Knowledge

Bacterial effector protein

Source đź“ť

460:. Several bacterial effectors affect NF-kB signaling. For instance, the EPEC/EHEC effectors NleE, NleB, NleC, NleH, and Tir are immunosuppressing effectors that target proteins in the NF-kB signaling pathway. NleC has been shown to cleave the NF-kB p65 subunit (RelA), blocking the production of IL-8 following infection. NleH1, but not NleH2, blocks translocation of NF-kB into the nucleus. The Tir effector protein inhibits cytokine production. Similarly, YopE, YopP, and YopJ (in 43:(T6SS). Some bacteria inject only a few effectors into their host’s cells while others may inject dozens or even hundreds. Effector proteins may have many different activities, but usually help the pathogen to invade host tissue, suppress its immune system, or otherwise help the pathogen to survive. Effector proteins are usually critical for 88:
Many pathogenic bacteria are known to have secreted effectors but for most species the exact number is unknown. Once a pathogen genome has been sequenced, effectors can be predicted based on protein sequence similarity, but such predictions are not always precise. More importantly, it is difficult to
414:
is usually a mechanism of defense to infection, given that apoptotic cells eventually attract immune cells to remove them and the pathogen. Many pathogenic bacteria have developed mechanisms to prevent apoptosis, not the least to maintain their host environment. For instance, the EPEC/EHEC effectors
1654:
Blasche, Sonja; Mörtl, Mario; Steuber, Holger; Siszler, Gabriella; Nisa, Shahista; Schwarz, Frank; Lavrik, Inna; Gronewold, Thomas M. A.; Maskos, Klaus; Donnenberg, Michael S.; Ullmann, Dirk; Uetz, Peter; Kögl, Manfred (14 March 2013).
689:
Tobe, Toru; Beatson, Scott A.; Taniguchi, Hisaaki; Abe, Hiroyuki; Bailey, Christopher M.; Fivian, Amanda; Younis, Rasha; Matthews, Sophie; Marches, Olivier; Frankel, Gad; Hayashi, Tetsuya; Pallen, Mark J. (3 October 2006).
1369:
Raymond, Benoit; Young, Joanna C.; Pallett, Mitchell; Endres, Robert G.; Clements, Abigail; Frankel, Gad (August 2013). "Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors".
89:
prove experimentally that a predicted effector is actually secreted into a host cell because the amount of each effector protein is tiny. For instance, Tobe et al. (2006) predicted more than 60 effectors for pathogenic
2084:
Gao, Xiaofei; Wan, Fengyi; Mateo, Kristina; Callegari, Eduardo; Wang, Dan; Deng, Wanyin; Puente, Jose; Li, Feng; Chaussee, Michael S.; Finlay, B. Brett; Lenardo, Michael J.; Hardwidge, Philip R. (24 December 2009).
2187:
Yan, Dapeng; Wang, Xingyu; Luo, Lijun; Cao, Xuetao; Ge, Baoxue (23 September 2012). "Inhibition of TLR signaling by a bacterial protein containing immunoreceptor tyrosine-based inhibitory motifs".
359:-containing vacuole (SCV), which is essential for its intracellular survival. As the SCVs mature they travel to the microtubule organizing center (MTOC), a perinuclear region adjacent to the 430:
Induction of cell death. In contrast to inhibition of apoptosis, several effectors appear to induce programmed cell death. For instance, EHEC effectors EspF, EspH, and Cif induce apoptosis.
849:
Huang, Li; Boyd, Dana; Amyot, Whitney M.; Hempstead, Andrew D.; Luo, Zhao-Qing; O'Connor, Tamara J.; Chen, Cui; Machner, Matthias; Montminy, Timothy; Isberg, Ralph R. (February 2011).
436:. Human cells have receptors that recognize pathogen-associated molecular patterns (PAMPs). When bacteria bind to these receptors, they activate signaling cascades such as the 1454:
Selyunin, Andrey S.; Sutton, Sarah E.; Weigele, Bethany A.; Reddick, L. Evan; Orchard, Robert C.; Bresson, Stefan M.; Tomchick, Diana R.; Alto, Neal M. (19 December 2010).
333:
inhibits phagocytosis through the concerted actions of several effector proteins, including YopE which acts as a RhoGAP and inhibits Rac-dependent actin polymerization.
321:
predominantly survives extracellularly using the translocation of effectors to inhibit cytoskeletal rearrangements and thus phagocytosis. EPEC/EHEC inhibit both
1180:"Macrophage Class A Scavenger Receptor-Mediated Phagocytosis of Escherichia coli: Role of Cell Heterogeneity, Microbial Strain, and Culture Conditions In Vitro" 2327: 99:
cells. Finally, even within the same bacterial species, different strains often have different repertoires of effectors. For instance, the plant pathogen
654:
Betts, Helen J; Wolf, Katerina; Fields, Kenneth A (February 2009). "Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal".
375:
system by rapidly lysing its vacuole through the action of the T3SS effectors IpaB and C although the details of this process are poorly understood.
1763:
Bergounioux, Jean; Elisee, Ruben; Prunier, Anne-Laure; Donnadieu, Françoise; Sperandio, Brice; Sansonetti, Philippe; Arbibe, Laurence (March 2012).
478:
respectively) target the NF-kB pathway. YopE inhibits activation of NF-kB, which in part prevents the production of IL-8. YopJ family members are
57:), the loss of the T3SS is sufficient to render the bacteria completely avirulent, even when they are directly introduced into the bloodstream. 1935:
Wong, Alexander R. C.; Clements, Abigail; Raymond, Benoit; Crepin, Valerie F.; Frankel, Gad; Bagnoli, Fabio; Rappuoli, Rino (17 January 2012).
1327:"GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure" 1129:
Kleiner, Manuel; Young, Jacque C.; Shah, Manesh; VerBerkmoes, Nathan C.; Dubilier, Nicole; Cavanaugh, Colleen; Moran, Mary Ann (18 June 2013).
898:
Zhu, Wenhan; Banga, Simran; Tan, Yunhao; Zheng, Cheng; Stephenson, Robert; Gately, Jonathan; Luo, Zhao-Qing; Kwaik, Yousef Abu (9 March 2011).
1765:"Calpain Activation by the Shigella flexneri Effector VirA Regulates Key Steps in the Formation and Life of the Bacterium's Epithelial Niche" 1405:
Blocker, Ariel; Gounon, Pierre; Larquet, Eric; Niebuhr, Kirsten; Cabiaux, VĂ©ronique; Parsot, Claude; Sansonetti, Philippe (1 November 1999).
619:
Viboud, Gloria I.; Bliska, James B. (October 2005). "OUTER PROTEINS: Role in Modulation of Host Cell Signaling Responses and Pathogenesis".
1509:"EspG of enteropathogenic and enterohemorrhagic E. coli binds the Golgi matrix protein GM130 and disrupts the Golgi structure and function" 692:"An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination" 1325:
Von Pawel-Rammingen, Ulrich; Telepnev, Maxim V.; Schmidt, Gudula; Aktories, Klaus; Wolf-Watz, Hans; Rosqvist, Roland (18 January 2002).
419:
effectors IpgD and OspG (a homolog of NleH) block apoptosis, the former by phosphorylating and stabilizing the double minute 2 protein (
2271:
Cheong, Mi Sun; Kirik, Angela; Kim, Jung-Gun; Frame, Kenneth; Kirik, Viktor; Mudgett, Mary Beth; Dangl, Jeffery L. (20 February 2014).
1937:"The Interplay between the Escherichia coli Rho Guanine Nucleotide Exchange Factor Effectors and the Mammalian RhoGEF Inhibitor EspH" 1984:
Yen, Hilo; Ooka, Tadasuke; Iguchi, Atsushi; Hayashi, Tetsuya; Sugimoto, Nakaba; Tobe, Toru; Van Nhieu, Guy Tran (16 December 2010).
1229:"Translocation of enteropathogenic Escherichia coli across an in vitro M cell model is regulated by its type III secretion system" 1595:
Hemrajani, Cordula; Berger, Cedric N.; Robinson, Keith S.; Marchès, Olivier; Mousnier, Aurelie; Frankel, Gad (16 February 2010).
1847:"Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway" 993: 584:
Mattoo, Seema; Lee, Yvonne M; Dixon, Jack E (August 2007). "Interactions of bacterial effector proteins with host proteins".
2232:"Comparison of YopE and YopT activities in counteracting host signalling responses to Yersinia pseudotuberculosis infection" 2035:
Pham, Thanh H.; Gao, Xiaofei; Tsai, Karen; Olsen, Rachel; Wan, Fengyi; Hardwidge, Philip R.; McCormick, B. A. (June 2012).
142: 2037:"Functional Differences and Interactions between the Escherichia coli Type III Secretion System Effectors NleH1 and NleH2" 251:
Given the diversity of effectors, they affect a wide variety of intracellular processes. The T3SS effectors of pathogenic
2138:"The Enteropathogenic E. coli (EPEC) Tir Effector Inhibits NF-κB Activity by Targeting TNFα Receptor-Associated Factors" 289:
are immune cells that can recognize and "eat" bacteria. Phagocytes recognize bacteria directly or indirectly through
62: 2640:"BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors" 1597:"NleH effectors interact with Bax inhibitor-1 to block apoptosis during enteropathogenic Escherichia coli infection" 957:
Engel, Joanne; Balachandran, Priya (February 2009). "Role of Pseudomonas aeruginosa type III effectors in disease".
351:, enter the cell and survive intracellularly by manipulating the endocytic pathway. Once internalized by host cells 2434:"A hydrophobic anchor mechanism defines a deacetylase family that suppresses host response against YopJ effectors" 515:
BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors
900:"Comprehensive Identification of Protein Substrates of the Dot/Icm Type IV Transporter of Legionella pneumophila" 490:
or inhibition of ATP binding. In plants, this kind of protein acetylation can be removed through activity of the
2374: 1553:"Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses" 2273:"AvrBsT Acetylates Arabidopsis ACIP1, a Protein that Associates with Microtubules and Is Required for Immunity" 1886:
Samba-Louaka, Ascel; Nougayrède, Jean-Philippe; Watrin, Claude; Oswald, Eric; Taieb, Frédéric (December 2009).
503:
EffectiveDB – A database of predicted bacterial effectors. Includes an interactive server to predict effectors.
427:
inhibits apoptosis and activates pro-survival signals, dependent on the effectors AvrA and SopB, respectively.
1806:"The Salmonella Effector Protein SopB Protects Epithelial Cells from Apoptosis by Sustained Activation of Akt" 36: 2491:"Structural and chemical biology of deacetylases for carbohydrates, proteins, small molecules and histones" 2391:
Trosky, Jennifer E.; Li, Yan; Mukherjee, Sohini; Keitany, Gladys; Ball, Haydn; Orth, Kim (1 October 2007).
70: 2695: 474: 161: 1178:
Kaufmann, S. H. E.; Peiser, Leanne; Gough, Peter J.; Kodama, Tatsuhiko; Gordon, Siamon (1 April 2000).
994:"TYPE III SECRETION SYSTEM EFFECTOR PROTEINS: Double Agents in Bacterial Disease and Plant Defense" 800:"Genome-Scale Identification of Legionella pneumophila Effectors Using a Machine Learning Approach" 138: 40: 2322:
Mukherjee, Sohini; Keitany, Gladys; Li, Yan; Wang, Yong; Ball, Haydn L.; Goldsmith, Elizabeth J.;
1888:"The Enteropathogenic Escherichia coli Effector Cif Induces Delayed Apoptosis in Epithelial Cells" 367:
induced filaments (Sifs) dependent on the T3SS effectors SseF and SseG. By contrast, internalized
1407:"The Tripartite Type III Secreton of Shigella flexneri Inserts Ipab and Ipac into Host Membranes" 798:
Burstein, David; Zusman, Tal; Degtyar, Elena; Viner, Ram; Segal, Gil; Pupko, Tal (10 July 2009).
487: 462: 105:
has 14 effectors in one strain, but more than 150 have been found in multiple different strains.
77: 32: 2136:
Ruchaud-Sparagano, Marie-Hélène; Mühlen, Sabrina; Dean, Paul; Kenny, Brendan (1 December 2011).
189: 175: 1033:"Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors" 2445: 2342: 1668: 1608: 1009: 911: 703: 632: 203: 101: 76:, in order to modify their environment or attack/invade target cells, for example, at the 8: 1986:"NleC, a Type III Secretion Protease, Compromises NF-ÎşB Activation by Targeting p65/RelA" 317:
escape phagocytic killing through manipulation of endolysosomal trafficking (see there).
294: 217: 24: 2449: 2346: 1672: 1612: 915: 707: 535:"Vibrio cholerae type 6 secretion system effector trafficking in target bacterial cells" 2666: 2639: 2615: 2588: 2564: 2539: 2515: 2490: 2466: 2433: 2366: 2299: 2272: 2212: 2164: 2137: 2113: 2086: 2061: 2036: 2012: 1985: 1961: 1936: 1912: 1887: 1740: 1715: 1691: 1656: 1631: 1596: 1551:
Dong, Na; Zhu, Yongqun; Lu, Qiuhe; Hu, Liyan; Zheng, Yuqing; Shao, Feng (August 2012).
1504: 1480: 1455: 1431: 1406: 1258: 1155: 1130: 1106: 1081: 1057: 1032: 934: 899: 875: 850: 826: 799: 775: 750: 726: 691: 561: 534: 1456:"The assembly of a GTPase–kinase signalling complex by a bacterial catalytic scaffold" 2671: 2620: 2569: 2520: 2471: 2414: 2358: 2328:"Yersinia YopJ Acetylates and Inhibits Kinase Activation by Blocking Phosphorylation" 2304: 2253: 2248: 2231: 2204: 2169: 2118: 2066: 2017: 1966: 1917: 1868: 1863: 1846: 1827: 1786: 1745: 1696: 1636: 1574: 1530: 1525: 1508: 1485: 1436: 1387: 1348: 1343: 1326: 1307: 1302: 1277: 1250: 1245: 1228: 1209: 1204: 1179: 1160: 1131:"Metaproteomics Reveals Abundant Transposase Expression in Mutualistic Endosymbionts" 1111: 1062: 1013: 974: 939: 880: 866: 851:"The E Block motif is associated with Legionella pneumophila translocated substrates" 831: 780: 731: 671: 636: 601: 566: 479: 382: 123: 73: 2370: 1262: 1195: 2661: 2651: 2610: 2600: 2559: 2551: 2510: 2502: 2461: 2453: 2404: 2350: 2294: 2284: 2243: 2216: 2196: 2159: 2149: 2108: 2098: 2056: 2048: 2007: 1997: 1956: 1948: 1907: 1899: 1858: 1817: 1776: 1735: 1727: 1686: 1676: 1626: 1616: 1564: 1520: 1475: 1467: 1426: 1418: 1379: 1338: 1297: 1289: 1276:
Goosney, Danika L.; Celli, Jean; Kenny, Brendan; Finlay, B. Brett (February 1999).
1240: 1199: 1191: 1150: 1142: 1101: 1093: 1052: 1044: 1005: 966: 929: 919: 870: 862: 821: 811: 770: 762: 721: 711: 663: 628: 593: 556: 546: 441: 156: 48: 1293: 751:"The effector repertoire of enteropathogenic E. coli: ganging up on the host cell" 2289: 2154: 2103: 2002: 1681: 924: 816: 468: 394: 360: 276: 91: 53: 1716:"Shigella flexneri Inhibits Staurosporine-Induced Apoptosis in Epithelial Cells" 2457: 1781: 1764: 1601:
Proceedings of the National Academy of Sciences of the United States of America
1569: 1552: 696:
Proceedings of the National Academy of Sciences of the United States of America
539:
Proceedings of the National Academy of Sciences of the United States of America
326: 260: 28: 2656: 2506: 1804:
Knodler, Leigh A; Finlay, B Brett; Steele-Mortimer, Olivia (10 January 2005).
1383: 1097: 970: 766: 667: 597: 2689: 2393:"VopA Inhibits ATP Binding by Acetylating the Catalytic Loop of MAPK Kinases" 386: 58: 2605: 2354: 2087:"Bacterial Effector Binding to Ribosomal Protein S3 Subverts NF-ÎşB Function" 1621: 716: 551: 2675: 2624: 2573: 2524: 2475: 2418: 2409: 2392: 2362: 2308: 2257: 2208: 2173: 2122: 2070: 2021: 1970: 1921: 1872: 1831: 1822: 1805: 1790: 1749: 1700: 1640: 1578: 1534: 1489: 1440: 1391: 1352: 1254: 1213: 1164: 1115: 1066: 1017: 978: 943: 884: 835: 784: 735: 675: 640: 605: 570: 533:
Ho, Brian T.; Fu, Yang; Dong, Tao G.; Mekalanos, John J. (29 August 2017).
506:
Bacterial Effector Proteins and their domains/motifs (from Paul Dean's lab)
483: 457: 449: 322: 297:(C3bi) which coat the bacteria and are recognized by the FcÎł receptors and 268: 2555: 1952: 1422: 1324: 1311: 1146: 404:
bound form, and reducing ER–Golgi transport (of IL-8 and other proteins).
2587:
Wang, Yejun; Huang, He; Sun, Ming’an; Zhang, Qing; Guo, Dianjing (2012).
2052: 1903: 1731: 453: 390: 264: 1471: 1227:
Martinez-Argudo, Isabel; Sands, Caroline; Jepson, Mark A. (June 2007).
1048: 341: 290: 286: 2589:"T3DB: an integrated database for bacterial type III secretion system" 400:-activating protein (Rab-GAP), trapping Rab-GTPases in their inactive 2230:
Viboud, Gloria I.; Mejia, Edison; Bliska, James B. (September 2006).
445: 411: 272: 66: 44: 2432:
Bürger, Marco; Willige, Björn C.; Chory, Joanne (19 December 2017).
2200: 2323: 1845:
Nougayrede, Jean-Philippe; Donnenberg, Michael S. (November 2004).
372: 347: 298: 231: 1885: 1762: 263:
dynamics to facilitate their own attachment or invasion, subvert
20: 2135: 385:. For instance, their effector EspG can reduce the secretion of 2540:"Effective—a database of predicted secreted bacterial proteins" 491: 397: 96: 1594: 509:
T3DB – A database of Type 3 Secretion System (T3SS) proteins
437: 423:) which in turn leads to a block of NF-kB-induced apoptosis. 95:
but could only show for 39 that they are secreted into human
1803: 1453: 1031:
Van Engelenburg, Schuyler B; Palmer, Amy E (14 March 2010).
2638:
Dong, Xiaobao; Lu, Xiaotian; Zhang, Ziding (27 June 2015).
1502: 1404: 1128: 420: 1657:"The E. coli Effector Protein NleF Is a Caspase Inhibitor" 1653: 1226: 797: 355:
subverts the endolysosome trafficking pathway to create a
2538:
Jehl, Marc-André; Arnold, Roland; Rattei, Thomas (2011).
1934: 1368: 1278:"Enteropathogenic Escherichia coli Inhibits Phagocytosis" 1177: 482:
that modify lysine, serine or threonine residues with an
401: 2390: 1503:
Clements, Abigail; Smollett, Katherine; Lee, Sau Fung;
1275: 848: 688: 2321: 1714:
Clark, Christina S.; Maurelli, Anthony T. (May 2007).
1080:
Matsumoto, Hiroyuki; Young, Glenn M (February 2009).
1030: 309:(complement receptor 3). For instance, intracellular 2083: 1983: 1844: 2270: 2431: 992:Alfano, James R.; Collmer, Alan (September 2004). 2586: 2229: 956: 532: 497: 2687: 2537: 2489:BĂĽrger, Marco; Chory, Joanne (5 December 2018). 2034: 897: 456:which regulate immune response to infection and 381:. Some pathogens, such as EPEC/EHEC disrupt the 1507:; Lowe, Martin; Frankel, Gad (September 2011). 1364: 1362: 653: 415:NleH and NleF block apoptosis. Similarly, the 1079: 583: 486:, leading to protein aggregation, blockage of 2186: 1713: 991: 1590: 1588: 1496: 1359: 749:Dean, Paul; Kenny, Brendan (February 2009). 618: 2637: 2488: 1756: 1550: 1024: 389:(IL-8), and thus affect the immune system ( 1838: 47:. For instance, in the causative agent of 2665: 2655: 2614: 2604: 2563: 2531: 2514: 2465: 2408: 2298: 2288: 2247: 2163: 2153: 2112: 2102: 2060: 2011: 2001: 1960: 1911: 1862: 1821: 1780: 1739: 1707: 1690: 1680: 1630: 1620: 1585: 1568: 1524: 1479: 1430: 1342: 1301: 1244: 1203: 1154: 1105: 1073: 1056: 933: 923: 874: 825: 815: 774: 748: 725: 715: 560: 550: 1928: 1447: 1220: 2223: 2180: 2129: 2077: 1797: 1647: 1546: 1544: 1398: 1269: 1122: 791: 2688: 1171: 1010:10.1146/annurev.phyto.42.040103.110731 985: 633:10.1146/annurev.micro.59.030804.121320 612: 246: 61:microbes are also suspected to deploy 1879: 1318: 950: 577: 65:to translocate effector proteins and 2580: 2028: 1977: 1541: 1082:"Translocated effectors of Yersinia" 842: 647: 742: 682: 448:, immunomodulating agents, such as 329:and internalization by phagocytes. 13: 891: 14: 2707: 63:bacterial outer membrane vesicles 2249:10.1111/j.1462-5822.2006.00729.x 1864:10.1111/j.1462-5822.2004.00421.x 1526:10.1111/j.1462-5822.2011.01631.x 1344:10.1046/j.1365-2958.2000.01898.x 1246:10.1111/j.1462-5822.2007.00891.x 867:10.1111/j.1462-5822.2010.01531.x 209:14 (>150 in multiple strains) 2631: 2482: 2425: 2397:Journal of Biological Chemistry 2384: 2315: 2264: 1810:Journal of Biological Chemistry 1196:10.1128/iai.68.4.1953-1963.2000 1086:Current Opinion in Microbiology 998:Annual Review of Phytopathology 959:Current Opinion in Microbiology 755:Current Opinion in Microbiology 656:Current Opinion in Microbiology 31:of their host, usually using a 526: 498:Databases and online resources 444:. This leads to expression of 339:. Several bacteria, including 1: 2550:(Database issue): D591–D595. 1294:10.1128/IAI.67.2.490-495.1999 621:Annual Review of Microbiology 586:Current Opinion in Immunology 519: 253:E. coli, Shigella, Salmonella 2290:10.1371/journal.ppat.1003952 2155:10.1371/journal.ppat.1002414 2104:10.1371/journal.ppat.1000708 2003:10.1371/journal.ppat.1001231 1682:10.1371/journal.pone.0058937 925:10.1371/journal.pone.0017638 817:10.1371/journal.ppat.1000508 83: 71:membrane vesicle trafficking 7: 475:Yersinia pseudotuberculosis 279:as well as host responses. 10: 2712: 2458:10.1038/s41467-017-02347-w 1782:10.1016/j.chom.2012.01.013 1570:10.1016/j.cell.2012.06.050 2507:10.1038/s42003-018-0214-4 1384:10.1016/j.tim.2013.06.008 1098:10.1016/j.mib.2008.12.005 971:10.1016/j.mib.2008.12.007 767:10.1016/j.mib.2008.11.006 668:10.1016/j.mib.2008.11.009 598:10.1016/j.coi.2007.06.005 410:(programmed cell death). 41:Type VI secretion system 2657:10.1093/database/bav064 2606:10.1186/1471-2105-13-66 2355:10.1126/science.1126867 1769:Cell Host & Microbe 1622:10.1073/pnas.0911609106 1411:Journal of Cell Biology 717:10.1073/pnas.0604891103 552:10.1073/pnas.1711219114 463:Yersinia enterocolitica 393:). EspG functions as a 78:host-pathogen interface 37:type 4 secretion system 33:type 3 secretion system 2544:Nucleic Acids Research 2495:Communications Biology 2410:10.1074/jbc.M706970200 2041:Infection and Immunity 1892:Infection and Immunity 1823:10.1074/jbc.M412588200 1720:Infection and Immunity 1505:Hartland, Elizabeth L. 1372:Trends in Microbiology 1331:Molecular Microbiology 1282:Infection and Immunity 1184:Infection and Immunity 190:Pseudomonas aeruginosa 176:Legionella pneumophila 2438:Nature Communications 2236:Cellular Microbiology 1953:10.1128/mBio.00250-11 1851:Cellular Microbiology 1513:Cellular Microbiology 1423:10.1083/jcb.147.3.683 1233:Cellular Microbiology 1147:10.1128/mBio.00223-13 855:Cellular Microbiology 434:Inflammatory response 363:, where they produce 337:Endocytic trafficking 265:endocytic trafficking 2380:on 28 February 2019. 2053:10.1128/IAI.06358-11 1904:10.1128/IAI.00860-09 1732:10.1128/IAI.01866-06 512:T3SE – T3SS Database 494:deacetylase family. 204:Pseudomonas syringae 114:number of effectors 102:Pseudomonas syringae 2556:10.1093/nar/gkq1154 2450:2017NatCo...8.2201B 2403:(47): 34299–34305. 2347:2006Sci...312.1211M 2341:(5777): 1211–1214. 1673:2013PLoSO...858937B 1613:2010PNAS..107.3129H 1472:10.1038/nature09593 916:2011PLoSO...617638Z 708:2006PNAS..10314941T 702:(40): 14941–14946. 295:complement proteins 247:Mechanism of action 218:Salmonella enterica 25:pathogenic bacteria 17:Bacterial effectors 2696:Bacterial proteins 2593:BMC Bioinformatics 1049:10.1038/nmeth.1437 480:acetyltransferases 273:apoptotic pathways 235:(multiple species) 127:(multiple species) 2195:(11): 1063–1071. 2189:Nature Immunology 1898:(12): 5471–5477. 1857:(11): 1097–1111. 1816:(10): 9058–9064. 1466:(7328): 107–111. 545:(35): 9427–9432. 383:secretory pathway 379:Secretory pathway 275:, and manipulate 244: 243: 74:secretory pathway 39:(TFSS/T4SS) or a 2703: 2680: 2679: 2669: 2659: 2635: 2629: 2628: 2618: 2608: 2584: 2578: 2577: 2567: 2535: 2529: 2528: 2518: 2486: 2480: 2479: 2469: 2429: 2423: 2422: 2412: 2388: 2382: 2381: 2379: 2373:. Archived from 2332: 2319: 2313: 2312: 2302: 2292: 2268: 2262: 2261: 2251: 2242:(9): 1504–1515. 2227: 2221: 2220: 2184: 2178: 2177: 2167: 2157: 2148:(12): e1002414. 2133: 2127: 2126: 2116: 2106: 2097:(12): e1000708. 2081: 2075: 2074: 2064: 2047:(6): 2133–2140. 2032: 2026: 2025: 2015: 2005: 1996:(12): e1001231. 1981: 1975: 1974: 1964: 1932: 1926: 1925: 1915: 1883: 1877: 1876: 1866: 1842: 1836: 1835: 1825: 1801: 1795: 1794: 1784: 1760: 1754: 1753: 1743: 1726:(5): 2531–2539. 1711: 1705: 1704: 1694: 1684: 1651: 1645: 1644: 1634: 1624: 1607:(7): 3129–3134. 1592: 1583: 1582: 1572: 1563:(5): 1029–1041. 1548: 1539: 1538: 1528: 1519:(9): 1429–1439. 1500: 1494: 1493: 1483: 1451: 1445: 1444: 1434: 1402: 1396: 1395: 1366: 1357: 1356: 1346: 1322: 1316: 1315: 1305: 1273: 1267: 1266: 1248: 1239:(6): 1538–1546. 1224: 1218: 1217: 1207: 1190:(4): 1953–1963. 1175: 1169: 1168: 1158: 1141:(3): e00223-13. 1126: 1120: 1119: 1109: 1077: 1071: 1070: 1060: 1028: 1022: 1021: 989: 983: 982: 954: 948: 947: 937: 927: 895: 889: 888: 878: 846: 840: 839: 829: 819: 795: 789: 788: 778: 746: 740: 739: 729: 719: 686: 680: 679: 651: 645: 644: 616: 610: 609: 581: 575: 574: 564: 554: 530: 391:immunomodulation 108: 107: 2711: 2710: 2706: 2705: 2704: 2702: 2701: 2700: 2686: 2685: 2684: 2683: 2636: 2632: 2585: 2581: 2536: 2532: 2487: 2483: 2430: 2426: 2389: 2385: 2377: 2330: 2326:(26 May 2006). 2320: 2316: 2283:(2): e1003952. 2269: 2265: 2228: 2224: 2201:10.1038/ni.2417 2185: 2181: 2134: 2130: 2082: 2078: 2033: 2029: 1982: 1978: 1933: 1929: 1884: 1880: 1843: 1839: 1802: 1798: 1761: 1757: 1712: 1708: 1652: 1648: 1593: 1586: 1549: 1542: 1501: 1497: 1452: 1448: 1403: 1399: 1367: 1360: 1323: 1319: 1274: 1270: 1225: 1221: 1176: 1172: 1127: 1123: 1078: 1074: 1029: 1025: 990: 986: 955: 951: 896: 892: 847: 843: 810:(7): e1000508. 796: 792: 747: 743: 687: 683: 652: 648: 617: 613: 582: 578: 531: 527: 522: 500: 488:phosphorylation 469:Yersinia pestis 308: 304: 277:innate immunity 249: 86: 54:Yersinia pestis 35:(TTSS/T3SS), a 12: 11: 5: 2709: 2699: 2698: 2682: 2681: 2630: 2579: 2530: 2481: 2424: 2383: 2314: 2277:PLOS Pathogens 2263: 2222: 2179: 2142:PLOS Pathogens 2128: 2091:PLOS Pathogens 2076: 2027: 1990:PLOS Pathogens 1976: 1927: 1878: 1837: 1796: 1775:(3): 240–252. 1755: 1706: 1646: 1584: 1540: 1495: 1446: 1417:(3): 683–693. 1397: 1378:(8): 430–441. 1358: 1337:(3): 737–748. 1317: 1288:(2): 490–495. 1268: 1219: 1170: 1121: 1072: 1043:(4): 325–330. 1037:Nature Methods 1023: 1004:(1): 385–414. 984: 949: 890: 861:(2): 227–245. 841: 804:PLOS Pathogens 790: 761:(1): 101–109. 741: 681: 646: 611: 592:(4): 392–401. 576: 524: 523: 521: 518: 517: 516: 513: 510: 507: 504: 499: 496: 306: 302: 248: 245: 242: 241: 239: 236: 227: 226: 224: 221: 213: 212: 210: 207: 199: 198: 196: 193: 185: 184: 182: 181:>330 (T4SS) 179: 171: 170: 168: 165: 152: 151: 149: 146: 134: 133: 131: 128: 119: 118: 115: 112: 85: 82: 69:factors via a 9: 6: 4: 3: 2: 2708: 2697: 2694: 2693: 2691: 2677: 2673: 2668: 2663: 2658: 2653: 2649: 2645: 2641: 2634: 2626: 2622: 2617: 2612: 2607: 2602: 2598: 2594: 2590: 2583: 2575: 2571: 2566: 2561: 2557: 2553: 2549: 2545: 2541: 2534: 2526: 2522: 2517: 2512: 2508: 2504: 2500: 2496: 2492: 2485: 2477: 2473: 2468: 2463: 2459: 2455: 2451: 2447: 2443: 2439: 2435: 2428: 2420: 2416: 2411: 2406: 2402: 2398: 2394: 2387: 2376: 2372: 2368: 2364: 2360: 2356: 2352: 2348: 2344: 2340: 2336: 2329: 2325: 2318: 2310: 2306: 2301: 2296: 2291: 2286: 2282: 2278: 2274: 2267: 2259: 2255: 2250: 2245: 2241: 2237: 2233: 2226: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2183: 2175: 2171: 2166: 2161: 2156: 2151: 2147: 2143: 2139: 2132: 2124: 2120: 2115: 2110: 2105: 2100: 2096: 2092: 2088: 2080: 2072: 2068: 2063: 2058: 2054: 2050: 2046: 2042: 2038: 2031: 2023: 2019: 2014: 2009: 2004: 1999: 1995: 1991: 1987: 1980: 1972: 1968: 1963: 1958: 1954: 1950: 1946: 1942: 1938: 1931: 1923: 1919: 1914: 1909: 1905: 1901: 1897: 1893: 1889: 1882: 1874: 1870: 1865: 1860: 1856: 1852: 1848: 1841: 1833: 1829: 1824: 1819: 1815: 1811: 1807: 1800: 1792: 1788: 1783: 1778: 1774: 1770: 1766: 1759: 1751: 1747: 1742: 1737: 1733: 1729: 1725: 1721: 1717: 1710: 1702: 1698: 1693: 1688: 1683: 1678: 1674: 1670: 1667:(3): e58937. 1666: 1662: 1658: 1650: 1642: 1638: 1633: 1628: 1623: 1618: 1614: 1610: 1606: 1602: 1598: 1591: 1589: 1580: 1576: 1571: 1566: 1562: 1558: 1554: 1547: 1545: 1536: 1532: 1527: 1522: 1518: 1514: 1510: 1506: 1499: 1491: 1487: 1482: 1477: 1473: 1469: 1465: 1461: 1457: 1450: 1442: 1438: 1433: 1428: 1424: 1420: 1416: 1412: 1408: 1401: 1393: 1389: 1385: 1381: 1377: 1373: 1365: 1363: 1354: 1350: 1345: 1340: 1336: 1332: 1328: 1321: 1313: 1309: 1304: 1299: 1295: 1291: 1287: 1283: 1279: 1272: 1264: 1260: 1256: 1252: 1247: 1242: 1238: 1234: 1230: 1223: 1215: 1211: 1206: 1201: 1197: 1193: 1189: 1185: 1181: 1174: 1166: 1162: 1157: 1152: 1148: 1144: 1140: 1136: 1132: 1125: 1117: 1113: 1108: 1103: 1099: 1095: 1092:(1): 94–100. 1091: 1087: 1083: 1076: 1068: 1064: 1059: 1054: 1050: 1046: 1042: 1038: 1034: 1027: 1019: 1015: 1011: 1007: 1003: 999: 995: 988: 980: 976: 972: 968: 964: 960: 953: 945: 941: 936: 931: 926: 921: 917: 913: 910:(3): e17638. 909: 905: 901: 894: 886: 882: 877: 872: 868: 864: 860: 856: 852: 845: 837: 833: 828: 823: 818: 813: 809: 805: 801: 794: 786: 782: 777: 772: 768: 764: 760: 756: 752: 745: 737: 733: 728: 723: 718: 713: 709: 705: 701: 697: 693: 685: 677: 673: 669: 665: 661: 657: 650: 642: 638: 634: 630: 626: 622: 615: 607: 603: 599: 595: 591: 587: 580: 572: 568: 563: 558: 553: 548: 544: 540: 536: 529: 525: 514: 511: 508: 505: 502: 501: 495: 493: 492:SOBER1/TIPSY1 489: 485: 481: 477: 476: 471: 470: 465: 464: 459: 455: 451: 447: 443: 442:MAPK pathways 439: 435: 431: 428: 426: 422: 418: 413: 409: 405: 403: 399: 396: 392: 388: 387:interleukin-8 384: 380: 376: 374: 370: 366: 362: 358: 354: 350: 349: 344: 343: 338: 334: 332: 328: 324: 320: 316: 312: 300: 296: 292: 288: 284: 280: 278: 274: 270: 266: 262: 258: 254: 240: 237: 234: 233: 229: 228: 225: 222: 220: 219: 215: 214: 211: 208: 206: 205: 201: 200: 197: 194: 192: 191: 187: 186: 183: 180: 178: 177: 173: 172: 169: 166: 163: 159: 158: 154: 153: 150: 147: 144: 141: 140: 136: 135: 132: 129: 126: 125: 121: 120: 116: 113: 110: 109: 106: 104: 103: 98: 94: 93: 81: 79: 75: 72: 68: 64: 60: 59:Gram negative 56: 55: 50: 46: 42: 38: 34: 30: 26: 22: 18: 2647: 2643: 2633: 2596: 2592: 2582: 2547: 2543: 2533: 2498: 2494: 2484: 2441: 2437: 2427: 2400: 2396: 2386: 2375:the original 2338: 2334: 2317: 2280: 2276: 2266: 2239: 2235: 2225: 2192: 2188: 2182: 2145: 2141: 2131: 2094: 2090: 2079: 2044: 2040: 2030: 1993: 1989: 1979: 1944: 1940: 1930: 1895: 1891: 1881: 1854: 1850: 1840: 1813: 1809: 1799: 1772: 1768: 1758: 1723: 1719: 1709: 1664: 1660: 1649: 1604: 1600: 1560: 1556: 1516: 1512: 1498: 1463: 1459: 1449: 1414: 1410: 1400: 1375: 1371: 1334: 1330: 1320: 1285: 1281: 1271: 1236: 1232: 1222: 1187: 1183: 1173: 1138: 1134: 1124: 1089: 1085: 1075: 1040: 1036: 1026: 1001: 997: 987: 965:(1): 61–66. 962: 958: 952: 907: 903: 893: 858: 854: 844: 807: 803: 793: 758: 754: 744: 699: 695: 684: 662:(1): 81–87. 659: 655: 649: 627:(1): 69–89. 624: 620: 614: 589: 585: 579: 542: 538: 528: 484:acetyl group 473: 467: 461: 458:inflammation 450:interleukins 433: 432: 429: 424: 416: 407: 406: 378: 377: 373:endolysosome 368: 364: 356: 352: 346: 340: 336: 335: 330: 323:transcytosis 318: 314: 310: 283:Phagocytosis 282: 281: 269:phagocytosis 256: 252: 250: 230: 216: 202: 188: 174: 155: 137: 122: 100: 90: 87: 52: 23:secreted by 16: 15: 2444:(1): 2201. 454:interferons 371:avoids the 271:, modulate 2650:: bav064. 2501:(1): 217. 520:References 425:Salmonella 365:Salmonella 357:Salmonella 353:Salmonella 342:Salmonella 311:Salmonella 293:(IgG) and 291:antibodies 287:Phagocytes 117:reference 2599:(1): 66. 2324:Orth, Kim 446:cytokines 412:Apoptosis 408:Apoptosis 259:regulate 145:(O157:H7) 124:Chlamydia 84:Diversity 67:virulence 45:virulence 27:into the 2690:Category 2676:26120140 2644:Database 2625:22545727 2574:21071416 2525:30534609 2476:29259199 2419:17881352 2371:13101320 2363:16728640 2309:24586161 2258:16922868 2209:23001144 2174:22144899 2123:20041225 2071:22451523 2022:21187904 1971:22251971 1922:19786559 1873:15469437 1832:15642738 1791:22423964 1750:17339354 1701:23516580 1661:PLOS ONE 1641:20133763 1579:22939626 1535:21740499 1490:21170023 1441:10545510 1392:23870533 1353:10844661 1263:36420610 1255:17298392 1214:10722588 1165:23781067 1116:19185531 1067:20228815 1018:15283671 979:19168385 944:21408005 904:PLOS ONE 885:20880356 836:19593377 785:19144561 736:16990433 676:19138553 641:15847602 606:17662586 571:28808000 417:Shigella 369:Shigella 348:Shigella 331:Yersinia 325:through 319:Yersinia 315:Shigella 299:integrin 267:, block 257:Yersinia 232:Yersinia 111:Species 21:proteins 2667:4483310 2616:3424820 2565:3013723 2516:6281622 2467:5736716 2446:Bibcode 2343:Bibcode 2335:Science 2300:3930583 2217:5226423 2165:3228809 2114:2791202 2062:3370600 2013:3002990 1962:3374388 1913:2786488 1741:1865761 1692:3597564 1669:Bibcode 1632:2840288 1609:Bibcode 1481:3675890 1432:2151192 1312:9916050 1156:3684830 1107:2669664 1058:2862489 935:3052360 912:Bibcode 876:3096851 827:2701608 776:2697328 727:1595455 704:Bibcode 562:5584461 327:M cells 157:E. coli 139:E. coli 92:E. coli 2674:  2664:  2623:  2613:  2572:  2562:  2523:  2513:  2474:  2464:  2417:  2369:  2361:  2307:  2297:  2256:  2215:  2207:  2172:  2162:  2121:  2111:  2069:  2059:  2020:  2010:  1969:  1959:  1920:  1910:  1871:  1830:  1789:  1748:  1738:  1699:  1689:  1639:  1629:  1577:  1533:  1488:  1478:  1460:Nature 1439:  1429:  1390:  1351:  1310:  1300:  1261:  1253:  1212:  1202:  1163:  1153:  1114:  1104:  1065:  1055:  1016:  977:  942:  932:  883:  873:  834:  824:  783:  773:  734:  724:  674:  639:  604:  569:  559:  472:, and 398:GTPase 255:, and 167:>20 97:Caco-2 49:plague 2378:(PDF) 2367:S2CID 2331:(PDF) 2213:S2CID 1947:(1). 1303:96346 1259:S2CID 1205:97372 438:NF-kB 361:Golgi 261:actin 148:40-60 29:cells 2672:PMID 2648:2015 2621:PMID 2570:PMID 2521:PMID 2472:PMID 2415:PMID 2359:PMID 2305:PMID 2254:PMID 2205:PMID 2170:PMID 2119:PMID 2067:PMID 2018:PMID 1967:PMID 1941:mBio 1918:PMID 1869:PMID 1828:PMID 1787:PMID 1746:PMID 1697:PMID 1637:PMID 1575:PMID 1557:Cell 1531:PMID 1486:PMID 1437:PMID 1388:PMID 1349:PMID 1308:PMID 1251:PMID 1210:PMID 1161:PMID 1135:mBio 1112:PMID 1063:PMID 1014:PMID 975:PMID 940:PMID 881:PMID 832:PMID 781:PMID 732:PMID 672:PMID 637:PMID 602:PMID 567:PMID 452:and 440:and 421:MDM2 345:and 313:and 162:EPEC 143:EHEC 19:are 2662:PMC 2652:doi 2611:PMC 2601:doi 2560:PMC 2552:doi 2511:PMC 2503:doi 2462:PMC 2454:doi 2405:doi 2401:282 2351:doi 2339:312 2295:PMC 2285:doi 2244:doi 2197:doi 2160:PMC 2150:doi 2109:PMC 2099:doi 2057:PMC 2049:doi 2008:PMC 1998:doi 1957:PMC 1949:doi 1908:PMC 1900:doi 1859:doi 1818:doi 1814:280 1777:doi 1736:PMC 1728:doi 1687:PMC 1677:doi 1627:PMC 1617:doi 1605:107 1565:doi 1561:150 1521:doi 1476:PMC 1468:doi 1464:469 1427:PMC 1419:doi 1415:147 1380:doi 1339:doi 1298:PMC 1290:doi 1241:doi 1200:PMC 1192:doi 1151:PMC 1143:doi 1102:PMC 1094:doi 1053:PMC 1045:doi 1006:doi 967:doi 930:PMC 920:doi 871:PMC 863:doi 822:PMC 812:doi 771:PMC 763:doi 722:PMC 712:doi 700:103 664:doi 629:doi 594:doi 557:PMC 547:doi 543:114 402:GDP 395:Rab 223:60+ 130:16+ 2692:: 2670:. 2660:. 2646:. 2642:. 2619:. 2609:. 2597:13 2595:. 2591:. 2568:. 2558:. 2548:39 2546:. 2542:. 2519:. 2509:. 2497:. 2493:. 2470:. 2460:. 2452:. 2440:. 2436:. 2413:. 2399:. 2395:. 2365:. 2357:. 2349:. 2337:. 2333:. 2303:. 2293:. 2281:10 2279:. 2275:. 2252:. 2238:. 2234:. 2211:. 2203:. 2193:13 2191:. 2168:. 2158:. 2144:. 2140:. 2117:. 2107:. 2093:. 2089:. 2065:. 2055:. 2045:80 2043:. 2039:. 2016:. 2006:. 1992:. 1988:. 1965:. 1955:. 1943:. 1939:. 1916:. 1906:. 1896:77 1894:. 1890:. 1867:. 1853:. 1849:. 1826:. 1812:. 1808:. 1785:. 1773:11 1771:. 1767:. 1744:. 1734:. 1724:75 1722:. 1718:. 1695:. 1685:. 1675:. 1663:. 1659:. 1635:. 1625:. 1615:. 1603:. 1599:. 1587:^ 1573:. 1559:. 1555:. 1543:^ 1529:. 1517:13 1515:. 1511:. 1484:. 1474:. 1462:. 1458:. 1435:. 1425:. 1413:. 1409:. 1386:. 1376:21 1374:. 1361:^ 1347:. 1335:36 1333:. 1329:. 1306:. 1296:. 1286:67 1284:. 1280:. 1257:. 1249:. 1235:. 1231:. 1208:. 1198:. 1188:68 1186:. 1182:. 1159:. 1149:. 1137:. 1133:. 1110:. 1100:. 1090:12 1088:. 1084:. 1061:. 1051:. 1039:. 1035:. 1012:. 1002:42 1000:. 996:. 973:. 963:12 961:. 938:. 928:. 918:. 906:. 902:. 879:. 869:. 859:13 857:. 853:. 830:. 820:. 806:. 802:. 779:. 769:. 759:12 757:. 753:. 730:. 720:. 710:. 698:. 694:. 670:. 660:12 658:. 635:. 625:59 623:. 600:. 590:19 588:. 565:. 555:. 541:. 537:. 466:, 285:. 238:14 80:. 2678:. 2654:: 2627:. 2603:: 2576:. 2554:: 2527:. 2505:: 2499:1 2478:. 2456:: 2448:: 2442:8 2421:. 2407:: 2353:: 2345:: 2311:. 2287:: 2260:. 2246:: 2240:8 2219:. 2199:: 2176:. 2152:: 2146:7 2125:. 2101:: 2095:5 2073:. 2051:: 2024:. 2000:: 1994:6 1973:. 1951:: 1945:3 1924:. 1902:: 1875:. 1861:: 1855:6 1834:. 1820:: 1793:. 1779:: 1752:. 1730:: 1703:. 1679:: 1671:: 1665:8 1643:. 1619:: 1611:: 1581:. 1567:: 1537:. 1523:: 1492:. 1470:: 1443:. 1421:: 1394:. 1382:: 1355:. 1341:: 1314:. 1292:: 1265:. 1243:: 1237:9 1216:. 1194:: 1167:. 1145:: 1139:4 1118:. 1096:: 1069:. 1047:: 1041:7 1020:. 1008:: 981:. 969:: 946:. 922:: 914:: 908:6 887:. 865:: 838:. 814:: 808:5 787:. 765:: 738:. 714:: 706:: 678:. 666:: 643:. 631:: 608:. 596:: 573:. 549:: 307:2 305:β 303:m 301:α 195:4 164:) 160:( 51:(

Index

proteins
pathogenic bacteria
cells
type 3 secretion system
type 4 secretion system
Type VI secretion system
virulence
plague
Yersinia pestis
Gram negative
bacterial outer membrane vesicles
virulence
membrane vesicle trafficking
secretory pathway
host-pathogen interface
E. coli
Caco-2
Pseudomonas syringae
Chlamydia
E. coli
EHEC
E. coli
EPEC
Legionella pneumophila
Pseudomonas aeruginosa
Pseudomonas syringae
Salmonella enterica
Yersinia
actin
endocytic trafficking

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑