Knowledge

Atomic form factor

Source đź“ť

443: 31: 1148:
which is the case for X-ray scattering. Hence, in strong contrast to the case for nuclear scattering, the scattering object for magnetic scattering is far from a point source; it is still more diffuse than the effective size of the source for X-ray scattering, and the resulting Fourier transform (the
1147:
Since these orbitals are typically of a comparable size to the wavelength of the free neutrons, the resulting form factor resembles that of the X-ray form factor. However, this neutron-magnetic scattering is only from the outer electrons, rather than being heavily weighted by the core electrons,
240: 549:
makes use of the variation of the form factor close to an absorption edge to vary the scattering power of specific atoms in the sample by changing the energy of the incident x-rays hence enabling the extraction of more detailed structural information.
849: 1154:) decays more rapidly than the X-ray form factor. Also, in contrast to nuclear scattering, the magnetic form factor is not isotope dependent, but is dependent on the oxidation state of the atom. 154: 1111:. In neutron scattering from condensed matter, magnetic scattering refers to the interaction of this moment with the magnetic moments arising from unpaired electrons in the outer 275: 115: 598: 635: 146: 1071:
of the spherical wave, which has dimensions of length. Hence, the amplitude of scattering that characterizes the interaction of a neutron with a given isotope is termed the
307: 726: 718: 417: 375: 329: 1142: 1010: 897: 678: 658: 525: 353: 1062: 1042: 903:
of the atom, and the electron form factor is the Fourier transform of this. The electron form factors are normally calculated from X-ray form factors using the
484: 395: 955:) and cold neutrons (up to tens of Angstroms) typically used for such investigations is 4-5 orders of magnitude larger than the dimension of the nucleus ( 534:
about the nucleus, and the form factor the Fourier transform of this quantity. The assumption of a spherical distribution is usually good enough for
34:
X-ray atomic form factors of oxygen (blue), chlorine (green), Cl (magenta), and K (red); smaller charge distributions have a wider form factor.
1087:
of the same element. They may only be determined experimentally, since the theory of nuclear forces is not adequate to calculate or predict
17: 1067:
Since the interaction is nuclear, each isotope has a different scattering amplitude. This Fourier transform is scaled by the
1200: 235:{\displaystyle f(\mathbf {Q} )=\int \rho (\mathbf {r} )e^{i\mathbf {Q} \cdot \mathbf {r} }\mathrm {d} ^{3}\mathbf {r} } 1338: 1313: 1284: 1247: 1184: 1176: 1021: 1235: 1024:
is unity; therefore, it is commonly said that neutrons "do not have a form factor;" i.e., the scattered amplitude,
660:
is the scattering angle between the incident x-ray beam and the detector measuring the scattered intensity, while
980: 907:. This formula takes into account both elastic electron-cloud scattering and elastic nuclear scattering. 249: 89: 1272: 1115:
of certain atoms. It is the spatial distribution of these unpaired electrons about the nucleus that is
1017: 559: 546: 844:{\displaystyle f(Q)=\sum _{i=1}^{4}a_{i}\exp \left(-b_{i}\left({\frac {Q}{4\pi }}\right)^{2}\right)+c} 603: 335:. As a result of the nature of the Fourier transform, the broader the distribution of the scatterer 120: 284: 541:
In general the X-ray form factor is complex but the imaginary components only become large near an
691: 400: 358: 312: 1360: 486:, of the atoms in a sample. As a result, X-rays are not very sensitive to light atoms, such as 1239: 1229: 904: 680:
is the wavelength of the X-rays. One interpretation of the scattering vector is that it is the
1276: 1118: 986: 873: 663: 640: 501: 535: 1264: 967:; for those that undergo nuclear scattering from a nucleus, the nucleus acts as a secondary 1150: 1068: 1013: 979:. (Although a quantum phenomenon, this can be visualized in simple classical terms by the 944: 459: 338: 63: 51: 8: 442: 67: 553:
Atomic form factor patterns are often represented as a function of the magnitude of the
1305: 1047: 1027: 900: 469: 380: 1334: 1309: 1280: 1265: 1243: 1180: 1072: 1012:
is the spatial density distribution of the nucleus, which is an infinitesimal point (
332: 71: 59: 1079:. Neutron scattering lengths vary erratically between neighbouring elements in the 924: 494:, and there is very little contrast between elements adjacent to each other in the 423: 83: 1108: 720:Ă…, the atomic form factor is well approximated by a sum of Gaussians of the form 542: 1016:), with respect to the neutron wavelength. The delta function forms part of the 30: 1225: 1112: 1080: 976: 920: 531: 495: 278: 79: 688:
with which the sample is observed. In the range of scattering vectors between
1354: 960: 952: 463: 54:
of a wave by an isolated atom. The atomic form factor depends on the type of
1100: 968: 58:, which in turn depends on the nature of the incident radiation, typically 956: 943:
Nuclear scattering of the free neutron by the nucleus is mediated by the
964: 948: 427: 55: 458:
X-rays are scattered by the electron cloud of the atom and hence the
447: 1084: 972: 916: 528: 487: 451: 1104: 431: 39: 27:
Measure of the scattering amplitude of a wave by an isolated atom
74:
of a spatial density distribution of the scattering object from
70:. The common feature of all form factors is that they involve a 923:. Both are used in the investigation structure and dynamics of 491: 1267:
Introduction to Conventional Transmission Electron Microscopy
75: 422:
For crystals, atomic form factors are used to calculate the
1020:, by which the free neutron and the nuclei interact. The 1302:
Introduction to the Theory of Thermal Neutron Scattering
1328: 1121: 1050: 1030: 989: 876: 729: 694: 666: 643: 606: 562: 504: 472: 403: 383: 361: 341: 315: 287: 252: 157: 123: 92: 86:). For an object with spatial density distribution, 1136: 1056: 1036: 1004: 915:There are two distinct scattering interactions of 891: 843: 712: 672: 652: 629: 592: 519: 478: 411: 389: 369: 347: 323: 301: 277:is the spatial density of the scatterer about its 269: 234: 140: 109: 419:; i.e., the faster the decay of the form factor. 1352: 1170: 1262: 441: 29: 1299: 1099:Although neutral, neutrons also have a 865: 14: 1353: 1224: 1094: 1091:from other properties of the nucleus. 910: 1329:Dobrzynski, L.; K. Blinowski (1994). 1022:Fourier transform of a delta function 938: 931:(sometimes also termed chemical) and 437: 450:of the atomic scattering factor of 377:, the narrower the distribution of 270:{\displaystyle \rho (\mathbf {r} )} 110:{\displaystyle \rho (\mathbf {r} )} 24: 217: 25: 1372: 1177:Blackwell Scientific Publications 593:{\displaystyle Q=2k\sin(\theta )} 1331:Neutrons and Solid State Physics 630:{\displaystyle k=2\pi /\lambda } 405: 363: 317: 289: 260: 228: 209: 201: 185: 165: 131: 100: 141:{\displaystyle f(\mathbf {Q} )} 1322: 1293: 1256: 1218: 1193: 1164: 1131: 1125: 999: 993: 886: 880: 739: 733: 587: 581: 514: 508: 302:{\displaystyle \mathbf {r} =0} 264: 256: 189: 181: 169: 161: 135: 127: 104: 96: 13: 1: 1173:Essentials of Crystallography 1157: 1107:and hence have an associated 527:in the above equation is the 462:of X-rays increases with the 446:The energy dependence of the 1171:McKie, D.; C. McKie (1992). 862:, and c are tabulated here. 713:{\displaystyle 0<Q<25} 412:{\displaystyle \mathbf {Q} } 370:{\displaystyle \mathbf {r} } 324:{\displaystyle \mathbf {Q} } 7: 870:The relevant distribution, 10: 1377: 1273:Cambridge University Press 959:). The free neutrons in a 547:Anomalous X-ray scattering 1333:. Ellis Horwood Limited. 1144:for magnetic scattering. 981:Huygens–Fresnel principle 1300:Squires, Gordon (1996). 1137:{\displaystyle \rho (r)} 1005:{\displaystyle \rho (r)} 975:scattered neutrons as a 892:{\displaystyle \rho (r)} 673:{\displaystyle \lambda } 653:{\displaystyle 2\theta } 520:{\displaystyle \rho (r)} 498:. For X-ray scattering, 48:atomic scattering factor 18:Atomic scattering factor 1263:De Graef, Marc (2003). 1103:. They are a composite 637:is the wavenumber and 1138: 1058: 1038: 1006: 901:potential distribution 893: 845: 765: 714: 674: 654: 631: 594: 521: 480: 455: 413: 391: 371: 349: 325: 303: 271: 236: 142: 111: 50:, is a measure of the 35: 1238:Publishing. pp.  1236:North-Holland Physics 1201:"Atomic form factors" 1139: 1059: 1039: 1018:Fermi pseudopotential 1007: 894: 854:where the values of a 846: 745: 715: 675: 655: 632: 595: 536:X-ray crystallography 522: 481: 445: 414: 392: 372: 350: 348:{\displaystyle \rho } 326: 304: 272: 237: 143: 112: 33: 1151:magnetic form factor 1119: 1048: 1044:, is independent of 1028: 987: 951:of thermal (several 945:strong nuclear force 874: 866:Electron form factor 727: 692: 664: 641: 604: 560: 502: 470: 460:scattering amplitude 401: 381: 359: 339: 313: 285: 250: 155: 121: 90: 52:scattering amplitude 1231:Diffraction Physics 1095:Magnetic scattering 911:Neutron form factor 117:, the form factor, 1306:Dover Publications 1134: 1054: 1034: 1002: 939:Nuclear scattering 927:: they are termed 905:Mott–Bethe formula 889: 841: 710: 670: 650: 627: 590: 517: 476: 456: 438:X-ray form factors 409: 387: 367: 345: 321: 299: 267: 232: 138: 107: 44:atomic form factor 36: 1073:scattering length 1057:{\displaystyle Q} 1037:{\displaystyle b} 818: 555:scattering vector 479:{\displaystyle Z} 390:{\displaystyle f} 333:momentum transfer 72:Fourier transform 16:(Redirected from 1368: 1345: 1344: 1326: 1320: 1319: 1297: 1291: 1290: 1270: 1260: 1254: 1253: 1222: 1216: 1215: 1213: 1211: 1197: 1191: 1190: 1168: 1143: 1141: 1140: 1135: 1063: 1061: 1060: 1055: 1043: 1041: 1040: 1035: 1011: 1009: 1008: 1003: 983:.) In this case 925:condensed matter 898: 896: 895: 890: 850: 848: 847: 842: 834: 830: 829: 828: 823: 819: 817: 806: 799: 798: 775: 774: 764: 759: 719: 717: 716: 711: 679: 677: 676: 671: 659: 657: 656: 651: 636: 634: 633: 628: 623: 599: 597: 596: 591: 526: 524: 523: 518: 485: 483: 482: 477: 424:structure factor 418: 416: 415: 410: 408: 396: 394: 393: 388: 376: 374: 373: 368: 366: 354: 352: 351: 346: 330: 328: 327: 322: 320: 308: 306: 305: 300: 292: 276: 274: 273: 268: 263: 241: 239: 238: 233: 231: 226: 225: 220: 214: 213: 212: 204: 188: 168: 148:, is defined as 147: 145: 144: 139: 134: 116: 114: 113: 108: 103: 84:reciprocal space 21: 1376: 1375: 1371: 1370: 1369: 1367: 1366: 1365: 1351: 1350: 1349: 1348: 1341: 1327: 1323: 1316: 1308:. p. 260. 1298: 1294: 1287: 1261: 1257: 1250: 1226:Cowley, John M. 1223: 1219: 1209: 1207: 1199: 1198: 1194: 1187: 1169: 1165: 1160: 1120: 1117: 1116: 1109:magnetic moment 1097: 1049: 1046: 1045: 1029: 1026: 1025: 988: 985: 984: 941: 913: 875: 872: 871: 868: 861: 857: 824: 810: 805: 801: 800: 794: 790: 786: 782: 770: 766: 760: 749: 728: 725: 724: 693: 690: 689: 665: 662: 661: 642: 639: 638: 619: 605: 602: 601: 561: 558: 557: 543:absorption edge 503: 500: 499: 471: 468: 467: 440: 404: 402: 399: 398: 382: 379: 378: 362: 360: 357: 356: 340: 337: 336: 316: 314: 311: 310: 288: 286: 283: 282: 259: 251: 248: 247: 227: 221: 216: 215: 208: 200: 196: 192: 184: 164: 156: 153: 152: 130: 122: 119: 118: 99: 91: 88: 87: 82:(also known as 28: 23: 22: 15: 12: 11: 5: 1374: 1364: 1363: 1361:Atomic physics 1347: 1346: 1339: 1321: 1314: 1292: 1285: 1255: 1248: 1217: 1192: 1185: 1162: 1161: 1159: 1156: 1133: 1130: 1127: 1124: 1096: 1093: 1081:periodic table 1053: 1033: 1014:delta function 1001: 998: 995: 992: 977:spherical wave 940: 937: 912: 909: 888: 885: 882: 879: 867: 864: 859: 855: 852: 851: 840: 837: 833: 827: 822: 816: 813: 809: 804: 797: 793: 789: 785: 781: 778: 773: 769: 763: 758: 755: 752: 748: 744: 741: 738: 735: 732: 709: 706: 703: 700: 697: 669: 649: 646: 626: 622: 618: 615: 612: 609: 589: 586: 583: 580: 577: 574: 571: 568: 565: 532:charge density 516: 513: 510: 507: 496:periodic table 475: 439: 436: 407: 386: 365: 355:in real space 344: 319: 298: 295: 291: 279:center of mass 266: 262: 258: 255: 244: 243: 230: 224: 219: 211: 207: 203: 199: 195: 191: 187: 183: 180: 177: 174: 171: 167: 163: 160: 137: 133: 129: 126: 106: 102: 98: 95: 80:momentum space 26: 9: 6: 4: 3: 2: 1373: 1362: 1359: 1358: 1356: 1342: 1340:0-13-617192-3 1336: 1332: 1325: 1317: 1315:0-486-69447-X 1311: 1307: 1303: 1296: 1288: 1286:0-521-62995-0 1282: 1278: 1274: 1269: 1268: 1259: 1251: 1249:0-444-86121-1 1245: 1241: 1237: 1233: 1232: 1227: 1221: 1206: 1202: 1196: 1188: 1186:0-632-01574-8 1182: 1178: 1174: 1167: 1163: 1155: 1153: 1152: 1145: 1128: 1122: 1114: 1110: 1106: 1102: 1092: 1090: 1086: 1082: 1078: 1074: 1070: 1065: 1051: 1031: 1023: 1019: 1015: 996: 990: 982: 978: 974: 970: 966: 962: 958: 954: 950: 946: 936: 934: 930: 926: 922: 918: 908: 906: 902: 883: 877: 863: 838: 835: 831: 825: 820: 814: 811: 807: 802: 795: 791: 787: 783: 779: 776: 771: 767: 761: 756: 753: 750: 746: 742: 736: 730: 723: 722: 721: 707: 704: 701: 698: 695: 687: 683: 667: 647: 644: 624: 620: 616: 613: 610: 607: 584: 578: 575: 572: 569: 566: 563: 556: 551: 548: 544: 539: 537: 533: 530: 511: 505: 497: 493: 489: 473: 465: 464:atomic number 461: 453: 449: 444: 435: 433: 429: 425: 420: 384: 342: 334: 296: 293: 280: 253: 222: 205: 197: 193: 178: 175: 172: 158: 151: 150: 149: 124: 93: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 32: 19: 1330: 1324: 1301: 1295: 1266: 1258: 1230: 1220: 1208:. Retrieved 1204: 1195: 1172: 1166: 1149: 1146: 1101:nuclear spin 1098: 1088: 1083:and between 1076: 1066: 969:point source 963:travel in a 942: 935:scattering. 932: 928: 914: 869: 853: 685: 681: 554: 552: 540: 457: 426:for a given 421: 245: 47: 43: 37: 1275:. pp.  957:femtometres 1158:References 965:plane wave 949:wavelength 682:resolution 428:Bragg peak 76:real space 56:scattering 1123:ρ 1069:amplitude 991:ρ 953:ĂĄngströms 878:ρ 815:π 788:− 780:⁡ 747:∑ 686:yardstick 668:λ 648:θ 625:λ 617:π 600:. Herein 585:θ 579:⁡ 506:ρ 448:real part 343:ρ 254:ρ 206:⋅ 179:ρ 176:∫ 94:ρ 1355:Category 1228:(1981). 1113:orbitals 1085:isotopes 973:radiates 933:magnetic 917:neutrons 529:electron 488:hydrogen 452:chlorine 64:electron 1205:TU Graz 1105:fermion 929:nuclear 899:is the 432:crystal 331:is the 309:), and 68:neutron 40:physics 1337:  1312:  1283:  1246:  1183:  971:, and 947:. The 921:nuclei 492:helium 246:where 42:, the 1210:3 Jul 430:of a 60:X-ray 46:, or 1335:ISBN 1310:ISBN 1281:ISBN 1244:ISBN 1212:2018 1181:ISBN 961:beam 705:< 699:< 490:and 1277:113 919:by 858:, b 777:exp 684:or 576:sin 397:in 78:to 66:or 38:In 1357:: 1304:. 1279:. 1271:. 1242:. 1240:78 1234:. 1203:. 1179:. 1175:. 1075:, 1064:. 708:25 545:. 538:. 466:, 434:. 62:, 1343:. 1318:. 1289:. 1252:. 1214:. 1189:. 1132:) 1129:r 1126:( 1089:b 1077:b 1052:Q 1032:b 1000:) 997:r 994:( 887:) 884:r 881:( 860:i 856:i 839:c 836:+ 832:) 826:2 821:) 812:4 808:Q 803:( 796:i 792:b 784:( 772:i 768:a 762:4 757:1 754:= 751:i 743:= 740:) 737:Q 734:( 731:f 702:Q 696:0 645:2 621:/ 614:2 611:= 608:k 588:) 582:( 573:k 570:2 567:= 564:Q 515:) 512:r 509:( 474:Z 454:. 406:Q 385:f 364:r 318:Q 297:0 294:= 290:r 281:( 265:) 261:r 257:( 242:, 229:r 223:3 218:d 210:r 202:Q 198:i 194:e 190:) 186:r 182:( 173:= 170:) 166:Q 162:( 159:f 136:) 132:Q 128:( 125:f 105:) 101:r 97:( 20:)

Index

Atomic scattering factor

physics
scattering amplitude
scattering
X-ray
electron
neutron
Fourier transform
real space
momentum space
reciprocal space
center of mass
momentum transfer
structure factor
Bragg peak
crystal

real part
chlorine
scattering amplitude
atomic number
hydrogen
helium
periodic table
electron
charge density
X-ray crystallography
absorption edge
Anomalous X-ray scattering

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑