Knowledge

Rectilinear polygon

Source 📝

444: 184: 38: 452: 490:: in a simple rectilinear polygon, a maximal square that does not contain a knob is a separator. A square containing a knob may or may not be a separator. The number of different separator squares may be infinite and even uncountable. For example, in a rectangle, every maximal square not touching one of the shorter sides is a separator. 230:
The number of convex corners is four more than the number of concave corners. To see why, imagine that you traverse the boundary of the polygon clockwise (with your right hand inside the polygon and your left hand outside). At a convex corner, you turn 90° right; at any concave corner, you turn 90°
76:. The distinction becomes crucial when spoken about sets of polygons: the latter definition would imply that sides of all polygons in the set are aligned with the same coordinate axes. Within the framework of the second definition it is natural to speak of 440:. For every convex corner, there is exactly one maximal (corner) square covering it, but a single maximal square may cover more than one corner. For every corner, there may by many different maximal rectangles covering it. 514:
is continuous. A maximal continuator is always a corner square. Moreover, a maximal continuator always contains a knob. Hence the number of continuators is always finite and bounded by the number of knobs.
663:
Of particular interest to rectilinear polygons are problems of decomposing a given rectilinear polygon to simple units - usually rectangles or squares. There are several types of decomposition problems:
529:
In a simple rectilinear polygon, every maximal square is either a separator or a continuator. This is also true for rectangles: every maximal rectangle is either a separator or a continuator.
536:
There is an interesting analogy between maximal squares in a simple polygon and nodes in a tree: a continuator is analogous to a leaf node and a separator is analogous to an internal node.
525:
No square can be both a continuator and a separator. In general polygons, there may be squares that are neither continuators nor separators, but in simple polygons this cannot happen:
231:
left. Finally you must make an entire 360° turn and come back to the original point; hence the number of right turns must be 4 more than the number of left turns.
239:
The number of knobs (sides connecting two convex corners) is four more than the number of antiknobs (sides connecting two concave corners).To see why, let
174:: The number of horizontal edges is equal to the number of vertical edges (because every horizontal edge is followed by a vertical edge and vice versa). 683:
problems, the goal is to find a largest set of non-overlapping units whose union is contained in the polygon. The union may be smaller than the polygon.
672:
problems, the goal is to find a smallest set of units (squares or rectangles) whose union is equal to the polygon. The units may overlap. See
518:
There are several different types of continuators, based on the number of knobs they contain and their internal structure (see figure). The
599:
Most of them may be stated for general polygons as well, but expectation of more efficient algorithms warrants a separate consideration
293:
A rectilinear polygon can be covered by a finite number of squares or rectangles with edges parallel to the edges of the polygon (see
191:
A rectilinear polygon has corners of two types: corners in which the smaller angle (90°) is interior to the polygon are called
17: 187:
X marks convex corners; O marks concave corners. Blue lines are knobs; red lines are anti-knobs; yellow lines are neither.
855: 764:
Bar-Yehuda, R.; Ben-Hanoch, E. (1996). "A Linear-Time Algorithm for Covering Simple Polygons with Similar Rectangles".
690:
problems, the goal is to find a smallest set of non-overlapping units whose union is exactly equal to the polygon. See
738: 730: 143: 297:). It is possible to distinguish several types of squares/rectangles contained in a certain rectilinear polygon 614: 150:
for orthogonal polygons, which leads to more efficient guard coverage than is possible for arbitrary polygons.
135:
due to their simplicity for design and manufacturing. Many manufactured objects result in orthogonal polygons.
61:. Thus the interior angle at each vertex is either 90° or 270°. Rectilinear polygons are a special case of 30:
This article is about right-angled polygons. For "rectilineal figure" as defined in Euclid's Elements, see
978: 958: 522:
of a continuator is defined as its points that are not covered by any other maximal square (see figure).
73: 1385: 953: 910: 885: 603: 549: 618: 132: 226:
because it has no holes - only a single continuous boundary. It has several interesting properties:
1013: 938: 652: 548:- a rectangle with 2 sides parallel to the x axis and 2 sides parallel to the y axis. See also: 963: 848: 608: 139: 1364: 1304: 943: 704: 591:
is a fractal generated from a sequence of rectilinear polygons with interesting properties.
1248: 1018: 948: 890: 646: 532:
In a simple rectilinear polygon which is not a square, there are at least two continuators.
443: 406:
in even 3 adjacent sides and still not be maximal as it can be stretched in the 4th side.
402:. The second direction is not necessarily true: a rectangle can intersect the boundary of 8: 1354: 1299: 1294: 1253: 968: 718: 568: 147: 320:. Similarly, a maximal rectangle is a rectangle not contained in any other rectangle in 1359: 900: 722: 642: 622: 588: 183: 129: 1339: 933: 841: 734: 691: 62: 868: 820: 773: 673: 581: 294: 559:
is a rectilinear polygon whose side lengths in sequence are consecutive integers.
1334: 1314: 1309: 1279: 998: 973: 905: 628: 124:
The importance of the class of rectilinear polygons comes from the following.
1344: 1324: 1289: 1284: 915: 895: 796: 563: 413:
has at least two points, on two opposite edges, that intersect the boundary of
219: 31: 777: 1379: 1319: 1170: 1063: 983: 925: 632: 1349: 1219: 1175: 1139: 1129: 1124: 97: 54: 811:
Albertson, M. O.; o’Keefe, C. J. (1981). "Covering Regions with Squares".
791: 717: 378:; the interior of this larger square contains a pair of adjacent edges of 1258: 1165: 1144: 1134: 105:. These adjectives are less confusing when the polygons of this type are 58: 1263: 1119: 1109: 993: 37: 594: 390:
The first direction is also true for rectangles, i.e.: If a rectangle
146:
when restricted to orthogonal polygons. An example is provided by the
1238: 1228: 1205: 1195: 1185: 1114: 1023: 988: 545: 106: 824: 451: 195:
and corners in which the larger angle (270°) is interior are called
1243: 1233: 1190: 1149: 1078: 1068: 1058: 877: 234:
Corollary: every rectilinear polygon has at least 4 convex corners.
833: 766:
International Journal of Computational Geometry & Applications
288: 1200: 1180: 1093: 1088: 1083: 1073: 1048: 1003: 864: 636: 556: 50: 1008: 1053: 355:, then this pair be pushed further towards the boundary, so 177:
Corollary: Orthogonal polygons have an even number of edges.
259:
the number of convex corners followed by a concave corner,
743:. 1st edition; 2nd printing, corrected and expanded, 1988. 282:
Corollary: every rectilinear polygon has at least 4 knobs.
255:
the number of convex corners followed by a convex corner,
707:, a natural generalization of orthogonal polygons to 3D. 562:
A rectilinear polygon which is not a rectangle is never
128:
They are convenient for the representation of shapes in
206:
is an edge whose two endpoints are convex corners. An
382:, hence this pair does not intersect the boundary of 247:
the number of concave corners. By the previous fact,
763: 544:
The simplest rectilinear polygon is an axis-aligned
210:
is an edge whose two endpoints are concave corners.
595:
Algorithmic problems involving rectilinear polygons
506:such that the intersection between the boundary of 68:In many cases another definition is preferable: a 142:stated in terms of polygons often allow for more 1377: 810: 394:is maximal, then each pair of adjacent edges of 72:is a polygon with sides parallel to the axes of 343:. The proof of both sides is by contradiction: 289:Squares and rectangles in a rectilinear polygon 813:SIAM Journal on Algebraic and Discrete Methods 316:which is not contained in any other square in 159:A rectilinear polygon has edges of two types: 849: 409:Corollary: every maximal square/rectangle in 213: 658: 856: 842: 745:, chapter 8: "The Geometry of Rectangles" 566:, but it can be orthogonally convex. See 759: 757: 755: 753: 727:Computational Geometry - An Introduction 450: 442: 182: 36: 87:Rectilinear polygons are also known as 14: 1378: 837: 750: 41:Some examples of rectilinear polygons 27:Polygon in which all angles are right 267:defined analogously. Then obviously 243:be the number of convex corners and 863: 804: 370:, then there is a larger square in 351:does not intersect the boundary of 218:A rectilinear polygon that is also 24: 335:if each pair of adjacent edges of 25: 1397: 432:such that at least one corner of 539: 617:for orthogonal polygons (e.g., 784: 615:Boolean operations on polygons 347:If a certain adjacent pair in 277:XX=X-XY=X-(Y-YY)=YY+(X-Y)=YY+4 13: 1: 711: 578:monotone rectilinear polygon 436:overlaps a convex corner of 7: 698: 639:among rectilinear obstacles 584:which is also rectilinear. 398:intersects the boundary of 339:intersects the boundary of 10: 1402: 604:Orthogonal range searching 550:Minimum bounding rectangle 214:Simple rectilinear polygon 84:of a rectilinear polygon. 29: 1272: 1218: 1158: 1102: 1041: 1032: 924: 876: 778:10.1142/S021819599600006X 659:Rectangular decomposition 447:continuator and separator 91:. Other terms in use are 792:"Counting pairs of bits" 154: 653:Maximal empty rectangle 113:is preferred, although 609:Orthogonal convex hull 456: 448: 188: 140:computational geometry 111:axis-aligned rectangle 103:axis-oriented polygons 42: 18:Axis-aligned rectangle 647:Illumination problems 454: 446: 186: 119:rectilinear rectangle 74:Cartesian coordinates 40: 1089:Nonagon/Enneagon (9) 1019:Tangential trapezoid 800:. November 17, 2013. 705:Orthogonal polyhedra 510:and the boundary of 424:is a maximal square 144:efficient algorithms 121:are in use as well. 115:orthogonal rectangle 1201:Megagon (1,000,000) 969:Isosceles trapezoid 719:Franco P. Preparata 643:Visibility problems 571:rectilinear polygon 569:Orthogonally convex 148:art gallery theorem 89:orthogonal polygons 70:rectilinear polygon 47:rectilinear polygon 1171:Icositetragon (24) 723:Michael Ian Shamos 496:continuator square 483:is not connected. 457: 449: 366:is not maximal in 189: 130:integrated circuit 63:isothetic polygons 43: 1386:Types of polygons 1373: 1372: 1214: 1213: 1191:Myriagon (10,000) 1176:Triacontagon (30) 1140:Heptadecagon (17) 1130:Pentadecagon (15) 1125:Tetradecagon (14) 1064:Quadrilateral (4) 934:Antiparallelogram 692:Polygon partition 455:continuator types 16:(Redirected from 1393: 1186:Chiliagon (1000) 1166:Icositrigon (23) 1145:Octadecagon (18) 1135:Hexadecagon (16) 1039: 1038: 858: 851: 844: 835: 834: 829: 828: 808: 802: 801: 788: 782: 781: 761: 744: 674:Polygon covering 582:monotone polygon 461:separator square 295:Polygon covering 78:horizontal edges 21: 1401: 1400: 1396: 1395: 1394: 1392: 1391: 1390: 1376: 1375: 1374: 1369: 1268: 1222: 1210: 1154: 1120:Tridecagon (13) 1110:Hendecagon (11) 1098: 1034: 1028: 999:Right trapezoid 920: 872: 862: 832: 825:10.1137/0602026 809: 805: 790: 789: 785: 762: 751: 741: 714: 701: 661: 629:Motion planning 597: 542: 359:is not maximal. 312:is a square in 291: 222:is also called 216: 157: 109:, and the term 35: 28: 23: 22: 15: 12: 11: 5: 1399: 1389: 1388: 1371: 1370: 1368: 1367: 1362: 1357: 1352: 1347: 1342: 1337: 1332: 1327: 1325:Pseudotriangle 1322: 1317: 1312: 1307: 1302: 1297: 1292: 1287: 1282: 1276: 1274: 1270: 1269: 1267: 1266: 1261: 1256: 1251: 1246: 1241: 1236: 1231: 1225: 1223: 1216: 1215: 1212: 1211: 1209: 1208: 1203: 1198: 1193: 1188: 1183: 1178: 1173: 1168: 1162: 1160: 1156: 1155: 1153: 1152: 1147: 1142: 1137: 1132: 1127: 1122: 1117: 1115:Dodecagon (12) 1112: 1106: 1104: 1100: 1099: 1097: 1096: 1091: 1086: 1081: 1076: 1071: 1066: 1061: 1056: 1051: 1045: 1043: 1036: 1030: 1029: 1027: 1026: 1021: 1016: 1011: 1006: 1001: 996: 991: 986: 981: 976: 971: 966: 961: 956: 951: 946: 941: 936: 930: 928: 926:Quadrilaterals 922: 921: 919: 918: 913: 908: 903: 898: 893: 888: 882: 880: 874: 873: 861: 860: 853: 846: 838: 831: 830: 803: 797:Stack Exchange 783: 748: 747: 746: 739: 713: 710: 709: 708: 700: 697: 696: 695: 684: 677: 660: 657: 656: 655: 650: 640: 626: 612: 606: 596: 593: 541: 538: 534: 533: 530: 492: 491: 388: 387: 360: 331:is maximal in 306:maximal square 290: 287: 286: 285: 284: 283: 237: 236: 235: 215: 212: 181: 180: 179: 178: 156: 153: 152: 151: 136: 82:vertical edges 32:Simple polygon 26: 9: 6: 4: 3: 2: 1398: 1387: 1384: 1383: 1381: 1366: 1365:Weakly simple 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1305:Infinite skew 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1277: 1275: 1271: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1226: 1224: 1221: 1220:Star polygons 1217: 1207: 1206:Apeirogon (∞) 1204: 1202: 1199: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1163: 1161: 1157: 1151: 1150:Icosagon (20) 1148: 1146: 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1118: 1116: 1113: 1111: 1108: 1107: 1105: 1101: 1095: 1092: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1046: 1044: 1040: 1037: 1031: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 990: 987: 985: 984:Parallelogram 982: 980: 979:Orthodiagonal 977: 975: 972: 970: 967: 965: 962: 960: 959:Ex-tangential 957: 955: 952: 950: 947: 945: 942: 940: 937: 935: 932: 931: 929: 927: 923: 917: 914: 912: 909: 907: 904: 902: 899: 897: 894: 892: 889: 887: 884: 883: 881: 879: 875: 870: 866: 859: 854: 852: 847: 845: 840: 839: 836: 826: 822: 818: 814: 807: 799: 798: 793: 787: 779: 775: 771: 767: 760: 758: 756: 754: 749: 742: 740:0-387-96131-3 736: 732: 728: 724: 720: 716: 715: 706: 703: 702: 693: 689: 685: 682: 678: 675: 671: 667: 666: 665: 654: 651: 648: 644: 641: 638: 634: 633:path planning 630: 627: 624: 620: 616: 613: 610: 607: 605: 602: 601: 600: 592: 590: 585: 583: 579: 574: 572: 570: 565: 560: 558: 553: 551: 547: 540:Special cases 537: 531: 528: 527: 526: 523: 521: 516: 513: 509: 505: 502:in a polygon 501: 497: 489: 486: 485: 484: 482: 478: 474: 470: 466: 463:in a polygon 462: 453: 445: 441: 439: 435: 431: 428:in a polygon 427: 423: 422:corner square 418: 416: 412: 407: 405: 401: 397: 393: 385: 381: 377: 373: 369: 365: 361: 358: 354: 350: 346: 345: 344: 342: 338: 334: 330: 325: 323: 319: 315: 311: 308:in a polygon 307: 302: 300: 296: 281: 280: 278: 274: 273:Y=XY+YY=YX+YY 270: 269:X=XX+XY=XX+YX 266: 262: 258: 254: 250: 246: 242: 238: 233: 232: 229: 228: 227: 225: 221: 211: 209: 205: 200: 198: 194: 185: 176: 175: 173: 170: 169: 168: 166: 162: 149: 145: 141: 137: 134: 131: 127: 126: 125: 122: 120: 116: 112: 108: 104: 100: 99: 94: 90: 85: 83: 79: 75: 71: 66: 64: 60: 56: 53:all of whose 52: 48: 39: 33: 19: 1329: 1159:>20 sides 1094:Decagon (10) 1079:Heptagon (7) 1069:Pentagon (5) 1059:Triangle (3) 954:Equidiagonal 816: 812: 806: 795: 786: 769: 765: 726: 688:partitioning 687: 680: 669: 662: 619:intersection 611:construction 598: 586: 577: 575: 567: 561: 554: 543: 535: 524: 519: 517: 511: 507: 503: 499: 498:is a square 495: 493: 487: 480: 476: 472: 468: 467:is a square 464: 460: 458: 437: 433: 429: 425: 421: 419: 414: 410: 408: 403: 399: 395: 391: 389: 383: 379: 375: 371: 367: 363: 356: 352: 348: 340: 336: 332: 328: 326: 321: 317: 313: 309: 305: 303: 298: 292: 276: 272: 268: 264: 260: 256: 252: 248: 244: 240: 223: 217: 207: 203: 201: 196: 192: 190: 171: 164: 160: 158: 138:Problems in 133:mask layouts 123: 118: 114: 110: 102: 98:axis-aligned 96: 93:iso-oriented 92: 88: 86: 81: 77: 69: 67: 59:right angles 46: 44: 1355:Star-shaped 1330:Rectilinear 1300:Equilateral 1295:Equiangular 1259:Hendecagram 1103:11–20 sides 1084:Octagon (8) 1074:Hexagon (6) 1049:Monogon (1) 891:Equilateral 374:containing 1360:Tangential 1264:Dodecagram 1042:1–10 sides 1033:By number 1014:Tangential 994:Right kite 819:(3): 240. 772:: 79–102. 712:References 475:such that 161:horizontal 107:rectangles 1340:Reinhardt 1249:Enneagram 1239:Heptagram 1229:Pentagram 1196:65537-gon 1054:Digon (2) 1024:Trapezoid 989:Rectangle 939:Bicentric 901:Isosceles 878:Triangles 546:rectangle 327:A square 224:hole-free 1380:Category 1315:Isotoxal 1310:Isogonal 1254:Decagram 1244:Octagram 1234:Hexagram 1035:of sides 964:Harmonic 865:Polygons 731:Springer 725:(1985). 699:See also 670:covering 589:T-square 275:. Hence 208:antiknob 165:vertical 57:meet at 1335:Regular 1280:Concave 1273:Classes 1181:257-gon 1004:Rhombus 944:Crossed 681:packing 637:routing 557:golygon 520:balcony 479:− 197:concave 51:polygon 1345:Simple 1290:Cyclic 1285:Convex 1009:Square 949:Cyclic 911:Obtuse 906:Kepler 737:  564:convex 251:. Let 220:simple 193:convex 101:, and 1320:Magic 916:Right 896:Ideal 886:Acute 623:union 580:is a 488:Lemma 249:X=Y+4 172:Lemma 155:Edges 55:sides 49:is a 1350:Skew 974:Kite 869:List 735:ISBN 721:and 621:and 271:and 263:and 204:knob 163:and 117:and 80:and 821:doi 774:doi 686:In 679:In 668:In 471:in 362:If 167:. 95:, 1382:: 815:. 794:. 770:06 768:. 752:^ 733:. 729:. 587:A 576:A 573:. 555:A 552:. 494:A 459:A 420:A 417:. 324:. 304:A 301:: 279:. 265:YY 261:YX 257:XY 253:XX 202:A 199:. 65:. 45:A 871:) 867:( 857:e 850:t 843:v 827:. 823:: 817:2 780:. 776:: 694:. 676:. 649:) 645:( 635:/ 631:/ 625:) 512:P 508:s 504:P 500:s 481:s 477:P 473:P 469:s 465:P 438:P 434:s 430:P 426:s 415:P 411:P 404:P 400:P 396:s 392:s 386:. 384:P 380:s 376:s 372:P 368:P 364:s 357:s 353:P 349:s 341:P 337:s 333:P 329:s 322:P 318:P 314:P 310:P 299:P 245:Y 241:X 34:. 20:)

Index

Axis-aligned rectangle
Simple polygon

polygon
sides
right angles
isothetic polygons
Cartesian coordinates
axis-aligned
rectangles
integrated circuit
mask layouts
computational geometry
efficient algorithms
art gallery theorem

simple
Polygon covering


rectangle
Minimum bounding rectangle
golygon
convex
Orthogonally convex
monotone polygon
T-square
Orthogonal range searching
Orthogonal convex hull
Boolean operations on polygons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.