:≡ 1685:(1975), 1547:Archived 1358:See also 704:wingspan 345:effect). 320:Concorde 74:planform 1413:4 April 1339:is the 1137:is the 1102:is the 1071:is the 637:Details 555:removed 540:sources 343:aileron 1735:  1721:  1707:  1693:  1676:  1659:  1486:  1461:  1436:  1390:  1292:where 1030:  955:where 627:eagles 415:  53:, the 43:ASH 31 1370:Notes 456:0.129 447:chord 408:of a 288:of 70 67:chord 57:of a 1733:ISBN 1719:ISBN 1705:ISBN 1691:ISBN 1674:ISBN 1657:ISBN 1484:ISBN 1459:ISBN 1434:ISBN 1415:2024 1388:ISBN 1350:and 1182:The 625:and 615:and 538:any 536:cite 410:NACA 372:area 353:roll 63:span 59:wing 768:SMC 549:by 506:or 327:all 282:Eta 239:SMC 183:SMC 49:In 41:An 1748:: 1668:, 1651:, 1406:. 1343:. 1110:, 1108:pi 1075:, 1037:, 700:AR 207:AR 196:: 101:AR 1634:. 1492:. 1467:. 1442:. 1417:. 1325:w 1321:S 1300:b 1273:w 1269:S 1263:2 1259:b 1253:= 1247:t 1244:e 1241:w 1234:R 1231:A 1199:w 1195:S 1155:R 1152:A 1122:e 1054:L 1050:C 1015:0 1012:D 1008:C 975:D 971:C 937:R 934:A 931:e 921:2 917:) 911:L 907:C 903:( 897:+ 892:0 889:D 885:C 881:= 876:D 872:C 846:d 842:C 815:R 812:A 808:b 803:= 798:b 795:S 790:= 787:C 784:M 781:S 759:. 745:S 740:2 736:b 730:= 727:R 724:A 711:S 707:b 693:c 674:c 671:b 666:= 663:R 660:A 647:b 643:c 576:) 570:( 565:) 561:( 557:. 543:. 464:. 452:) 443:( 439:1 429:d 425:c 393:d 389:c 236:b 231:= 226:S 221:2 217:b 162:b 142:S 122:b 34:. 20:)

Index

Aspect ratio (wing)
Aspect ratio (disambiguation)

ASH 31
aeronautics
wing
span
chord
planform
lift-to-drag ratio
fuel economy in powered airplanes
induced drag

Eta
L/D ratio

Bombardier Dash 8 Q400

Piper PA-28 Cherokee

Concorde
bending stress
aileron
roll
fighter aircraft
parasitic drag
Reynolds number
NACA
landing gear
Airbus A380

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.