Knowledge

Banach–Alaoglu theorem

Source 📝

15660: 18938: 15072: 18409: 15655:{\displaystyle {\begin{alignedat}{9}U_{B_{1}}&\,{\stackrel {\scriptscriptstyle {\text{def}}}{=}}\,{\Big \{}~~\;~~\;~~\;~~f\ \in \mathbb {K} ^{X}~~\;~~:\sup _{u\in U}|f(u)|\leq 1{\Big \}}\\&={\big \{}~~\;~~\;~~\;~~f\,\in \mathbb {K} ^{X}~~\;~~:f(u)\in B_{1}{\text{ for all }}u\in U{\big \}}\\&={\Big \{}\left(f_{x}\right)_{x\in X}\in \prod _{x\in X}\mathbb {K} \,~:~\;~f_{u}~\in B_{1}{\text{ for all }}u\in U{\Big \}}\\&=\prod _{x\in X}C_{x}\quad {\text{ where }}\quad C_{x}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\begin{cases}B_{1}&{\text{ if }}x\in U\\\mathbb {K} &{\text{ if }}x\not \in U\\\end{cases}}\\\end{alignedat}}} 18933:{\displaystyle {\begin{alignedat}{4}M\left(f_{\bullet }(x)\right){\stackrel {\scriptscriptstyle {\text{def}}}{=}}&~M\circ f_{\bullet }(x)&&{\text{ by definition of notation }}\\=&~\left(M\left(f_{i}(x)\right)\right)_{i\in I}~~~&&{\text{ because }}f_{\bullet }(x)=\left(f_{i}(x)\right)_{i\in I}:I\to \mathbb {K} \\=&~\left(sf_{i}(x)\right)_{i\in I}&&M\left(f_{i}(x)\right)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~sf_{i}(x)\\=&~\left(f_{i}(sx)\right)_{i\in I}&&{\text{ by linearity of }}f_{i}\\=&~f_{\bullet }(sx)&&{\text{ notation }}\end{alignedat}}} 8477: 32213: 31498: 20381: 8226: 8647: 20033: 22496: 8472:{\displaystyle {\begin{alignedat}{4}H:\;&&\prod _{x\in X}\mathbb {K} &&\;\to \;&\left(\prod _{u\in U}\mathbb {K} \right)\times \prod _{x\in X\setminus U}\mathbb {K} \\&&\left(f_{x}\right)_{x\in X}&&\;\mapsto \;&\left(\left(f_{u}\right)_{u\in U},\;\left(f_{x}\right)_{x\in X\setminus U}\right)\\\end{alignedat}}} 8486: 21654: 10407: 14862: 29189: 13669: 22306: 24340: 12922: 27112: 18003: 7545: 20376:{\displaystyle A\left(z_{\bullet }\right)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~A\circ z_{\bullet }=\left(A\left(z_{i}\right)\right)_{i\in I}=\left(A\left(f_{i}(x),f_{i}(y)\right)\right)_{i\in I}=\left(f_{i}(x)+f_{i}(y)\right)_{i\in I}=\left(f_{i}(x+y)\right)_{i\in I}=f_{\bullet }(x+y)} 22068: 9434: 29794: 23478: 21483: 14642: 12125: 13469: 22868: 10217: 8642:{\displaystyle {\begin{alignedat}{4}H:\;&&\mathbb {K} ^{X}&&\;\to \;&\mathbb {K} ^{U}\times \mathbb {K} ^{X\setminus U}\\&&f&&\;\mapsto \;&\left(f{\big \vert }_{U},\;f{\big \vert }_{X\setminus U}\right)\\\end{alignedat}}.} 21361: 28993: 21866: 17542: 16199: 15077: 27886: 25530: 13457: 24226: 12756: 28252: 14548: 6436: 19389: 26963: 21230: 11223: 437: 24648: 17816: 11936: 7425: 21950: 9309: 30249: 7962: 6968: 22562: 19285: 2721: 502: 23321: 26649: 28062: 2544: 1204: 363: 11649: 11337: 22491:{\displaystyle \operatorname {Box} _{P}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left\{\prod B_{R_{\bullet }}~:~R_{\bullet }\in T_{P}\right\}~=~\left\{\prod B_{R_{\bullet }}~:~P\subseteq \prod B_{R_{\bullet }}\right\},} 7687: 10129: 15950: 6549: 29689: 11821: 11597: 29918: 2898: 21945: 21737: 19826: 4375: 29856: 26412: 24449: 7191: 3979: 30115: 29311: 11991: 1913: 18179: 28988: 19613: 22218: 19514: 24742: 13977: 19753: 9598: 5676: 5296: 3391: 1985: 1771: 1488: 21073: 20894: 14134: 9277: 5573: 3907: 2089: 1840: 23285: 28834: 13878: 22697: 15717: 7298: 3695: 3072: 73:
This theorem has applications in physics when one describes the set of states of an algebra of observables, namely that any state can be written as a convex linear combination of so-called pure states.
21004: 19923: 9947: 24028: 16984: 15063: 13791: 9762: 9211: 2390: 856: 29225: 21478: 18348: 17116: 8718: 7054: 6707: 3272: 2787: 2607: 2291: 21649:{\displaystyle {\begin{alignedat}{4}U^{\circ }&=U^{\#}&&\\&=X^{\#}&&\cap \prod _{x\in X}B_{m_{x}}\\&=X^{\prime }&&\cap \prod _{x\in X}B_{m_{x}}\\\end{alignedat}}} 17440: 25391: 16542: 14067: 10514: 26123: 25422: 10402:{\textstyle \Pr {}_{z}\left(\left(f_{i}\right)_{i\in I}\right)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left(\Pr {}_{z}\left(f_{i}\right)\right)_{i\in I}=\left(f_{i}(z)\right)_{i\in I},} 2964: 2341: 27224: 1416: 23722: 13025: 9651: 3020: 2138: 764: 25030: 22765: 17387: 5474: 5170: 5018: 4941: 4895: 4735: 4508: 1296: 26278: 25262: 19709: 10001: 26073: 20456: 16626: 14638: 13167: 6059:, but is usually not a neighborhood of the origin in the weak-* topology, as it has empty interior in the weak* topology, unless the space is finite-dimensional. In fact, it is a result of 4163: 4064: 28490: 27770: 24508: 18095: 11483: 11420: 982: 29341: 28327: 23640: 23510: 22592: 21259: 14857:{\displaystyle {\frac {1}{r_{x}}}|f(x)|=\left|{\frac {1}{r_{x}}}f(x)\right|=\left|f\left({\frac {1}{r_{x}}}x\right)\right|=\left|f\left(u_{x}\right)\right|\leq \sup _{u\in U}|f(u)|\leq 1.} 11546: 1692: 20822: 20522: 13068: 9844: 9702: 7242: 5369: 5094: 3148: 688: 29982: 29560: 28127: 20658: 19676: 16315: 15802: 11135: 10722: 10590: 9150: 7870: 4582: 611: 368: 29184:{\displaystyle \cap \operatorname {Box} _{P}=\bigcap _{R_{\bullet }\in T_{P}}\prod _{x\in X}B_{R_{x}}=\prod _{x\in X}\bigcap _{R_{\bullet }\in T_{P}}B_{R_{x}}=\prod _{x\in X}B_{m_{x}}.} 24559: 23593:
Due to the constructive nature of its proof (as opposed to the general case, which is based on the axiom of choice), the sequential Banach–Alaoglu theorem is often used in the field of
23034: 18998: 11679:
The essence of the Banach–Alaoglu theorem can be found in the next proposition, from which the Banach–Alaoglu theorem follows. Unlike the Banach–Alaoglu theorem, this proposition does
11105: 8221: 4019: 24820: 22622: 19055: 17764: 11041: 10879: 6212: 29485: 29427: 29372: 27690: 22728: 22279: 12314: 8012: 7336: 7092: 6623: 30310: 28762: 21775: 18250: 17658: 16104: 14283: 24077: 20028: 13722: 13664:{\displaystyle U^{\#}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\Big \{}f\in X^{\#}~:~\sup _{u\in U}|f(u)|\leq 1{\Big \}}~=~\left\{f\in X^{\#}~:~f(U)\subseteq B_{1}\right\}} 10212: 6307: 29265: 27775: 27365: 26906: 23909: 22108: 17055: 13356: 13347: 8047: 25308: 24682: 8777: 7608: 7126: 6828: 27320: 27287: 24201: 14971: 14335: 12968: 12724: 8873: 6767: 26536: 25196: 24775: 24375: 20590: 19202: 17607: 17575: 17195: 15834: 14919: 11000: 10838: 10791: 9499: 8096: 6168: 4662: 3811: 2174: 28173: 27145: 16788: 16439: 13267: 9019: 7365: 6857: 6736: 6140: 4296: 4260: 3552: 29397: 28367: 27494: 15978: 25971: 1100: 30330: 30053: 24839: 22752: 21093: 20610: 18404: 18275: 17812: 16727: 15854: 15742: 14468: 13287: 10539: 10154: 6578: 6349: 5724: 3769: 1598: 1545: 28876: 26835: 25907: 24165: 23199: 23060: 22968: 22245: 21681: 21127: 20945: 19945: 19290: 19130: 19077: 18059: 17680: 17415: 17231: 16931: 16909: 16887: 16865: 16072: 16046: 14225: 12650: 12227: 11982: 11773: 10928: 10748: 9304: 9082: 8900: 8153: 5504: 4822: 4769: 4542: 4405: 3632: 3574: 3472: 3427: 1570: 1326: 1092: 883: 571: 243: 29655: 28673: 28607: 26958: 26867: 26439: 26336: 26305: 26025: 25592: 25164: 24965: 24938: 24903: 24231: 23865: 23537: 21132: 16401: 14404: 13101: 12459: 8491: 8231: 7613: 6038: 6011: 5960: 5921: 5840: 5224: 5197: 4849: 4097: 3211: 2205: 2020: 715: 30801: 27172: 16707: 16267: 14368: 12751: 12611: 12188: 8815: 7819: 7574: 5703: 5604: 5428: 5323: 5048: 4972: 4689: 4462: 4432: 3838: 1353: 27636: 17306: 16014: 11849: 11245: 27546: 27461: 23317: 21770: 14437: 9466: 9055: 3610: 30120: 29684: 29622: 29593: 28905: 28702: 28640: 28574: 28519: 28396: 28159: 27254: 26760: 24335:{\displaystyle {\begin{alignedat}{4}F:\;&&B_{1}^{\,\prime }&&\;\to \;&D\\&&f&&\;\mapsto \;&(f(x))_{x\in X}.\\\end{alignedat}}} 23953: 22137: 21395: 19418: 17709: 17337: 16468: 14163: 13916: 12578: 12156: 10957: 10688: 10440: 10037: 8125: 5399: 5124: 3501: 3178: 30008: 28545: 28089: 27913: 27573: 26720: 25417: 24554: 20756: 20721: 20689: 17143: 16823: 16759: 15010: 14463: 14189: 13819: 12917:{\displaystyle U^{\circ }~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\Big \{}f\in X^{\prime }~:~\sup _{u\in U}|f(u)|\leq 1{\Big \}}~=~U^{\#}\cap X^{\prime }.} 12677: 12353: 12254: 8926: 7875: 7420: 6254: 3299: 3102: 1640: 642: 270: 29512: 29458: 28283: 26740: 26476: 25685: 24108: 16342: 16226: 11364: 10906: 9891: 8980: 8953: 6886: 1014: 27593: 27385: 25718: 25645: 19207: 6991: 6792: 3724: 25556: 22501: 2614: 442: 129: 25331: 23811: 23768: 23745: 23663: 23560: 23107: 22302: 17787: 16669: 16365: 16099: 13210: 12549: 12522: 11844: 11131: 10653: 9522: 8842: 7730: 6345: 4629: 28854: 28436: 28416: 27514: 27425: 27405: 26926: 26800: 26780: 26693: 26669: 26541: 26496: 25991: 25927: 25874: 25854: 25216: 25125: 25101: 25081: 25057: 24872: 24528: 24221: 24132: 23831: 23788: 23580: 23219: 23169: 23149: 23080: 22916: 22892: 21488: 21417: 21254: 20776: 19846: 18414: 18199: 18115: 17435: 17271: 17251: 17163: 17004: 16843: 16646: 16562: 14568: 13997: 13230: 13187: 12499: 12479: 12428: 12401: 12377: 11960: 11751: 11731: 11701: 11669: 10630: 10610: 9864: 9790: 9102: 8738: 8175: 7790: 7770: 7750: 7707: 6877: 6643: 6476: 6456: 5980: 5894: 5860: 5813: 5793: 5773: 5749: 4789: 4602: 4223: 4203: 4183: 3319: 2918: 2743: 2564: 2432: 2412: 2245: 2225: 1520: 1373: 1247: 1227: 1047: 923: 903: 788: 533: 294: 221: 27918: 27107:{\displaystyle U^{\circ ,\sigma }~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\Big \{}f\in (X,\sigma )^{\prime }~:~\sup _{u\in U}|f(u)|\leq 1{\Big \}}} 2440: 305: 17998:{\displaystyle f_{\bullet }(x)\to f(x),\quad f_{\bullet }(y)\to f(y),\quad f_{\bullet }(x+y)\to f(x+y),\quad {\text{ and }}\quad f_{\bullet }(sx)\to f(sx).} 12359:
Before proving the proposition above, it is first shown how the Banach–Alaoglu theorem follows from it (unlike the proposition, Banach–Alaoglu assumes that
11605: 11254: 7540:{\displaystyle \Pr {}_{z}:\prod _{x\in X}\mathbb {K} \to \mathbb {K} \quad {\text{ defined by }}\quad s_{\bullet }=\left(s_{x}\right)_{x\in X}\mapsto s_{z}} 23912: 25604:
In a Hilbert space, every bounded and closed set is weakly relatively compact, hence every bounded net has a weakly convergent subnet (Hilbert spaces are
22063:{\displaystyle T_{P}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left\{R_{\bullet }\in \mathbb {R} ^{X}~:~P\subseteq \prod B_{R_{\bullet }}\right\}} 9429:{\displaystyle F\left(x_{\bullet }\right)=\left(F\left(x_{i}\right)\right)_{i\in I}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~F\circ x_{\bullet },} 31534: 24687: 10042: 30742: 29789:{\displaystyle P~\subseteq ~\left(\cap \operatorname {Box} _{P}\right)\cap X^{\prime }~\subseteq ~\left(\cap \operatorname {Box} _{P}\right)\cap X^{\#}} 15862: 31387: 6481: 23116:
A special case of the Banach–Alaoglu theorem is the sequential version of the theorem, which asserts that the closed unit ball of the dual space of a
2343:
it is in general not guaranteed to be a dual system. Throughout, unless stated otherwise, all polar sets will be taken with respect to the canonical
11778: 11551: 29861: 23473:{\displaystyle \rho (x,y)=\sum _{n=1}^{\infty }\,2^{-n}\,{\frac {\left|\langle x-y,x_{n}\rangle \right|}{1+\left|\langle x-y,x_{n}\rangle \right|}}} 2794: 21871: 21686: 19758: 7250: 4301: 30794: 29799: 26345: 24387: 7131: 3912: 31223: 30058: 29270: 6040:
has its usual norm topology. This is because the unit ball in the norm topology is compact if and only if the space is finite-dimensional (cf.
1849: 30484:. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. 23958: 18120: 32044: 28910: 31050: 19519: 6086:
and requires only basic concepts from set theory, topology, and functional analysis. What is needed from topology is a working knowledge of
22141: 19423: 6102: 25810:
is equivalent to the following weak version of the Banach–Alaoglu theorem for normed space in which the conclusion of compactness (in the
2247:
in the other topology (the conclusion follows because two topologies are equal if and only if they have the exact same convergent nets).
150:. According to Pietsch , there are at least twelve mathematicians who can lay claim to this theorem or an important predecessor to it. 13921: 31661: 31636: 31213: 30787: 19714: 9527: 5609: 5229: 3324: 1918: 1704: 1421: 21009: 20830: 14072: 9216: 5509: 3843: 2025: 1776: 23224: 28767: 1987:
Specifically, this proof will use the fact that a subset of a complete Hausdorff space is compact if (and only if) it is closed and
32242: 31618: 31340: 31195: 13827: 12120:{\displaystyle U^{\#}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\Big \{}f\in X^{\#}~:~\sup _{u\in U}|f(u)|\leq 1{\Big \}}.} 8483:
when these products are endowed with their product topologies. In terms of function spaces, this bijection could be expressed as
27367:
is inconsequential and can be ignored because it does not have any effect on the resulting set of linear functionals. However, if
15669: 32086: 31588: 31527: 31171: 22629: 20903: 3637: 3028: 1698: 25734: 19851: 31831: 31655: 20953: 13730: 9896: 9155: 4738: 2349: 797: 29194: 25083:
has a weakly convergent subsequence. (This follows by applying the Banach–Alaoglu theorem to a weakly metrizable subspace of
21422: 18280: 17060: 16936: 15952:
is closed can also be reached by applying the following more general result, this time proved using nets, to the special case
15015: 13466:). Because a closed subset of a compact space is compact, the proof of the proposition will be complete once it is shown that 9714: 8662: 6998: 6651: 3216: 2749: 2569: 2253: 30755: 30720: 30674: 30644: 30614: 30579: 30489: 24384:
It will now be shown that the image of the above map is closed, which will complete the proof of the theorem. Given a point
4944: 4511: 1988: 25336: 24033: 16473: 10445: 30571: 26082: 14006: 22863:{\displaystyle m_{\bullet }~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left(m_{x}\right)_{x\in X}:X\to [0,\infty )} 2923: 2300: 32096: 31593: 31563: 30864: 27177: 1378: 23668: 12974: 9603: 2969: 2094: 720: 32247: 32216: 31867: 31520: 31063: 30543: 24989: 17342: 5433: 5129: 4977: 4900: 4854: 4694: 4467: 1255: 27692:
is compact only requires the so-called "Tychonoff's theorem for compact Hausdorff spaces," which is equivalent to the
26243: 25221: 21356:{\displaystyle U^{\#}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left\{f\in X^{\#}:f(U)\subseteq B_{1}\right\}} 19681: 9952: 9436:
depending on whichever notation is cleanest or most clearly communicates the intended information. In particular, if
32004: 31152: 31043: 30524: 26030: 20897: 20386: 16567: 14577: 13106: 12321: 9769: 5576: 4102: 4024: 1843: 767: 28441: 27712: 24454: 18064: 11425: 11369: 928: 31909: 31422: 30931: 30914: 29316: 28292: 25775:): in this case there actually exists a constructive proof. In the general case of an arbitrary normed space, the 23747:
use the sequential Banach–Alaoglu theorem to extract a subsequence that converges in the weak* topology to a limit
23604: 23483: 21399:
As a side note, with the help of the above elementary proof, it may be shown (see this footnote) that there exist
11488: 4021:
holds because every continuous linear functional is (in particular) a linear functional. For the reverse inclusion
1648: 90:— echos throughout functional analysis.” In 1912, Helly proved that the unit ball of the continuous dual space of 22567: 20781: 20461: 13030: 9798: 9656: 7196: 5328: 5053: 3107: 647: 31067: 29923: 29517: 28094: 25744: 23124:
in the weak-* topology. In fact, the weak* topology on the closed unit ball of the dual of a separable space is
20625: 19618: 16272: 15747: 10692: 10547: 9107: 7827: 4551: 576: 26185: 25104: 22973: 21861:{\displaystyle \prod B_{R_{\bullet }}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\prod _{x\in X}B_{R_{x}}} 18943: 17537:{\displaystyle f_{\bullet }(z)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left(f_{i}(z)\right)_{i\in I}.} 16194:{\displaystyle U_{B}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left\{f\in Y^{X}:f(U)\subseteq B\right\}} 11049: 8180: 6709:
but, since tuples are technically just functions from an indexing set, it can also be identified with the space
3984: 31939: 30904: 24780: 23594: 22597: 19003: 17714: 1250: 29463: 29433:) arbitrary intersections and also under finite unions of at least one set). The elementary proof showed that 29405: 29350: 27881:{\displaystyle U_{B_{1}}~=~{\Big (}\prod _{u\in U}B_{1}{\Big )}\times \prod _{x\in X\setminus U}\mathbb {K} .} 27645: 25525:{\displaystyle \int f_{n_{k}}g\,d\mu \to \int fg\,d\mu \qquad {\text{ for all }}g\in L^{q}(\mu )=X^{\prime }.} 22706: 22257: 13452:{\displaystyle B_{r_{x}}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\{s\in \mathbb {K} :|s|\leq r_{x}\}} 12269: 11005: 10843: 7967: 6176: 190: 32237: 32071: 31673: 31650: 31218: 30708: 30606: 30254: 28726: 18204: 17612: 14230: 7303: 7059: 6590: 19950: 10162: 32122: 31501: 31274: 31208: 31036: 29230: 27331: 26872: 26141: 26076: 23870: 22073: 17025: 13674: 13233: 9306:
is a sequence). In the proofs below, this resulting net may be denoted by any of the following notations
8017: 6259: 6106: 6098: 82:
According to Lawrence Narici and Edward Beckenstein, the Alaoglu theorem is a “very important result—maybe
23587: 13302: 10657:
This proof will also use the fact that the topology of pointwise convergence is preserved when passing to
32252: 31943: 31238: 28247:{\displaystyle m_{\bullet }~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left(m_{x}\right)_{x\in X}} 25267: 24653: 14571: 8743: 7579: 7097: 6799: 27292: 27259: 25615:), norm-closures of convex bounded sets in Hilbert spaces or reflexive Banach spaces are weakly compact. 24170: 14924: 14288: 12930: 12686: 8847: 6741: 6044:). This theorem is one example of the utility of having different topologies on the same vector space. 32179: 31716: 31626: 31568: 31483: 31437: 31361: 26501: 25169: 24747: 24347: 20527: 19139: 17580: 17547: 17168: 15807: 14869: 9471: 8052: 6145: 4634: 4226: 3776: 2143: 1609: 27117: 25779:, which is strictly weaker than the axiom of choice and equivalent to Tychonoff's theorem for compact 16764: 16406: 14543:{\displaystyle \,u_{x}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\frac {1}{r_{x}}}\,x\in U.\,} 13239: 10962: 10800: 10753: 8985: 7341: 6833: 6712: 6431:{\displaystyle B_{r}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\{c\in \mathbb {K} :|c|\leq r\}} 6116: 4265: 4232: 3506: 31975: 31785: 31478: 31294: 30980: 30570:. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: 29377: 28332: 27466: 26165: 19384:{\displaystyle z_{i}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left(f_{i}(x),f_{i}(y)\right)} 15955: 7368: 25952: 25691:
operators). Hence bounded sequences of operators have a weak accumulation point. As a consequence,
21225:{\displaystyle X=(0,\infty )U~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\{ru:r>0,u\in U\}} 15587: 11218:{\displaystyle \sup _{u\in U}|f(u)|\leq r\qquad {\text{ if and only if }}\qquad f(U)\subseteq B_{r}} 5755:, then the polar of a neighborhood is closed and norm-bounded in the dual space. In particular, if 432:{\displaystyle \left\langle x,f\right\rangle ~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~f(x)} 31748: 31743: 31736: 31731: 31603: 31543: 31330: 31228: 31131: 30964: 30936: 30315: 30013: 26220: 26170: 24824: 24643:{\displaystyle \lim _{i}\left(f_{i}(x)\right)_{x\in X}\to \lambda _{\bullet }\quad {\text{ in }}D,} 23583: 22733: 21078: 20906: 20595: 18353: 18255: 17792: 16712: 15839: 15722: 13297: 13272: 12431: 12380: 11931:{\textstyle B_{r}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\{s\in \mathbb {K} :|s|\leq r\}} 10519: 10134: 6554: 5709: 3729: 1578: 1525: 1026: 536: 28859: 26805: 25882: 24140: 23174: 23038: 22921: 22223: 21659: 21106: 20928: 19928: 19082: 19060: 18011: 17663: 17393: 17200: 16914: 16892: 16870: 16848: 16051: 16025: 14194: 12616: 12193: 11965: 11756: 10911: 10731: 9282: 9060: 8878: 8132: 5479: 4797: 4744: 4517: 4380: 3615: 3557: 3432: 3396: 1553: 1301: 1067: 861: 546: 226: 32009: 31990: 31666: 31646: 31427: 31203: 29627: 28645: 28579: 26931: 26840: 26417: 26314: 26283: 26003: 25807: 25791: 25721: 25612: 25561: 25133: 24943: 24916: 24881: 23916: 23843: 23515: 16370: 14373: 13073: 12437: 6113:
for details). Also required is a proper understanding of the technical details of how the space
6016: 5989: 5938: 5899: 5818: 5202: 5175: 4827: 4069: 3183: 2183: 1998: 1207: 693: 30244:{\displaystyle f(u)=\Pr {}_{u}(f)\in \Pr {}_{u}\left(\prod _{x\in X}B_{m_{x}}\right)=B_{m_{u}},} 27150: 16674: 16239: 14340: 12729: 12583: 12160: 8785: 7795: 7550: 5681: 5582: 5406: 5301: 5026: 4950: 4667: 4440: 4410: 3816: 1331: 32198: 32188: 32172: 31872: 31821: 31721: 31706: 31458: 31402: 31366: 30909: 27607: 26180: 25802:) but is not equivalent to it (said differently, Banach–Alaoglu is also strictly stronger than 25783:
spaces, suffices for the proof of the Banach–Alaoglu theorem, and is in fact equivalent to it.
25740: 25648: 25060: 24111: 23598: 23117: 20661: 17276: 15983: 13350: 11228: 7957:{\displaystyle \prod _{x\in X}B_{r_{x}}\subseteq \prod _{x\in X}\mathbb {K} =\mathbb {K} ^{X},} 7372: 143: 136: 67: 27519: 27434: 23290: 21742: 14409: 9439: 9028: 6963:{\displaystyle s_{\bullet }~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~(s(x))_{x\in X}.} 3579: 32167: 31854: 31836: 31801: 31641: 31165: 30844: 29660: 29598: 29565: 28881: 28836:
holds (the intersection on the left is a closed, rather than open, disk − possibly of radius
28678: 28612: 28550: 28495: 28372: 28134: 27229: 26745: 26217: – On strongly convergent combinations of a weakly convergent sequence in a Banach space 25877: 24972: 23929: 22557:{\textstyle \prod B_{m_{\bullet }}=\cap \operatorname {Box} _{P}\in \operatorname {Box} _{P}} 22113: 21370: 19394: 19280:{\displaystyle z_{\bullet }=\left(z_{i}\right)_{i\in I}:I\to \mathbb {K} \times \mathbb {K} } 17685: 17313: 16444: 14139: 13892: 12554: 12132: 10933: 10664: 10416: 10013: 8101: 6215: 5374: 5099: 3477: 3153: 1062: 540: 31161: 29987: 28524: 28067: 27891: 27551: 26698: 25396: 24533: 20734: 20699: 20667: 17121: 16801: 16737: 14988: 14442: 14370:
was defined in the proposition's statement as being any positive real number that satisfies
14168: 13797: 12655: 12331: 12232: 8905: 7399: 6232: 3277: 3080: 2716:{\displaystyle U^{\circ \circ }=\left\{x\in X~:~\sup _{f\in U^{\circ }}|f(x)|\leq 1\right\}} 1618: 620: 497:{\displaystyle \left\langle X,X^{\#},\left\langle \cdot ,\cdot \right\rangle \right\rangle } 248: 58:. A common proof identifies the unit ball with the weak-* topology as a closed subset of a 32183: 32127: 32106: 31441: 30943: 30662: 30499: 29490: 29436: 29430: 28261: 26725: 26461: 26205: 25658: 24086: 23121: 22895: 20729: 16796: 16320: 16204: 14983: 12260: 11342: 10884: 10725: 10658: 9869: 9022: 8958: 8931: 6227: 6110: 987: 273: 166: 31028: 27578: 27370: 26644:{\displaystyle U^{\circ }={\Big \{}f\in X^{\prime }~:~\sup _{u\in U}|f(u)|\leq 1{\Big \}}} 25694: 25621: 6976: 6777: 3700: 8: 32066: 32061: 32019: 31598: 31407: 31345: 31059: 31017: 30874: 30849: 30712: 28057:{\displaystyle U^{\#}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~X^{\#}\cap \left.} 25535: 20947:
is a complete Hausdorff locally convex topological vector space, the same is true of the
5752: 93: 47: 20: 25313: 23793: 23750: 23727: 23645: 23542: 23089: 22284: 17769: 16651: 16347: 16081: 13192: 12531: 12504: 11826: 11113: 10635: 9504: 8824: 7712: 6327: 4611: 32051: 31994: 31928: 31913: 31780: 31770: 31432: 31299: 30894: 30598: 30432: 28839: 28421: 28401: 27499: 27410: 27390: 26911: 26785: 26765: 26678: 26654: 26481: 25976: 25912: 25859: 25839: 25652: 25201: 25110: 25086: 25066: 25042: 24857: 24513: 24206: 24117: 23816: 23773: 23565: 23204: 23154: 23134: 23083: 23065: 22901: 22877: 21402: 21239: 20761: 19831: 18184: 18100: 17420: 17256: 17236: 17148: 16989: 16828: 16631: 16547: 14553: 13982: 13215: 13172: 12484: 12464: 12413: 12386: 12362: 11985: 11945: 11736: 11716: 11686: 11654: 10615: 10595: 9849: 9775: 9087: 8723: 8160: 8155: 7775: 7755: 7735: 7692: 6862: 6628: 6461: 6441: 5965: 5879: 5845: 5798: 5778: 5758: 5734: 4774: 4587: 4208: 4188: 4168: 3304: 2903: 2728: 2549: 2539:{\displaystyle U^{\circ }=\left\{f\in X^{\prime }~:~\sup _{u\in U}|f(u)|\leq 1\right\}} 2417: 2397: 2230: 2210: 1915:
may fail to be a complete space, which is the reason why this proof involves the space
1505: 1358: 1232: 1212: 1199:{\displaystyle U^{\circ }=\left\{f\in X^{\prime }~:~\sup _{u\in U}|f(u)|\leq 1\right\}} 1032: 908: 888: 773: 518: 358:{\displaystyle \left\langle \cdot ,\cdot \right\rangle :X\times X^{\#}\to \mathbb {K} } 279: 206: 39: 30477: 11644:{\displaystyle f~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\operatorname {Id} } 11332:{\displaystyle f(U)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\{f(u):u\in U\}.} 10750:
then the topology of pointwise convergence (or equivalently, the product topology) on
31763: 31689: 31412: 30926: 30761: 30751: 30726: 30716: 30680: 30670: 30650: 30640: 30620: 30610: 30585: 30575: 30565: 30549: 30539: 30520: 30503: 30485: 27693: 26339: 26280:
is said to be "compact (resp. totally bounded, etc.) in the weak-* topology" if when
26196: 26191: 26175: 26152:
in terms of the FIP, except that it only involves those closed subsets that are also
25795: 25787: 25776: 25033: 20825: 11939: 10794: 9793: 8657: 6223: 6171: 6094: 6087: 2177: 1992: 1615:
To start the proof, some definitions and readily verified results are recalled. When
791: 59: 30779: 7682:{\displaystyle \Pr {}_{z}(s)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~s(z).} 6055:. This is because the closed unit ball is only a neighborhood of the origin in the 32156: 31726: 31711: 31512: 31417: 31335: 31304: 31284: 31269: 31264: 31259: 30996: 30609:. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. 30447: 26214: 24080: 15663: 12683:. The proof of the Banach–Alaoglu theorem will be complete once it is shown that 12317: 10124:{\displaystyle \Pr {}_{z}\left(\left(f_{i}\right)_{i\in I}\right)\to \Pr {}_{z}(f)} 9765: 7376: 6219: 6079: 6041: 5298:
This fact, together with (3) and the definition of "totally bounded", implies that
158: 147: 63: 32039: 31578: 31096: 15945:{\displaystyle U_{B_{1}}=\left\{f\in \mathbb {K} ^{X}:f(U)\subseteq B_{1}\right\}} 1600:
This proof will use some of the basic properties that are listed in the articles:
32131: 31979: 31279: 31233: 31181: 31176: 31147: 30921: 30814: 30495: 28130: 27697: 27639: 26446: 26308: 25997: 25930: 25811: 25768: 25752: 25605: 24983: 24378: 23834: 23287:
be a countable dense subset. Then the following defines a metric, where for any
21364: 20900: 20619: 15066: 13460: 12680: 12325: 6544:{\displaystyle rU~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\{ru:u\in U\}} 6090: 6067: 6064: 6056: 6052: 6047:
It should be cautioned that despite appearances, the Banach–Alaoglu theorem does
5928: 4545: 1695: 1643: 1054: 614: 87: 31106: 21103:
The above elementary proof of the Banach–Alaoglu theorem actually shows that if
20824:
of pointwise convergence (also known as the weak-* topology) then the resulting
7247:
This is the reason why many authors write, often without comment, the equality
32162: 32111: 31826: 31468: 31320: 31121: 30859: 30700: 30632: 29400: 26137: 11816:{\displaystyle \mathbb {K} =\mathbb {R} {\text{ or }}\mathbb {K} =\mathbb {C} } 11592:{\displaystyle X~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\mathbb {K} } 10003: 7383:), also comes equipped with associated maps that are known as its (coordinate) 6083: 1573: 1058: 55: 29913:{\displaystyle f\in P~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~U^{\#}} 25814:
of the closed unit ball of the dual space) is replaced with the conclusion of
22281:
denotes the set of all such products of closed balls containing the polar set
6309:
An explanation of these details is now given for readers who are interested.
2893:{\displaystyle U^{\#}=\left\{f\in X^{\#}~:~\sup _{u\in U}|f(u)|\leq 1\right\}} 146:). The proof for the general case was published in 1940 by the mathematician 32231: 32146: 32056: 31999: 31959: 31887: 31862: 31806: 31758: 31694: 31473: 31397: 31126: 31111: 31101: 30899: 30882: 30839: 30684: 30654: 30624: 30553: 30538:. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. 30507: 29344: 28286: 28255: 26149: 26129: 22700: 21940:{\displaystyle R_{\bullet }=\left(R_{x}\right)_{x\in X}\in \mathbb {R} ^{X},} 21732:{\displaystyle P~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~U^{\circ }} 21233: 20948: 13822: 13463: 12525: 12264: 12257: 8480: 8479:
canonically identifies these two Cartesian products; moreover, this map is a
7380: 5924: 5863: 4605: 162: 132: 51: 30765: 30730: 30589: 30451: 21006:
A closed subset of a complete space is complete, so by the lemma, the space
19821:{\displaystyle A(x,y)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~x+y.} 6060: 4370:{\displaystyle U^{\#}\cap X^{\prime }=U^{\circ }\cap X^{\prime }=U^{\circ }} 32193: 32141: 32101: 32091: 31969: 31816: 31811: 31608: 31558: 31463: 31116: 31086: 30738: 30561: 29851:{\displaystyle f\in \left(\cap \operatorname {Box} _{P}\right)\cap X^{\#}.} 26407:{\displaystyle \left(X^{\prime },\sigma \left(X^{\prime },X\right)\right),} 26208: – On when a space equals the closed convex hull of its extreme points 26188: – Relates three different kinds of weak compactness in a Banach space 24979: 24875: 24444:{\displaystyle \lambda _{\bullet }=\left(\lambda _{x}\right)_{x\in X}\in D} 22759: 12652:
Thus the hypotheses of the above proposition are satisfied, and so the set
11600: 8780: 7186:{\displaystyle s(x)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~s_{x}} 3974:{\displaystyle \left(X^{\prime },\sigma \left(X^{\prime },X\right)\right):} 297: 139: 30110:{\displaystyle f\in \cap \operatorname {Box} _{P}=\prod B_{m_{\bullet }},} 29306:{\displaystyle \cap \operatorname {Box} _{P}\in \operatorname {Box} _{P},} 1908:{\displaystyle \left(X^{\prime },\sigma \left(X^{\prime },X\right)\right)} 32151: 32136: 32029: 31923: 31918: 31903: 31882: 31846: 31753: 31573: 31392: 31382: 31289: 31091: 30834: 30810: 28064:
Rewriting the definition in this way helps make it apparent that the set
26442: 25688: 18174:{\displaystyle M(c)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~sc.} 5896:
is a normed space then the closed unit ball in the continuous dual space
4791: 2344: 2294: 1605: 1548: 505: 194: 24: 28983:{\displaystyle m_{x}=\inf _{}\left\{R_{x}:R_{\bullet }\in T_{P}\right\}} 31964: 31877: 31841: 31701: 31583: 31325: 31157: 30829: 26153: 25728: 23125: 22755: 19608:{\displaystyle f_{\bullet }(y)=\left(f_{i}(y)\right)_{i\in I}\to f(y),} 16075: 11339:
As a side note, this characterization does not hold if the closed ball
9057:
is any function then the net (or sequence) that results from "plugging
43: 36: 30387: 30385: 30383: 30381: 30379: 30377: 30364: 30362: 30360: 25724:, if equipped with either the weak operator or the ultraweak topology. 22213:{\displaystyle m_{x}=\inf \left\{R_{x}:R_{\bullet }\in T_{P}\right\},} 19509:{\displaystyle f_{\bullet }(x)=\left(f_{i}(x)\right)_{i\in I}\to f(x)} 32116: 31933: 31001: 30887: 30854: 24906: 2724: 1601: 1095: 198: 135:
proved that the closed unit ball in the continuous dual space of any
25655:
which is in turn the weak-* topology with respect to the predual of
32081: 32076: 32034: 32014: 31984: 31775: 30374: 30357: 25128: 24737:{\displaystyle g(x)=\lambda _{x}\qquad {\text{ for every }}x\in X,} 23911:
is the space of continuous functions vanishing at infinity, by the
22871: 22754:
this may be used as an alternative definition of this (necessarily
17789:
it follows that each of the following nets of scalars converges in
13972:{\textstyle \Pr {}_{z}:\prod _{x\in X}\mathbb {K} \to \mathbb {K} } 11248: 8818: 24381:. This map's inverse, defined on its image, is also continuous. 23128:, and thus compactness and sequential compactness are equivalent. 21683:
can also be chosen to be "minimal" in the following sense: using
14000: 12355:
is compact in the weak-* topology or "weak-* compact" for short).
6317:
Primer on product/function spaces, nets, and pointwise convergence
32024: 24967:
is infinite dimensional then its closed unit ball is necessarily
22248: 19748:{\displaystyle A:\mathbb {K} \times \mathbb {K} \to \mathbb {K} } 9768:. It is well known that the product topology is identical to the 9593:{\displaystyle \left(F\left(x_{i}\right)\right)_{i\in I}\to F(x)} 5671:{\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right),} 5291:{\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right).} 3386:{\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right).} 1980:{\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right).} 1766:{\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right).} 1483:{\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right).} 23867:
is the space of finite Radon measures on the real line (so that
23665:
one common strategy is to first construct a minimizing sequence
21068:{\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right)} 20889:{\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right)} 14129:{\displaystyle \Pr {}_{x}\left(U^{\#}\right)\subseteq B_{r_{x}}} 9272:{\displaystyle \left(F\left(x_{i}\right)\right)_{i=1}^{\infty }} 5568:{\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right)} 3902:{\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right)} 2084:{\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right)} 1835:{\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right)} 23280:{\displaystyle x_{\bullet }=\left(x_{n}\right)_{n=1}^{\infty }} 8982:
may also be denoted by the usual function parentheses notation
7964:
where under the above identification of tuples with functions,
5706: 2227:
in one of these topologies if and only if it also converges to
30750:. Pure and Applied Mathematics. New York: Wiley-Interscience. 28829:{\displaystyle \cap \left\{B_{a}:a\in A\right\}=B_{\inf _{}A}} 23915:), the sequential Banach–Alaoglu theorem is equivalent to the 16671:
so too must this net's limit belong to this closed set; thus
15069:
for readers who are not familiar with this result). The set
13873:{\displaystyle \prod _{x\in X}\mathbb {K} =\mathbb {K} ^{X}.} 6646: 26136:
because a topological space is compact if and only if every
22692:{\textstyle \prod B_{m_{\bullet }}=\prod _{x\in X}B_{m_{x}}} 16986:
in the topology of pointwise convergence. (The vector space
15712:{\displaystyle \prod _{x\in X}\mathbb {K} =\mathbb {K} ^{X}} 12407:
Proof that Banach–Alaoglu follows from the proposition above
7367:(or conversely). However, the Cartesian product, being the 7293:{\displaystyle \mathbb {K} ^{X}=\prod _{x\in X}\mathbb {K} } 5606:
is a closed (by (2)) and totally bounded (by (4)) subset of
70:, this product, and hence the unit ball within, is compact. 31058: 15644: 3690:{\displaystyle \left\{s\in \mathbb {K} :|s|\leq 1\right\},} 3067:{\displaystyle U^{\circ \circ \circ }\subseteq U^{\circ }.} 20999:{\textstyle \mathbb {K} ^{X}=\prod _{x\in X}\mathbb {K} .} 19918:{\displaystyle A\left(z_{\bullet }\right)\to A(f(x),f(y))} 9942:{\textstyle \mathbb {K} ^{X}=\prod _{x\in X}\mathbb {K} ,} 7193:; this function's "tuple of values" is the original tuple 24023:{\displaystyle D_{x}=\{c\in \mathbb {C} :|c|\leq \|x\|\}} 16979:{\textstyle \mathbb {K} ^{X}=\prod _{x\in X}\mathbb {K} } 15058:{\textstyle \mathbb {K} ^{X}=\prod _{x\in X}\mathbb {K} } 13786:{\displaystyle U^{\#}\subseteq \prod _{x\in X}B_{r_{x}}.} 11110:
An important fact used by the proof is that for any real
9757:{\textstyle \mathbb {K} ^{X}=\prod _{x\in X}\mathbb {K} } 9206:{\displaystyle \left(F\left(x_{i}\right)\right)_{i\in I}} 4298:
as desired. Using (1) and the fact that the intersection
2385:{\displaystyle \left\langle X,X^{\prime }\right\rangle .} 851:{\displaystyle f_{\bullet }=\left(f_{i}\right)_{i\in I},} 29220:{\displaystyle P\subseteq \cap \operatorname {Box} _{P}} 25735:
Krein–Milman theorem § Relation to other statements
21473:{\displaystyle m_{\bullet }=\left(m_{x}\right)_{x\in X}} 18343:{\displaystyle M\left(f_{\bullet }(x)\right)\to M(f(x))} 17111:{\displaystyle f_{\bullet }=\left(f_{i}\right)_{i\in I}} 8713:{\displaystyle x_{\bullet }=\left(x_{i}\right)_{i\in I}} 7338:
is sometimes taken as the definition of the set of maps
7049:{\displaystyle s_{\bullet }=\left(s_{x}\right)_{x\in X}} 6702:{\displaystyle s_{\bullet }=\left(s_{x}\right)_{x\in X}} 3267:{\displaystyle f_{\bullet }=\left(f_{i}\right)_{i\in I}} 2782:{\displaystyle \left\langle X,X^{\prime }\right\rangle } 2602:{\displaystyle \left\langle X,X^{\prime }\right\rangle } 2286:{\displaystyle \left\langle X,X^{\prime }\right\rangle } 296:
and these two spaces are henceforth associated with the
30515:
Meise, Reinhold; Vogt, Dietmar (1997). "Theorem 23.5".
26210:
Pages displaying short descriptions of redirect targets
23601:. For instance, if one wants to minimize a functional 10612:
in the product topology if and only if it converges to
2140:
This can be readily verified by showing that given any
142:
is sequentially weak-* compact (Banach only considered
29886: 28438:
can be associated with this unique (minimum) function
28199: 27944: 26995: 25772: 25386:{\displaystyle \left(f_{n_{k}}\right)_{k=1}^{\infty }} 22791: 22632: 22570: 22504: 22335: 21976: 21811: 21705: 21285: 21172: 20956: 20070: 19792: 19316: 18773: 18458: 18148: 17475: 16939: 16537:{\displaystyle \left(f_{i}(u)\right)_{i\in I}\to f(u)} 16130: 15568: 15111: 15018: 14495: 14062:{\textstyle U^{\#}\subseteq \prod _{x\in X}B_{r_{x}},} 14009: 13924: 13677: 13495: 13389: 13305: 12782: 12017: 11875: 11852: 11624: 11570: 11282: 11008: 10965: 10846: 10803: 10756: 10509:{\displaystyle \left(f_{i}(z)\right)_{i\in I}\to f(z)} 10284: 10220: 9899: 9717: 9393: 8875:
is also a net. As with sequences, the value of a net
7650: 7306: 7159: 7062: 6912: 6593: 6503: 6375: 6262: 6179: 6070:
topological vector spaces must be finite-dimensional.
5866:). Consequently, this theorem can be specialized to: 403: 30809: 30318: 30257: 30123: 30061: 30016: 29990: 29926: 29864: 29802: 29692: 29663: 29630: 29601: 29568: 29520: 29493: 29487:
are not empty and moreover, it also even showed that
29466: 29439: 29408: 29380: 29353: 29319: 29273: 29233: 29197: 28996: 28913: 28884: 28862: 28856:− because it is an intersection of closed subsets of 28842: 28770: 28729: 28681: 28648: 28615: 28582: 28553: 28527: 28498: 28444: 28424: 28404: 28375: 28335: 28295: 28264: 28176: 28137: 28097: 28070: 27921: 27894: 27778: 27715: 27648: 27610: 27581: 27554: 27522: 27502: 27469: 27437: 27413: 27393: 27373: 27334: 27295: 27262: 27232: 27180: 27153: 27120: 26966: 26934: 26914: 26875: 26843: 26808: 26788: 26768: 26748: 26728: 26701: 26681: 26657: 26544: 26504: 26484: 26464: 26420: 26348: 26317: 26286: 26246: 26118:{\displaystyle B\cap \bigcap _{C\in {\mathcal {C}}}C} 26085: 26033: 26006: 25979: 25955: 25915: 25885: 25862: 25842: 25697: 25661: 25624: 25564: 25538: 25425: 25399: 25339: 25316: 25270: 25224: 25204: 25172: 25136: 25113: 25089: 25069: 25045: 24992: 24946: 24919: 24884: 24860: 24827: 24783: 24750: 24690: 24656: 24562: 24536: 24516: 24457: 24390: 24350: 24229: 24209: 24173: 24143: 24120: 24089: 24036: 23961: 23932: 23873: 23846: 23819: 23796: 23776: 23753: 23730: 23671: 23648: 23607: 23568: 23545: 23518: 23486: 23324: 23293: 23227: 23207: 23177: 23157: 23137: 23092: 23068: 23041: 22976: 22924: 22904: 22880: 22768: 22736: 22709: 22600: 22309: 22287: 22260: 22226: 22144: 22116: 22076: 21953: 21874: 21778: 21745: 21689: 21662: 21486: 21425: 21405: 21373: 21262: 21242: 21135: 21109: 21081: 21012: 20931: 20833: 20784: 20764: 20737: 20702: 20670: 20628: 20622:
actually also follows from its corollary below since
20598: 20530: 20464: 20389: 20036: 19953: 19931: 19854: 19834: 19761: 19717: 19684: 19621: 19522: 19426: 19397: 19293: 19210: 19142: 19085: 19063: 19006: 18946: 18412: 18356: 18283: 18258: 18207: 18187: 18123: 18103: 18067: 18014: 17819: 17795: 17772: 17717: 17688: 17666: 17615: 17583: 17550: 17443: 17423: 17396: 17345: 17316: 17279: 17259: 17239: 17203: 17171: 17151: 17124: 17063: 17028: 16992: 16917: 16895: 16873: 16851: 16831: 16804: 16767: 16740: 16715: 16677: 16654: 16634: 16570: 16550: 16476: 16447: 16409: 16373: 16350: 16323: 16275: 16242: 16207: 16107: 16084: 16054: 16028: 15986: 15958: 15865: 15842: 15810: 15750: 15725: 15672: 15075: 14991: 14927: 14872: 14645: 14580: 14556: 14471: 14445: 14412: 14376: 14343: 14291: 14233: 14197: 14171: 14142: 14075: 13985: 13895: 13830: 13800: 13733: 13472: 13359: 13275: 13242: 13218: 13195: 13175: 13109: 13076: 13033: 12977: 12933: 12759: 12732: 12689: 12658: 12619: 12586: 12557: 12534: 12507: 12487: 12467: 12440: 12416: 12389: 12365: 12334: 12272: 12235: 12196: 12163: 12135: 11994: 11968: 11948: 11829: 11781: 11759: 11739: 11719: 11689: 11657: 11608: 11554: 11548:
will not change this; for counter-examples, consider
11491: 11428: 11372: 11345: 11257: 11231: 11138: 11116: 11052: 10936: 10914: 10887: 10734: 10695: 10667: 10638: 10618: 10598: 10550: 10522: 10448: 10419: 10165: 10137: 10045: 10016: 9955: 9872: 9852: 9801: 9778: 9659: 9606: 9530: 9507: 9474: 9442: 9312: 9285: 9219: 9158: 9110: 9090: 9063: 9031: 8988: 8961: 8934: 8908: 8881: 8850: 8827: 8788: 8746: 8726: 8665: 8489: 8229: 8183: 8163: 8135: 8104: 8055: 8020: 7970: 7878: 7830: 7798: 7778: 7758: 7738: 7715: 7695: 7616: 7582: 7553: 7428: 7402: 7344: 7253: 7199: 7134: 7100: 7001: 6979: 6889: 6865: 6836: 6802: 6780: 6744: 6715: 6654: 6631: 6557: 6484: 6464: 6444: 6352: 6330: 6235: 6148: 6119: 6019: 5992: 5968: 5941: 5902: 5882: 5848: 5821: 5815:
is the closed unit ball in the continuous dual space
5801: 5781: 5761: 5737: 5712: 5684: 5612: 5585: 5512: 5482: 5436: 5409: 5377: 5331: 5304: 5232: 5205: 5178: 5132: 5102: 5056: 5029: 4980: 4953: 4903: 4857: 4830: 4800: 4777: 4747: 4697: 4670: 4637: 4614: 4590: 4554: 4520: 4470: 4443: 4413: 4383: 4304: 4268: 4235: 4211: 4191: 4171: 4105: 4072: 4027: 3987: 3915: 3846: 3819: 3779: 3732: 3703: 3640: 3618: 3582: 3560: 3509: 3480: 3435: 3399: 3327: 3307: 3280: 3219: 3186: 3156: 3110: 3083: 3031: 2972: 2926: 2906: 2797: 2752: 2731: 2617: 2572: 2552: 2443: 2420: 2400: 2352: 2303: 2256: 2233: 2213: 2186: 2146: 2097: 2028: 2001: 1921: 1852: 1779: 1707: 1651: 1621: 1581: 1556: 1528: 1508: 1424: 1381: 1361: 1334: 1304: 1258: 1235: 1215: 1103: 1070: 1035: 990: 931: 911: 891: 864: 800: 776: 723: 696: 650: 623: 579: 549: 521: 445: 371: 308: 282: 251: 229: 209: 96: 31542: 30667:
Topological Vector Spaces, Distributions and Kernels
26201:
Pages displaying wikidata descriptions as a fallback
25729:
Relation to the axiom of choice and other statements
23111: 13724:
The following statements guarantee this conclusion:
8652:
Notation for nets and function composition with nets
2959:{\displaystyle \left\langle X,X^{\#}\right\rangle .} 2336:{\displaystyle \left\langle X,X^{\#}\right\rangle ,} 27219:{\displaystyle U^{\circ ,\tau }=U^{\circ ,\sigma }} 26742:can be ignored. To clarify what is meant, suppose 8844:which by definition is just a function of the form 5982:is an infinite dimensional normed space then it is 1411:{\displaystyle \left\langle X,X^{\#}\right\rangle } 31388:Spectral theory of ordinary differential equations 30426: 30424: 30324: 30304: 30243: 30109: 30047: 30002: 29976: 29912: 29850: 29796:is immediate; to prove the reverse inclusion, let 29788: 29678: 29649: 29616: 29587: 29554: 29506: 29479: 29452: 29421: 29391: 29366: 29335: 29305: 29259: 29219: 29183: 28982: 28899: 28870: 28848: 28828: 28756: 28696: 28667: 28634: 28601: 28568: 28539: 28513: 28484: 28430: 28410: 28390: 28361: 28321: 28277: 28246: 28153: 28121: 28083: 28056: 27907: 27880: 27764: 27684: 27630: 27587: 27567: 27540: 27508: 27488: 27455: 27419: 27399: 27379: 27359: 27314: 27281: 27248: 27218: 27166: 27139: 27106: 26952: 26920: 26900: 26861: 26829: 26794: 26774: 26754: 26734: 26714: 26687: 26663: 26643: 26530: 26490: 26470: 26433: 26406: 26330: 26299: 26272: 26117: 26067: 26019: 25985: 25965: 25921: 25901: 25868: 25848: 25712: 25679: 25639: 25598: 25586: 25550: 25524: 25411: 25385: 25325: 25302: 25256: 25210: 25190: 25158: 25119: 25095: 25075: 25051: 25024: 24959: 24932: 24897: 24866: 24833: 24814: 24769: 24736: 24676: 24642: 24548: 24522: 24502: 24443: 24369: 24334: 24215: 24195: 24159: 24126: 24102: 24071: 24022: 23947: 23903: 23859: 23825: 23805: 23782: 23762: 23739: 23717:{\displaystyle x_{1},x_{2},\ldots \in X^{\prime }} 23716: 23657: 23634: 23574: 23554: 23531: 23504: 23472: 23311: 23279: 23213: 23193: 23163: 23143: 23101: 23074: 23054: 23028: 22962: 22910: 22886: 22862: 22746: 22722: 22691: 22616: 22594:denotes the intersection of all sets belonging to 22586: 22556: 22490: 22296: 22273: 22239: 22212: 22131: 22102: 22062: 21939: 21860: 21764: 21731: 21675: 21648: 21472: 21411: 21389: 21355: 21248: 21224: 21121: 21087: 21067: 20998: 20939: 20888: 20816: 20770: 20750: 20715: 20683: 20652: 20604: 20584: 20516: 20450: 20375: 20022: 19939: 19917: 19840: 19820: 19747: 19703: 19670: 19607: 19508: 19412: 19383: 19279: 19196: 19124: 19071: 19049: 18992: 18932: 18398: 18342: 18269: 18244: 18193: 18173: 18109: 18089: 18053: 17997: 17806: 17781: 17758: 17703: 17674: 17652: 17601: 17569: 17536: 17429: 17409: 17381: 17331: 17300: 17265: 17245: 17225: 17189: 17157: 17137: 17110: 17049: 16998: 16978: 16925: 16903: 16881: 16859: 16837: 16817: 16782: 16753: 16721: 16701: 16663: 16640: 16620: 16556: 16536: 16462: 16433: 16395: 16359: 16336: 16309: 16261: 16220: 16193: 16093: 16066: 16040: 16008: 15972: 15944: 15848: 15828: 15796: 15736: 15711: 15654: 15057: 15004: 14965: 14913: 14856: 14632: 14562: 14542: 14457: 14431: 14398: 14362: 14329: 14277: 14219: 14183: 14157: 14128: 14061: 13991: 13971: 13910: 13872: 13813: 13785: 13716: 13663: 13451: 13341: 13281: 13261: 13224: 13204: 13181: 13161: 13095: 13062: 13020:{\displaystyle U^{\circ }=U^{\#}\cap X^{\prime },} 13019: 12962: 12916: 12745: 12718: 12671: 12644: 12605: 12572: 12543: 12516: 12493: 12473: 12453: 12422: 12395: 12371: 12347: 12308: 12248: 12221: 12182: 12150: 12119: 11976: 11954: 11930: 11838: 11815: 11767: 11745: 11725: 11695: 11663: 11643: 11591: 11540: 11477: 11414: 11358: 11331: 11239: 11217: 11125: 11099: 11035: 10994: 10951: 10922: 10900: 10873: 10832: 10785: 10742: 10716: 10682: 10647: 10624: 10604: 10584: 10533: 10508: 10434: 10401: 10206: 10148: 10123: 10031: 9995: 9941: 9885: 9858: 9838: 9784: 9756: 9696: 9646:{\displaystyle F\left(x_{\bullet }\right)\to F(x)} 9645: 9592: 9516: 9493: 9460: 9428: 9298: 9271: 9205: 9144: 9096: 9076: 9049: 9013: 8974: 8947: 8920: 8894: 8867: 8836: 8809: 8771: 8732: 8712: 8641: 8471: 8215: 8169: 8147: 8119: 8090: 8041: 8006: 7956: 7864: 7813: 7784: 7764: 7744: 7724: 7701: 7681: 7602: 7568: 7539: 7414: 7359: 7330: 7292: 7236: 7185: 7120: 7086: 7048: 6985: 6962: 6871: 6851: 6822: 6786: 6761: 6730: 6701: 6637: 6617: 6572: 6543: 6470: 6450: 6430: 6339: 6301: 6248: 6206: 6162: 6134: 6032: 6005: 5974: 5954: 5915: 5888: 5854: 5834: 5807: 5787: 5767: 5743: 5718: 5697: 5670: 5598: 5567: 5498: 5468: 5422: 5393: 5363: 5317: 5290: 5218: 5191: 5164: 5118: 5088: 5042: 5012: 4966: 4935: 4889: 4843: 4816: 4783: 4763: 4729: 4683: 4656: 4623: 4596: 4576: 4536: 4502: 4456: 4426: 4399: 4369: 4290: 4254: 4217: 4197: 4177: 4157: 4091: 4058: 4013: 3973: 3901: 3832: 3805: 3763: 3718: 3689: 3626: 3604: 3568: 3546: 3495: 3466: 3421: 3385: 3313: 3293: 3266: 3205: 3172: 3142: 3096: 3066: 3015:{\displaystyle U^{\circ }=U^{\#}\cap X^{\prime }.} 3014: 2958: 2912: 2892: 2781: 2737: 2715: 2601: 2558: 2538: 2426: 2406: 2384: 2335: 2285: 2239: 2219: 2199: 2168: 2133:{\displaystyle \sigma \left(X^{\prime },X\right).} 2132: 2083: 2014: 1979: 1907: 1834: 1765: 1686: 1634: 1592: 1564: 1539: 1514: 1482: 1410: 1367: 1347: 1320: 1290: 1241: 1221: 1198: 1086: 1041: 1008: 976: 917: 897: 877: 850: 782: 759:{\displaystyle \sigma \left(X^{\prime },X\right).} 758: 709: 682: 636: 605: 565: 527: 496: 431: 357: 288: 264: 237: 215: 123: 30533: 30519:. Oxford, England: Clarendon Press. p. 264. 30391: 30368: 28011: 27978: 27840: 27807: 27099: 27011: 26636: 26560: 25759:+ the axiom of choice, which is often denoted by 25755:. Most mainstream functional analysis relies on 25025:{\displaystyle \sigma \left(X,X^{\prime }\right)} 24849: 17609:which has the topology of pointwise convergence, 17382:{\displaystyle f_{\bullet }(z):I\to \mathbb {K} } 15498: 15382: 15240: 15125: 13587: 13511: 12874: 12798: 12109: 12033: 5469:{\displaystyle \sigma \left(X^{\prime },X\right)} 5165:{\displaystyle \sigma \left(X^{\prime },X\right)} 5013:{\displaystyle \sigma \left(X^{\prime },X\right)} 4936:{\displaystyle \sigma \left(X^{\prime },X\right)} 4890:{\displaystyle \sigma \left(X^{\prime },X\right)} 4730:{\displaystyle \sigma \left(X^{\prime },X\right)} 4503:{\displaystyle \sigma \left(X^{\prime },X\right)} 1493: 1291:{\displaystyle \sigma \left(X^{\prime },X\right)} 32229: 30163: 30139: 29928: 28928: 28815: 27054: 26591: 26498:is (originally) endowed with, then the equality 26273:{\displaystyle B^{\prime }\subseteq X^{\prime }} 25786:The Banach–Alaoglu theorem is equivalent to the 25257:{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1.} 24564: 24344:This map is injective and it is continuous when 23586:similar to the one employed in the proof of the 22158: 19704:{\displaystyle \mathbb {K} \times \mathbb {K} .} 15195: 14811: 14583: 14234: 14076: 13925: 13542: 13169:which states exactly that the linear functional 13112: 12829: 12064: 11494: 11431: 11233: 11140: 11054: 10304: 10221: 10167: 10100: 10046: 9996:{\displaystyle \left(f_{i}\right)_{i\in I}\to f} 7799: 7617: 7554: 7429: 4165:which states exactly that the linear functional 4108: 2842: 2658: 2488: 1148: 905:in this topology if and only if for every point 30421: 26068:{\displaystyle \{B\cap C:C\in {\mathcal {C}}\}} 25651:(the weak operator topology is weaker than the 25611:As norm-closed, convex sets are weakly closed ( 23642:on the dual of a separable normed vector space 20451:{\displaystyle f_{\bullet }(x+y)\to f(x)+f(y).} 16621:{\displaystyle f_{i}(u)\in f_{i}(U)\subseteq B} 14633:{\displaystyle \;\sup _{u\in U}|f(u)|\leq 1,\,} 13162:{\displaystyle \;\sup _{u\in U}|f(u)|\leq 1,\,} 4664:it is possible to prove that this implies that 4158:{\displaystyle \;\sup _{u\in U}|f(u)|\leq 1,\,} 4059:{\displaystyle \,U^{\#}\subseteq U^{\circ },\,} 157:is a generalization of the original theorem by 30534:Narici, Lawrence; Beckenstein, Edward (2011). 28485:{\displaystyle m_{\bullet }:X\to [0,\infty ).} 27765:{\displaystyle U_{B_{1}}=\prod _{x\in X}C_{x}} 26223: – Vector space with a notion of nearness 24503:{\displaystyle \left(f_{i}(x)\right)_{x\in X}} 20664:and any subset of such a space (in particular 18090:{\displaystyle M:\mathbb {K} \to \mathbb {K} } 14069:it is sufficient (and necessary) to show that 11478:{\displaystyle \;\sup _{u\in U}|f(u)|\leq r\;} 11415:{\displaystyle \{c\in \mathbb {K} :|c|<r\}} 10661:. This means, for example, that if for every 3429:it is sufficient (and necessary) to show that 977:{\displaystyle \left(f_{i}(x)\right)_{i\in I}} 31528: 31044: 30795: 30597: 29336:{\displaystyle \cap \operatorname {Box} _{P}} 28322:{\displaystyle R_{\bullet }\leq S_{\bullet }} 25929:has the following property, which is called ( 23635:{\displaystyle F:X^{\prime }\to \mathbb {R} } 23505:{\displaystyle \langle \cdot ,\cdot \rangle } 22587:{\textstyle \bigcap \operatorname {Box} _{P}} 15365: 15257: 11541:{\displaystyle \;\sup _{u\in U}|f(u)|<r\;} 8610: 8589: 7393:canonical projection of the Cartesian product 1687:{\displaystyle \sigma \left(X^{\#},X\right),} 26062: 26034: 24017: 24014: 24008: 23975: 23499: 23487: 23459: 23434: 23414: 23389: 21219: 21186: 20817:{\displaystyle \sigma \left(X^{\#},X\right)} 20691:) is closed if and only if it is complete. 20517:{\displaystyle f_{\bullet }(x+y)\to f(x+y),} 15804:is an intersection of two closed subsets of 13446: 13403: 13063:{\displaystyle U^{\#}\subseteq X^{\prime }.} 11925: 11889: 11409: 11373: 11323: 11296: 9839:{\displaystyle \left(f_{i}\right)_{i\in I},} 9697:{\displaystyle F\circ x_{\bullet }\to F(x).} 7237:{\displaystyle \left(s_{x}\right)_{x\in X}.} 6538: 6517: 6425: 6389: 5364:{\displaystyle \sigma \left(X^{\#},X\right)} 5089:{\displaystyle \sigma \left(X^{\#},X\right)} 3143:{\displaystyle \sigma \left(X^{\#},X\right)} 683:{\displaystyle \sigma \left(X^{\#},X\right)} 30430: 29977:{\displaystyle \sup _{u\in U}|f(u)|\leq 1,} 29555:{\displaystyle \left(r_{x}\right)_{x\in X}} 28122:{\displaystyle \prod _{x\in X}\mathbb {K} } 25751:) axiomatic framework is equivalent to the 21772:as in the proof) and defining the notation 20653:{\displaystyle \prod _{x\in X}\mathbb {K} } 19671:{\displaystyle z_{\bullet }\to (f(x),f(y))} 16310:{\displaystyle \left(f_{i}\right)_{i\in I}} 15797:{\displaystyle U_{B_{1}}\cap X^{\#}=U^{\#}} 15719:since it is a product of closed subsets of 11962:need not be endowed with any topology, but 10717:{\displaystyle S_{x}\subseteq \mathbb {K} } 10585:{\displaystyle \left(f_{i}\right)_{i\in I}} 9145:{\displaystyle F\circ x_{\bullet }:I\to Y,} 7865:{\displaystyle \left(r_{x}\right)_{x\in X}} 5199:is identical to the subspace topology that 4577:{\displaystyle U\subseteq U^{\circ \circ }} 3025:A well known fact about polar sets is that 606:{\displaystyle X^{\prime }\subseteq X^{\#}} 31535: 31521: 31051: 31037: 30802: 30788: 28990:so that the previous set equality implies 28285:with respect to natural induced pointwise 26802:is (also) a neighborhood of the origin in 25739:The Banach–Alaoglu may be proven by using 24289: 24285: 24267: 24263: 24240: 24110:is a compact subset of the complex plane, 23029:{\displaystyle U^{\circ }=\left^{\circ },} 18993:{\displaystyle f_{\bullet }(sx)\to sf(x).} 15452: 15314: 15282: 15275: 15268: 15184: 15150: 15143: 15136: 14581: 13110: 12481:is a neighborhood of the origin. Because 11537: 11492: 11474: 11429: 11100:{\displaystyle \sup _{u\in U}|f(u)|\leq r} 10203: 10166: 8603: 8575: 8571: 8523: 8519: 8500: 8422: 8380: 8376: 8272: 8268: 8240: 8216:{\displaystyle X=U\,\cup \,(X\setminus U)} 4106: 4014:{\displaystyle U^{\circ }\subseteq U^{\#}} 2920:with respect to the canonical dual system 191:Topological vector space § Dual space 30711:. Vol. 96 (2nd ed.). New York: 30631: 30514: 30433:"A Geometric Form of the Axiom of Choice" 30415: 29388: 29381: 28878:and so must itself be closed). For every 28864: 28115: 28042: 27871: 25468: 25449: 24815:{\displaystyle F(g)=\lambda _{\bullet }.} 24761: 24670: 24361: 24254: 24184: 23985: 23894: 23628: 23381: 23367: 22737: 22617:{\displaystyle \operatorname {Box} _{P}.} 22010: 21924: 20989: 20959: 20933: 20646: 19933: 19741: 19733: 19725: 19694: 19686: 19273: 19265: 19065: 19050:{\displaystyle f_{\bullet }(sx)\to f(sx)} 18665: 18260: 18083: 18075: 17797: 17759:{\displaystyle x,y,sx,{\text{ and }}x+y,} 17668: 17586: 17375: 17174: 17037: 16972: 16942: 16919: 16897: 16875: 16853: 16770: 16228:in the topology of pointwise convergence. 15966: 15899: 15813: 15727: 15699: 15690: 15621: 15442: 15438: 15298: 15292: 15168: 15122: 15101: 15051: 15021: 14629: 14539: 14526: 14472: 14259: 14255: 13965: 13957: 13857: 13848: 13413: 13158: 11970: 11899: 11809: 11801: 11791: 11783: 11761: 11585: 11383: 11236: 11232: 11036:{\textstyle \prod _{x\in X}\mathbb {K} .} 11026: 10916: 10874:{\textstyle \prod _{x\in X}\mathbb {K} .} 10864: 10736: 10710: 10524: 10139: 9932: 9902: 9750: 9720: 8852: 8543: 8528: 8506: 8332: 8297: 8261: 8197: 8193: 8029: 7941: 7932: 7596: 7469: 7461: 7347: 7324: 7286: 7256: 7114: 7080: 6839: 6816: 6752: 6718: 6611: 6399: 6207:{\textstyle \prod _{x\in X}\mathbb {K} ,} 6197: 6156: 6122: 4154: 4055: 4028: 3653: 3620: 3562: 1583: 1558: 1530: 351: 231: 31341:Group algebra of a locally compact group 30637:Handbook of Analysis and Its Foundations 29480:{\displaystyle \operatorname {Box} _{P}} 29422:{\displaystyle \operatorname {Box} _{P}} 29367:{\displaystyle \operatorname {Box} _{P}} 27685:{\displaystyle \prod _{x\in X}B_{r_{x}}} 27226:because both of these sets are equal to 22723:{\displaystyle \operatorname {Box} _{P}} 22626:This implies (among other things) that 22274:{\displaystyle \operatorname {Box} _{P}} 17006:need not be endowed with any topology). 12328:in functional analysis, this means that 12309:{\displaystyle \prod _{x\in X}B_{r_{x}}} 9524:then the conclusion commonly written as 8007:{\displaystyle \prod _{x\in X}B_{r_{x}}} 7331:{\textstyle \prod _{x\in X}\mathbb {K} } 7087:{\textstyle \prod _{x\in X}\mathbb {K} } 6625:is usually thought of as the set of all 6618:{\textstyle \prod _{x\in X}\mathbb {K} } 30305:{\displaystyle |f(u)|\leq m_{u}\leq 1,} 28757:{\displaystyle A\subseteq [0,\infty ),} 26148:is similar to this characterization of 26145: 26144:(FIP) has non-empty intersection. The 26133: 25103:; or, more succinctly, by applying the 24986:if and only if its closed unit ball is 18245:{\displaystyle f_{\bullet }(x)\to f(x)} 17653:{\displaystyle f_{\bullet }(z)\to f(z)} 14278:{\displaystyle \Pr {}_{x}(f)\,=\,f(x),} 10006:in the product topology if and only if 6583:Identification of functions with tuples 1701:topological vector space is denoted by 766:The weak-* topology is also called the 131:is countably weak-* compact. In 1932, 32230: 31674:Uniform boundedness (Banach–Steinhaus) 30699: 30661: 25310:be a bounded sequence of functions in 24072:{\displaystyle D=\prod _{x\in X}D_{x}} 20023:{\displaystyle A(f(x),f(y))=f(x)+f(y)} 13717:{\textstyle \prod _{x\in X}B_{r_{x}}.} 10207:{\displaystyle \;\Pr {}_{z}(f)=f(z)\;} 9152:although this is typically denoted by 8955:; however, for this proof, this value 7547:where under the above identification, 6438:will denote the closed ball of radius 6302:{\textstyle \prod _{x\in X}B_{r_{x}}.} 4377:is closed in the subspace topology on 2566:with respect to the canonical pairing 31516: 31032: 30783: 30669:. Mineola, N.Y.: Dover Publications. 30560: 30476: 30403: 30351: 29260:{\displaystyle m_{\bullet }\in T_{P}} 27360:{\displaystyle (X,\sigma )^{\prime }} 26901:{\displaystyle (X,\sigma )^{\prime }} 25767:rely upon the axiom of choice in the 23904:{\displaystyle X=C_{0}(\mathbb {R} )} 22251:formula can be used to define them. 22103:{\displaystyle m_{\bullet }\in T_{P}} 18504: by definition of notation  17050:{\displaystyle f\in \mathbb {K} ^{X}} 13342:{\textstyle \prod _{x\in X}B_{r_{x}}} 8042:{\displaystyle s\in \mathbb {K} ^{X}} 7872:are non-negative real numbers. Then 6097:and familiarity with the fact that a 5775:is the open (or closed) unit ball in 1375:with respect to the canonical system 177:and it is commonly called simply the 30572:McGraw-Hill Science/Engineering/Math 27915:may thus equivalently be defined by 26837:Denote the continuous dual space of 26722:) and that the rest of the topology 24878:and endow its continuous dual space 30865:Topologies on spaces of linear maps 30737: 30517:Introduction to Functional Analysis 25876:denote the closed unit ball of its 25647:are precompact with respect to the 25303:{\displaystyle f_{1},f_{2},\ldots } 24975:(despite it being weak-* compact). 24677:{\displaystyle g:X\to \mathbb {C} } 21419:-indexed non-negative real numbers 12501:is a neighborhood of the origin in 12403:is a neighborhood of the origin). 8772:{\displaystyle x_{\bullet }:I\to X} 7603:{\displaystyle s:X\to \mathbb {K} } 7121:{\displaystyle s:X\to \mathbb {K} } 6823:{\displaystyle s:X\to \mathbb {K} } 6226:they induce on subsets such as the 6105:of the origin (see the articles on 6073: 2414:be a neighborhood of the origin in 1418:and it is also a compact subset of 169:. This theorem is also called the 13: 30693: 29905: 29840: 29781: 29736: 28745: 28473: 28143: 28076: 27963: 27927: 27900: 27560: 27352: 27315:{\displaystyle U^{\circ ,\sigma }} 27282:{\displaystyle U^{\circ ,\sigma }} 27238: 27039: 26893: 26707: 26576: 26523: 26426: 26380: 26359: 26323: 26292: 26265: 26252: 26156:(rather than all closed subsets). 26105: 26057: 26012: 25958: 25891: 25514: 25378: 25185: 25012: 24952: 24925: 24890: 24762: 24362: 24255: 24196:{\displaystyle B_{1}^{\,\prime },} 24185: 24149: 23852: 23709: 23619: 23524: 23362: 23272: 23183: 22955: 22930: 22854: 21757: 21596: 21535: 21513: 21379: 21315: 21268: 21151: 21044: 21023: 20865: 20844: 20798: 20743: 20708: 20676: 17215: 17130: 16810: 16746: 15789: 15776: 14997: 14966:{\displaystyle f(x)\in B_{r_{x}},} 14330:{\displaystyle f(x)\in B_{r_{x}}.} 14209: 14097: 14015: 13806: 13739: 13617: 13527: 13478: 13254: 13088: 13052: 13039: 13009: 12996: 12963:{\displaystyle U^{\circ }=U^{\#}:} 12952: 12906: 12893: 12814: 12719:{\displaystyle U^{\#}=U^{\circ },} 12695: 12664: 12446: 12340: 12241: 12049: 12000: 9764:is assumed to be endowed with the 9264: 8868:{\displaystyle \mathbb {N} \to X,} 6762:{\displaystyle X\to \mathbb {K} ,} 6738:of all functions having prototype 6256:and products of subspaces such as 6241: 6051:imply that the weak-* topology is 6025: 5998: 5947: 5908: 5827: 5644: 5623: 5544: 5523: 5488: 5450: 5383: 5345: 5264: 5243: 5211: 5184: 5146: 5108: 5070: 4994: 4917: 4871: 4836: 4806: 4753: 4711: 4526: 4484: 4389: 4349: 4323: 4310: 4247: 4084: 4034: 4006: 3947: 3926: 3878: 3857: 3785: 3411: 3359: 3338: 3286: 3198: 3162: 3124: 3089: 3004: 2991: 2943: 2827: 2803: 2769: 2589: 2473: 2369: 2320: 2273: 2192: 2158: 2111: 2060: 2039: 2007: 1953: 1932: 1884: 1863: 1811: 1790: 1739: 1718: 1665: 1627: 1502:Denote by the underlying field of 1456: 1435: 1398: 1310: 1272: 1133: 1076: 737: 702: 690:and denote the weak-* topology on 664: 629: 598: 585: 555: 462: 342: 257: 14: 32264: 30639:. San Diego, CA: Academic Press. 30431:Bell, J.; Fremlin, David (1972). 28033: 27862: 26531:{\displaystyle U^{\circ }=U^{\#}} 25191:{\displaystyle 1<p<\infty } 25063:, then every bounded sequence in 24770:{\displaystyle B_{1}^{\,\prime }} 24370:{\displaystyle B_{1}^{\,\prime }} 24203:can be identified as a subset of 23597:to construct solutions to PDE or 23582:in this metric can be shown by a 23112:Sequential Banach–Alaoglu theorem 20585:{\displaystyle f(x+y)=f(x)+f(y),} 19197:{\displaystyle f(x+y)=f(x)+f(y):} 17602:{\displaystyle \mathbb {K} ^{X},} 17570:{\displaystyle f_{\bullet }\to f} 17190:{\displaystyle \mathbb {K} ^{X}.} 15829:{\displaystyle \mathbb {K} ^{X},} 14914:{\displaystyle |f(x)|\leq r_{x},} 14439:would be a valid choice for each 12322:topology of pointwise convergence 10995:{\textstyle \prod _{x\in X}S_{x}} 10833:{\textstyle \prod _{x\in X}S_{x}} 10786:{\textstyle \prod _{x\in X}S_{x}} 9770:topology of pointwise convergence 9494:{\displaystyle x_{\bullet }\to x} 8619: 8551: 8452: 8323: 8204: 8091:{\displaystyle s(x)\in B_{r_{x}}} 6163:{\displaystyle X\to \mathbb {K} } 5927:) is compact with respect to the 4657:{\displaystyle U^{\circ \circ };} 4631:the same must be true of the set 3806:{\displaystyle U^{\#}=U^{\circ }} 2169:{\displaystyle f\in X^{\prime },} 925:in the domain, the net of values 768:topology of pointwise convergence 223:is a vector space over the field 32212: 32211: 31497: 31496: 31423:Topological quantum field theory 27431:a neighborhood of the origin in 27256:Said differently, the polar set 27140:{\displaystyle U^{\circ ,\tau }} 26146:definition of convex compactness 25333:Then there exists a subsequence 24971:compact in the norm topology by 23837:property in the weak* topology. 23724:which approaches the infimum of 23151:be a separable normed space and 16783:{\displaystyle \mathbb {K} ^{X}} 16434:{\displaystyle f(U)\subseteq B.} 13262:{\displaystyle f\in X^{\prime }} 13027:the conclusion is equivalent to 9014:{\displaystyle x_{\bullet }(i).} 7360:{\displaystyle \mathbb {K} ^{X}} 7094:is identified with the function 6852:{\displaystyle \mathbb {K} ^{X}} 6731:{\displaystyle \mathbb {K} ^{X}} 6135:{\displaystyle \mathbb {K} ^{X}} 4291:{\displaystyle f\in U^{\circ },} 4255:{\displaystyle f\in X^{\prime }} 3547:{\displaystyle f_{i}(u)\to f(u)} 32243:Theorems in functional analysis 32199:With the approximation property 30705:A Course in Functional Analysis 29392:{\displaystyle \,\subseteq .\,} 28717: 28362:{\displaystyle R_{x}\leq S_{x}} 28164: 27489:{\displaystyle U^{\circ ,\nu }} 27289:'s defining "requirement" that 25829:Weak version of Alaoglu theorem 25599:Consequences for Hilbert spaces 25475: 24844: 24716: 24628: 23512:denotes the duality pairing of 22220:which shows that these numbers 19755:be the addition map defined by 17951: 17945: 17895: 17857: 17253:is a linear functional. So let 15973:{\displaystyle Y:=\mathbb {K} } 15545: 15539: 13189:is bounded on the neighborhood 11703:to endowed with any topology. 11366:is replaced with the open ball 11189: 11183: 7479: 7473: 6099:linear functional is continuous 5935:When the continuous dual space 4584:where because the neighborhood 4185:is bounded on the neighborhood 31662:Open mapping (Banach–Schauder) 30409: 30397: 30345: 30276: 30272: 30266: 30259: 30157: 30151: 30133: 30127: 30035: 30031: 30025: 30018: 29961: 29957: 29951: 29944: 28748: 28736: 28476: 28464: 28461: 27703: 27598: 27535: 27523: 27450: 27438: 27348: 27335: 27087: 27083: 27077: 27070: 27035: 27022: 26947: 26935: 26889: 26876: 26856: 26844: 26821: 26809: 26624: 26620: 26614: 26607: 26452: 26234: 26199: – theorem in mathematics 25966:{\displaystyle {\mathcal {C}}} 25707: 25701: 25671: 25665: 25634: 25628: 25581: 25575: 25503: 25497: 25456: 25153: 25147: 25107:.) For example, suppose that 24850:Consequences for normed spaces 24793: 24787: 24700: 24694: 24666: 24615: 24595: 24589: 24480: 24474: 24310: 24306: 24300: 24294: 24286: 24264: 24114:guarantees that their product 24001: 23993: 23898: 23890: 23624: 23595:partial differential equations 23340: 23328: 22951: 22938: 22857: 22845: 22842: 21332: 21326: 21154: 21142: 20778:is equipped with the topology 20576: 20570: 20561: 20555: 20546: 20534: 20508: 20496: 20490: 20487: 20475: 20442: 20436: 20427: 20421: 20415: 20412: 20400: 20370: 20358: 20325: 20313: 20274: 20268: 20252: 20246: 20202: 20196: 20180: 20174: 20017: 20011: 20002: 19996: 19987: 19984: 19978: 19969: 19963: 19957: 19912: 19909: 19903: 19894: 19888: 19882: 19876: 19777: 19765: 19737: 19665: 19662: 19656: 19647: 19641: 19635: 19632: 19599: 19593: 19587: 19567: 19561: 19539: 19533: 19503: 19497: 19491: 19471: 19465: 19443: 19437: 19373: 19367: 19351: 19345: 19261: 19188: 19182: 19173: 19167: 19158: 19146: 19116: 19107: 19098: 19092: 19044: 19035: 19029: 19026: 19017: 18984: 18978: 18969: 18966: 18957: 18915: 18906: 18846: 18837: 18806: 18800: 18753: 18747: 18706: 18700: 18661: 18635: 18629: 18607: 18601: 18549: 18543: 18496: 18490: 18441: 18435: 18393: 18387: 18375: 18372: 18366: 18360: 18337: 18334: 18328: 18322: 18316: 18308: 18302: 18239: 18233: 18227: 18224: 18218: 18133: 18127: 18079: 18045: 18039: 18027: 18018: 17989: 17980: 17974: 17971: 17962: 17939: 17927: 17921: 17918: 17906: 17889: 17883: 17877: 17874: 17868: 17851: 17845: 17839: 17836: 17830: 17647: 17641: 17635: 17632: 17626: 17561: 17511: 17505: 17460: 17454: 17371: 17362: 17356: 16687: 16681: 16609: 16603: 16587: 16581: 16531: 16525: 16519: 16499: 16493: 16419: 16413: 16177: 16171: 16078:subset of a topological space 15921: 15915: 15333: 15327: 15228: 15224: 15218: 15211: 14937: 14931: 14891: 14887: 14881: 14874: 14844: 14840: 14834: 14827: 14719: 14713: 14681: 14677: 14671: 14664: 14616: 14612: 14606: 14599: 14301: 14295: 14269: 14263: 14252: 14246: 13961: 13640: 13634: 13575: 13571: 13565: 13558: 13429: 13421: 13145: 13141: 13135: 13128: 12862: 12858: 12852: 12845: 12097: 12093: 12087: 12080: 11915: 11907: 11733:be a subset of a vector space 11527: 11523: 11517: 11510: 11464: 11460: 11454: 11447: 11399: 11391: 11308: 11302: 11267: 11261: 11199: 11193: 11173: 11169: 11163: 11156: 11087: 11083: 11077: 11070: 10503: 10497: 10491: 10471: 10465: 10376: 10370: 10200: 10194: 10185: 10179: 10118: 10112: 10097: 9987: 9688: 9682: 9676: 9640: 9634: 9628: 9587: 9581: 9575: 9485: 9452: 9133: 9041: 9005: 8999: 8856: 8801: 8789: 8763: 8572: 8520: 8377: 8269: 8210: 8198: 8065: 8059: 7673: 7667: 7635: 7629: 7592: 7524: 7465: 7300:and why the Cartesian product 7144: 7138: 7110: 6980: 6942: 6938: 6932: 6926: 6812: 6781: 6748: 6415: 6407: 6152: 4897:-bounded if and only if it is 4141: 4137: 4131: 4124: 3751: 3747: 3741: 3734: 3713: 3707: 3669: 3661: 3599: 3593: 3541: 3535: 3529: 3526: 3520: 3454: 3450: 3444: 3437: 2875: 2871: 2865: 2858: 2698: 2694: 2688: 2681: 2521: 2517: 2511: 2504: 1494:Proof involving duality theory 1181: 1177: 1171: 1164: 1000: 994: 954: 948: 426: 420: 347: 118: 115: 103: 100: 86:most important fact about the 16:Theorem in functional analysis 1: 31219:Uniform boundedness principle 30709:Graduate Texts in Mathematics 30594:See Theorem 3.15, p. 68. 30469: 30392:Narici & Beckenstein 2011 30369:Narici & Beckenstein 2011 30325:{\displaystyle \blacksquare } 30048:{\displaystyle |f(u)|\leq 1.} 27696:and strictly weaker than the 26140:of closed subsets having the 25763:. However, the theorem does 25532:The corresponding result for 24834:{\displaystyle \blacksquare } 23813:The last step often requires 22747:{\displaystyle \,\subseteq ;} 21129:is any subset that satisfies 21088:{\displaystyle \blacksquare } 20925:Because the underlying field 20605:{\displaystyle \blacksquare } 19947:where the right hand side is 18399:{\displaystyle M(f(x))=sf(x)} 18350:where the right hand side is 18270:{\displaystyle \mathbb {K} ,} 17807:{\displaystyle \mathbb {K} :} 16722:{\displaystyle \blacksquare } 15849:{\displaystyle \blacksquare } 15737:{\displaystyle \mathbb {K} .} 15012:is always a closed subset of 13979:denote the projection to the 13282:{\displaystyle \blacksquare } 10534:{\displaystyle \mathbb {K} ,} 10409:this happens if and only if 10149:{\displaystyle \mathbb {K} ,} 7689:Stated in words, for a point 6573:{\displaystyle U\subseteq X,} 6214:and the relationship between 6142:of all functions of the form 6107:continuous linear functionals 5719:{\displaystyle \blacksquare } 3764:{\displaystyle |f(u)|\leq 1.} 3697:so too must this net's limit 1593:{\displaystyle \mathbb {C} .} 1540:{\displaystyle \mathbb {K} ,} 30601:; Wolff, Manfred P. (1999). 30338: 30010:and it remains to show that 28871:{\displaystyle \mathbb {K} } 26830:{\displaystyle (X,\sigma ).} 26142:finite intersection property 26077:finite intersection property 25902:{\displaystyle X^{\prime }.} 24160:{\displaystyle X^{\prime },} 23913:Riesz representation theorem 23194:{\displaystyle X^{\prime }.} 23055:{\displaystyle m_{\bullet }} 22963:{\displaystyle U^{\#}=^{\#}} 22240:{\displaystyle m_{\bullet }} 21676:{\displaystyle m_{\bullet }} 21122:{\displaystyle U\subseteq X} 20940:{\displaystyle \mathbb {K} } 19940:{\displaystyle \mathbb {K} } 19125:{\displaystyle sf(x)=f(sx),} 19079:are unique, it follows that 19072:{\displaystyle \mathbb {K} } 18054:{\displaystyle f(sx)=sf(x):} 17675:{\displaystyle \mathbb {K} } 17410:{\displaystyle f_{\bullet }} 17226:{\displaystyle f\in X^{\#},} 16926:{\displaystyle \mathbb {C} } 16904:{\displaystyle \mathbb {R} } 16882:{\displaystyle \mathbb {K} } 16860:{\displaystyle \mathbb {K} } 16344:that converges pointwise to 16067:{\displaystyle B\subseteq Y} 16041:{\displaystyle U\subseteq X} 15859:The conclusion that the set 14220:{\displaystyle f\in U^{\#}.} 13234:continuous linear functional 12679:is therefore compact in the 12645:{\displaystyle x\in r_{x}U.} 12222:{\displaystyle x\in r_{x}U,} 11977:{\displaystyle \mathbb {K} } 11823:) and for every real number 11768:{\displaystyle \mathbb {K} } 10923:{\displaystyle \mathbb {K} } 10743:{\displaystyle \mathbb {K} } 9299:{\displaystyle x_{\bullet }} 9077:{\displaystyle x_{\bullet }} 8895:{\displaystyle x_{\bullet }} 8740:is by definition a function 8148:{\displaystyle U\subseteq X} 8014:is the set of all functions 7824:In particular, suppose that 6013:to be a compact subset when 5986:for the closed unit ball in 5499:{\displaystyle X^{\prime }:} 4817:{\displaystyle X^{\prime },} 4764:{\displaystyle X^{\prime }.} 4537:{\displaystyle X^{\prime }:} 4400:{\displaystyle X^{\prime },} 4227:continuous linear functional 3627:{\displaystyle \mathbb {K} } 3569:{\displaystyle \mathbb {K} } 3467:{\displaystyle |f(u)|\leq 1} 3422:{\displaystyle f\in U^{\#},} 1565:{\displaystyle \mathbb {R} } 1321:{\displaystyle X^{\prime }.} 1087:{\displaystyle X^{\prime },} 878:{\displaystyle f_{\bullet }} 566:{\displaystyle X^{\prime },} 238:{\displaystyle \mathbb {K} } 184: 7: 31883:Radially convex/Star-shaped 31868:Pre-compact/Totally bounded 30482:Topological Vector Spaces I 29650:{\displaystyle m_{u}\leq 1} 28668:{\displaystyle m_{u}\leq 1} 28602:{\displaystyle m_{x}\leq r} 27548:is not guaranteed to equal 26953:{\displaystyle (X,\sigma )} 26862:{\displaystyle (X,\sigma )} 26434:{\displaystyle B^{\prime }} 26331:{\displaystyle B^{\prime }} 26300:{\displaystyle X^{\prime }} 26159: 26020:{\displaystyle X^{\prime }} 25745:Zermelo–Fraenkel set theory 25618:Closed and bounded sets in 25587:{\displaystyle L^{1}(\mu )} 25159:{\displaystyle L^{p}(\mu )} 25032:-compact; this is known as 24960:{\displaystyle X^{\prime }} 24933:{\displaystyle X^{\prime }} 24898:{\displaystyle X^{\prime }} 23860:{\displaystyle X^{\prime }} 23532:{\displaystyle X^{\prime }} 20918:Proof of corollary to lemma 18871: by linearity of  16709:which completes the proof. 16396:{\displaystyle f\in U_{B},} 14399:{\displaystyle x\in r_{x}U} 13096:{\displaystyle f\in U^{\#}} 12580:there exists a real number 12454:{\displaystyle X^{\prime }} 12434:with continuous dual space 12324:, which is also called the 12190:is a real number such that 11485:with the strict inequality 7772:" is the same as "plugging 6033:{\displaystyle X^{\prime }} 6006:{\displaystyle X^{\prime }} 5955:{\displaystyle X^{\prime }} 5916:{\displaystyle X^{\prime }} 5835:{\displaystyle X^{\prime }} 5371:-totally bounded subset of 5219:{\displaystyle X^{\prime }} 5192:{\displaystyle X^{\prime }} 5096:-totally bounded subset of 4844:{\displaystyle X^{\prime }} 4092:{\displaystyle f\in U^{\#}} 3840:is a closed subset of both 3206:{\displaystyle f\in X^{\#}} 2200:{\displaystyle X^{\prime }} 2015:{\displaystyle X^{\prime }} 710:{\displaystyle X^{\prime }} 10: 32269: 31569:Continuous linear operator 31362:Invariant subspace problem 27167:{\displaystyle U^{\circ }} 26478:denotes the topology that 25856:be a normed space and let 25732: 24940:is weak-* compact. So if 23562:Sequential compactness of 20030:and the left hand side is 18406:and the left hand side is 18097:be the "multiplication by 16702:{\displaystyle f(u)\in B,} 16628:belongs to the closed (in 16403:which by definition means 16262:{\displaystyle f\in Y^{X}} 14363:{\displaystyle r_{x}>0} 13821:is a closed subset of the 12746:{\displaystyle U^{\circ }} 12606:{\displaystyle r_{x}>0} 12183:{\displaystyle r_{x}>0} 11186: if and only if  9600:may instead be written as 8810:{\displaystyle (I,\leq ).} 8223:then the linear bijection 7814:{\displaystyle \Pr {}_{z}} 7569:{\displaystyle \Pr {}_{z}} 5698:{\displaystyle U^{\circ }} 5599:{\displaystyle U^{\circ }} 5423:{\displaystyle U^{\circ }} 5318:{\displaystyle U^{\circ }} 5043:{\displaystyle U^{\circ }} 4967:{\displaystyle U^{\circ }} 4684:{\displaystyle U^{\circ }} 4457:{\displaystyle U^{\circ }} 4427:{\displaystyle U^{\circ }} 3833:{\displaystyle U^{\circ }} 3612:belongs to the closed (in 1610:continuous linear operator 1348:{\displaystyle U^{\circ }} 613:always holds. Denote the 188: 175:weak-* compactness theorem 77: 32248:Topological vector spaces 32207: 31952: 31914:Algebraic interior (core) 31896: 31794: 31682: 31656:Vector-valued Hahn–Banach 31617: 31551: 31544:Topological vector spaces 31492: 31451: 31375: 31354: 31313: 31252: 31194: 31140: 31082: 31075: 31010: 30989: 30981:Transpose of a linear map 30973: 30952: 30873: 30822: 30603:Topological Vector Spaces 30536:Topological Vector Spaces 28723:For any non-empty subset 28398:Thus, every neighborhood 27631:{\displaystyle B_{r_{x}}} 26176:Delta-compactness theorem 22247:are unique; indeed, this 21656:where these real numbers 17301:{\displaystyle x,y\in X.} 16009:{\displaystyle B:=B_{1}.} 11683:require the vector space 11240:{\displaystyle \,\sup \,} 9772:. This is because given 6103:bounded on a neighborhood 3726:belong to this set. Thus 1355:is equal to the polar of 62:of compact sets with the 31744:Topological homomorphism 31604:Topological vector space 31331:Spectrum of a C*-algebra 27541:{\displaystyle (X,\nu )} 27456:{\displaystyle (X,\nu )} 26908:and denote the polar of 26227: 26221:Topological vector space 26186:Eberlein–Šmulian theorem 25105:Eberlein–Šmulian theorem 24913:The closed unit ball in 24137:The closed unit ball in 23770:and then establish that 23584:diagonalization argument 23312:{\displaystyle x,y\in B} 23171:the closed unit ball in 21765:{\displaystyle P=U^{\#}} 20907:topological vector space 16933:) is a closed subset of 16367:It remains to show that 14574:function that satisfies 14432:{\displaystyle r_{u}:=1} 14285:it remains to show that 13353:(since each closed ball 12432:topological vector space 12381:topological vector space 9461:{\displaystyle F:X\to Y} 9050:{\displaystyle F:X\to Y} 6859:is identified with its ( 5923:(endowed with its usual 3605:{\displaystyle f_{i}(u)} 1027:topological vector space 537:topological vector space 155:Bourbaki–Alaoglu theorem 23:and related branches of 31428:Noncommutative geometry 30452:10.4064/fm-77-2-167-170 30440:Fundamenta Mathematicae 30406:, Theorem (4) in §20.9. 29679:{\displaystyle u\in U.} 29617:{\displaystyle u\in U,} 29588:{\displaystyle r_{u}=1} 28900:{\displaystyle x\in X,} 28697:{\displaystyle u\in U.} 28635:{\displaystyle m_{0}=0} 28609:so that in particular, 28569:{\displaystyle x\in rU} 28514:{\displaystyle x\in X,} 28391:{\displaystyle x\in X.} 28154:{\displaystyle X^{\#}.} 27249:{\displaystyle U^{\#}.} 26762:is any TVS topology on 26755:{\displaystyle \sigma } 25818:(also sometimes called 23948:{\displaystyle x\in X,} 23917:Helly selection theorem 23833:to obey a (sequential) 23120:normed vector space is 22970:). Similarly, because 22874:and it is unchanged if 22132:{\displaystyle x\in X,} 21390:{\displaystyle X^{\#}.} 19413:{\displaystyle i\in I.} 17704:{\displaystyle z\in X.} 17332:{\displaystyle z\in X,} 16463:{\displaystyle u\in U,} 14158:{\displaystyle x\in X.} 13911:{\displaystyle z\in X,} 12573:{\displaystyle x\in X,} 12151:{\displaystyle x\in X,} 10952:{\displaystyle x\in X,} 10683:{\displaystyle x\in X,} 10435:{\displaystyle z\in X,} 10032:{\displaystyle z\in X,} 9104:" is just the function 8120:{\displaystyle x\in X.} 5394:{\displaystyle X^{\#}.} 5119:{\displaystyle X^{\#}:} 3813:and then conclude that 3496:{\displaystyle u\in U.} 3173:{\displaystyle X^{\#}:} 984:converges to the value 66:. As a consequence of 31802:Absolutely convex/disk 31484:Tomita–Takesaki theory 31459:Approximation property 31403:Calculus of variations 30326: 30306: 30245: 30111: 30049: 30004: 30003:{\displaystyle u\in U} 29978: 29914: 29852: 29790: 29680: 29651: 29618: 29589: 29556: 29508: 29481: 29454: 29423: 29393: 29368: 29337: 29307: 29261: 29221: 29185: 28984: 28901: 28872: 28850: 28830: 28758: 28698: 28669: 28636: 28603: 28570: 28541: 28540:{\displaystyle r>0} 28515: 28486: 28432: 28412: 28392: 28363: 28323: 28279: 28248: 28155: 28123: 28085: 28084:{\displaystyle U^{\#}} 28058: 27909: 27908:{\displaystyle U^{\#}} 27882: 27766: 27686: 27642:, the conclusion that 27632: 27589: 27569: 27568:{\displaystyle U^{\#}} 27542: 27510: 27490: 27457: 27421: 27401: 27381: 27361: 27316: 27283: 27250: 27220: 27168: 27141: 27108: 26954: 26922: 26902: 26863: 26831: 26796: 26776: 26756: 26736: 26716: 26715:{\displaystyle X^{\#}} 26689: 26665: 26645: 26532: 26492: 26472: 26435: 26408: 26332: 26301: 26274: 26119: 26069: 26021: 25987: 25967: 25923: 25903: 25870: 25850: 25714: 25681: 25649:weak operator topology 25641: 25588: 25552: 25526: 25413: 25412:{\displaystyle f\in X} 25387: 25327: 25304: 25258: 25212: 25192: 25160: 25121: 25097: 25077: 25061:reflexive Banach space 25053: 25026: 24961: 24934: 24899: 24868: 24835: 24816: 24771: 24738: 24678: 24644: 24550: 24549:{\displaystyle i\in I} 24524: 24504: 24445: 24371: 24336: 24217: 24197: 24161: 24128: 24104: 24073: 24024: 23949: 23905: 23861: 23827: 23807: 23784: 23764: 23741: 23718: 23659: 23636: 23576: 23556: 23533: 23506: 23474: 23366: 23313: 23281: 23215: 23195: 23165: 23145: 23103: 23076: 23056: 23030: 22964: 22912: 22888: 22864: 22762:) set. The function 22748: 22724: 22693: 22618: 22588: 22558: 22492: 22298: 22275: 22241: 22214: 22133: 22104: 22064: 21941: 21862: 21766: 21733: 21677: 21650: 21474: 21413: 21391: 21357: 21250: 21226: 21123: 21089: 21069: 21000: 20941: 20890: 20818: 20772: 20752: 20751:{\displaystyle X^{\#}} 20717: 20716:{\displaystyle X^{\#}} 20685: 20684:{\displaystyle X^{\#}} 20662:complete uniform space 20654: 20606: 20586: 20518: 20452: 20377: 20024: 19941: 19919: 19842: 19822: 19749: 19705: 19672: 19609: 19510: 19414: 19385: 19281: 19198: 19126: 19073: 19051: 18994: 18934: 18400: 18344: 18271: 18246: 18195: 18175: 18111: 18091: 18055: 17999: 17808: 17783: 17760: 17705: 17676: 17654: 17603: 17571: 17538: 17431: 17411: 17383: 17333: 17302: 17267: 17247: 17233:it must be shown that 17227: 17191: 17159: 17139: 17138:{\displaystyle X^{\#}} 17112: 17051: 17000: 16980: 16927: 16905: 16883: 16861: 16839: 16819: 16818:{\displaystyle X^{\#}} 16784: 16755: 16754:{\displaystyle X^{\#}} 16723: 16703: 16665: 16642: 16622: 16558: 16538: 16464: 16435: 16397: 16361: 16338: 16311: 16263: 16222: 16201:is a closed subset of 16195: 16095: 16068: 16042: 16010: 15974: 15946: 15850: 15830: 15798: 15738: 15713: 15656: 15059: 15006: 15005:{\displaystyle X^{\#}} 14967: 14915: 14858: 14634: 14564: 14544: 14459: 14458:{\displaystyle u\in U} 14433: 14400: 14364: 14331: 14279: 14221: 14185: 14184:{\displaystyle x\in X} 14159: 14130: 14063: 13993: 13973: 13912: 13874: 13815: 13814:{\displaystyle U^{\#}} 13787: 13718: 13671:is a closed subset of 13665: 13453: 13343: 13283: 13263: 13226: 13206: 13183: 13163: 13097: 13064: 13021: 12964: 12918: 12747: 12720: 12673: 12672:{\displaystyle U^{\#}} 12646: 12607: 12574: 12545: 12518: 12495: 12475: 12455: 12424: 12397: 12373: 12349: 12348:{\displaystyle U^{\#}} 12310: 12250: 12249:{\displaystyle U^{\#}} 12223: 12184: 12152: 12121: 11978: 11956: 11932: 11846:endow the closed ball 11840: 11817: 11769: 11747: 11727: 11697: 11665: 11645: 11593: 11542: 11479: 11416: 11360: 11333: 11241: 11219: 11127: 11101: 11037: 11002:is a closed subset of 10996: 10953: 10924: 10902: 10875: 10834: 10787: 10744: 10726:(topological) subspace 10718: 10684: 10649: 10626: 10606: 10586: 10535: 10510: 10436: 10403: 10208: 10150: 10125: 10033: 9997: 9943: 9887: 9860: 9840: 9786: 9758: 9698: 9647: 9594: 9518: 9495: 9462: 9430: 9300: 9273: 9207: 9146: 9098: 9078: 9051: 9015: 8976: 8949: 8922: 8921:{\displaystyle i\in I} 8896: 8869: 8838: 8811: 8773: 8734: 8714: 8643: 8473: 8217: 8171: 8149: 8121: 8092: 8043: 8008: 7958: 7866: 7815: 7786: 7766: 7746: 7726: 7703: 7683: 7604: 7570: 7541: 7476: defined by  7416: 7415:{\displaystyle z\in X} 7361: 7332: 7294: 7238: 7187: 7122: 7088: 7050: 6987: 6964: 6873: 6853: 6824: 6788: 6769:as is now described: 6763: 6732: 6703: 6639: 6619: 6587:The Cartesian product 6574: 6545: 6472: 6452: 6432: 6341: 6303: 6250: 6249:{\displaystyle X^{\#}} 6208: 6164: 6136: 6034: 6007: 5976: 5956: 5917: 5890: 5871:Banach–Alaoglu theorem 5856: 5836: 5809: 5789: 5769: 5745: 5720: 5699: 5672: 5600: 5569: 5500: 5470: 5424: 5395: 5365: 5319: 5292: 5220: 5193: 5166: 5120: 5090: 5044: 5014: 4968: 4937: 4891: 4845: 4818: 4785: 4765: 4731: 4685: 4658: 4625: 4598: 4578: 4538: 4504: 4458: 4428: 4401: 4371: 4292: 4256: 4219: 4199: 4179: 4159: 4093: 4060: 4015: 3975: 3903: 3834: 3807: 3765: 3720: 3691: 3628: 3606: 3570: 3548: 3497: 3468: 3423: 3387: 3315: 3295: 3294:{\displaystyle U^{\#}} 3268: 3207: 3174: 3144: 3098: 3097:{\displaystyle U^{\#}} 3068: 3016: 2960: 2914: 2894: 2783: 2739: 2717: 2603: 2560: 2540: 2428: 2408: 2386: 2337: 2287: 2241: 2221: 2201: 2170: 2134: 2085: 2016: 1981: 1909: 1836: 1767: 1688: 1636: 1635:{\displaystyle X^{\#}} 1594: 1566: 1541: 1516: 1484: 1412: 1369: 1349: 1322: 1292: 1243: 1223: 1200: 1088: 1043: 1010: 978: 919: 899: 879: 852: 784: 760: 711: 684: 638: 637:{\displaystyle X^{\#}} 607: 567: 529: 498: 433: 359: 290: 266: 265:{\displaystyle X^{\#}} 239: 217: 171:Banach–Alaoglu theorem 144:sequential compactness 125: 29:Banach–Alaoglu theorem 31837:Complemented subspace 31651:hyperplane separation 31479:Banach–Mazur distance 31442:Generalized functions 30416:Meise & Vogt 1997 30327: 30307: 30246: 30112: 30050: 30005: 29979: 29915: 29853: 29791: 29681: 29652: 29619: 29590: 29557: 29509: 29507:{\displaystyle T_{P}} 29482: 29455: 29453:{\displaystyle T_{P}} 29429:is closed under (non- 29424: 29394: 29369: 29338: 29308: 29262: 29222: 29186: 28985: 28902: 28873: 28851: 28831: 28759: 28699: 28670: 28637: 28604: 28571: 28542: 28516: 28487: 28433: 28413: 28393: 28364: 28324: 28280: 28278:{\displaystyle T_{P}} 28249: 28156: 28124: 28086: 28059: 27910: 27883: 27767: 27687: 27633: 27590: 27570: 27543: 27511: 27491: 27458: 27422: 27402: 27387:is a TVS topology on 27382: 27362: 27317: 27284: 27251: 27221: 27169: 27142: 27109: 26955: 26923: 26903: 26864: 26832: 26797: 26777: 26757: 26737: 26735:{\displaystyle \tau } 26717: 26690: 26666: 26646: 26538:shows that the polar 26533: 26493: 26473: 26471:{\displaystyle \tau } 26436: 26409: 26333: 26302: 26275: 26240:Explicitly, a subset 26166:Bishop–Phelps theorem 26120: 26070: 26022: 25988: 25968: 25924: 25904: 25878:continuous dual space 25871: 25851: 25715: 25682: 25680:{\displaystyle B(H),} 25642: 25589: 25553: 25527: 25414: 25388: 25328: 25305: 25259: 25213: 25193: 25161: 25122: 25098: 25078: 25054: 25027: 24962: 24935: 24900: 24869: 24836: 24817: 24772: 24739: 24719: for every  24679: 24645: 24551: 24525: 24505: 24446: 24372: 24337: 24218: 24198: 24162: 24129: 24105: 24103:{\displaystyle D_{x}} 24074: 24025: 23950: 23906: 23862: 23835:lower semi-continuity 23828: 23808: 23785: 23765: 23742: 23719: 23660: 23637: 23588:Arzelà–Ascoli theorem 23577: 23557: 23534: 23507: 23475: 23346: 23314: 23282: 23216: 23196: 23166: 23146: 23104: 23077: 23062:is also unchanged if 23057: 23031: 22965: 22913: 22889: 22865: 22749: 22725: 22694: 22619: 22589: 22559: 22493: 22299: 22276: 22242: 22215: 22134: 22105: 22065: 21942: 21863: 21767: 21734: 21678: 21651: 21475: 21414: 21392: 21358: 21251: 21227: 21124: 21090: 21070: 21001: 20942: 20891: 20819: 20773: 20753: 20718: 20686: 20655: 20607: 20587: 20519: 20453: 20378: 20025: 19942: 19920: 19843: 19823: 19750: 19706: 19673: 19610: 19511: 19415: 19386: 19282: 19199: 19127: 19074: 19052: 18995: 18935: 18401: 18345: 18272: 18247: 18196: 18176: 18112: 18092: 18056: 18000: 17809: 17784: 17761: 17706: 17677: 17655: 17604: 17572: 17539: 17432: 17412: 17384: 17334: 17303: 17268: 17248: 17228: 17192: 17160: 17140: 17113: 17052: 17001: 16981: 16928: 16906: 16884: 16862: 16840: 16820: 16785: 16756: 16724: 16704: 16666: 16643: 16623: 16559: 16539: 16465: 16436: 16398: 16362: 16339: 16337:{\displaystyle U_{B}} 16312: 16264: 16223: 16221:{\displaystyle Y^{X}} 16196: 16096: 16069: 16043: 16011: 15975: 15947: 15851: 15831: 15799: 15739: 15714: 15657: 15060: 15007: 14968: 14916: 14859: 14635: 14565: 14545: 14460: 14434: 14401: 14365: 14332: 14280: 14222: 14186: 14160: 14131: 14064: 13994: 13974: 13913: 13875: 13816: 13788: 13719: 13666: 13454: 13344: 13284: 13264: 13227: 13207: 13184: 13164: 13098: 13065: 13022: 12965: 12919: 12748: 12721: 12674: 12647: 12608: 12575: 12546: 12519: 12496: 12476: 12456: 12425: 12398: 12374: 12350: 12311: 12251: 12224: 12185: 12153: 12122: 11979: 11957: 11933: 11841: 11818: 11770: 11748: 11728: 11698: 11666: 11646: 11594: 11543: 11480: 11417: 11361: 11359:{\displaystyle B_{r}} 11334: 11242: 11220: 11128: 11102: 11038: 10997: 10954: 10925: 10903: 10901:{\displaystyle S_{x}} 10876: 10835: 10788: 10745: 10719: 10685: 10659:topological subspaces 10650: 10627: 10607: 10587: 10536: 10511: 10437: 10404: 10209: 10151: 10126: 10034: 9998: 9944: 9888: 9886:{\displaystyle f_{i}} 9861: 9841: 9787: 9759: 9699: 9648: 9595: 9519: 9496: 9463: 9431: 9301: 9274: 9208: 9147: 9099: 9079: 9052: 9016: 8977: 8975:{\displaystyle x_{i}} 8950: 8948:{\displaystyle x_{i}} 8923: 8897: 8870: 8839: 8812: 8774: 8735: 8715: 8644: 8474: 8218: 8172: 8150: 8122: 8093: 8044: 8009: 7959: 7867: 7816: 7787: 7767: 7747: 7727: 7704: 7684: 7605: 7571: 7542: 7417: 7369:(categorical) product 7362: 7333: 7295: 7239: 7188: 7123: 7089: 7051: 6988: 6965: 6874: 6854: 6825: 6789: 6764: 6733: 6704: 6640: 6620: 6575: 6546: 6473: 6453: 6433: 6342: 6304: 6251: 6216:pointwise convergence 6209: 6170:is identified as the 6165: 6137: 6111:sublinear functionals 6101:if and only if it is 6035: 6008: 5977: 5957: 5918: 5891: 5857: 5837: 5810: 5790: 5770: 5746: 5721: 5700: 5673: 5601: 5570: 5501: 5471: 5425: 5403:Finally, deduce that 5396: 5366: 5320: 5293: 5221: 5194: 5167: 5121: 5091: 5045: 5015: 4969: 4938: 4892: 4846: 4819: 4786: 4766: 4732: 4686: 4659: 4626: 4599: 4579: 4539: 4505: 4459: 4434:being closed follows. 4429: 4402: 4372: 4293: 4257: 4220: 4200: 4180: 4160: 4094: 4061: 4016: 3976: 3904: 3835: 3808: 3766: 3721: 3692: 3629: 3607: 3571: 3549: 3498: 3469: 3424: 3388: 3316: 3296: 3269: 3208: 3175: 3145: 3099: 3069: 3017: 2961: 2915: 2895: 2784: 2740: 2718: 2604: 2561: 2541: 2429: 2409: 2387: 2338: 2288: 2242: 2222: 2202: 2171: 2135: 2086: 2017: 1982: 1910: 1837: 1768: 1689: 1637: 1595: 1567: 1542: 1517: 1485: 1413: 1370: 1350: 1323: 1293: 1244: 1224: 1201: 1089: 1063:continuous dual space 1044: 1011: 1009:{\displaystyle f(x).} 979: 920: 900: 880: 853: 785: 761: 712: 685: 639: 608: 568: 541:continuous dual space 530: 510:canonical dual system 499: 434: 360: 291: 267: 240: 218: 167:locally convex spaces 126: 32238:Compactness theorems 32087:Locally convex space 31637:Closed graph theorem 31589:Locally convex space 31224:Kakutani fixed-point 31209:Riesz representation 30316: 30255: 30121: 30059: 30014: 29988: 29924: 29862: 29800: 29690: 29661: 29628: 29599: 29566: 29518: 29491: 29464: 29437: 29406: 29378: 29351: 29317: 29271: 29231: 29195: 28994: 28911: 28882: 28860: 28840: 28768: 28727: 28679: 28646: 28613: 28580: 28551: 28525: 28496: 28442: 28422: 28402: 28373: 28333: 28293: 28262: 28174: 28135: 28095: 28068: 27919: 27892: 27776: 27713: 27646: 27608: 27588:{\displaystyle \nu } 27579: 27575:and so the topology 27552: 27520: 27500: 27467: 27435: 27411: 27391: 27380:{\displaystyle \nu } 27371: 27332: 27293: 27260: 27230: 27178: 27151: 27118: 26964: 26932: 26912: 26873: 26841: 26806: 26786: 26766: 26746: 26726: 26699: 26679: 26655: 26542: 26502: 26482: 26462: 26418: 26346: 26315: 26284: 26244: 26206:Krein-Milman theorem 26171:Banach–Mazur theorem 26083: 26031: 26004: 25977: 25953: 25913: 25883: 25860: 25840: 25790:, which implies the 25722:Heine–Borel property 25713:{\displaystyle B(H)} 25695: 25659: 25640:{\displaystyle B(H)} 25622: 25562: 25536: 25423: 25397: 25337: 25314: 25268: 25222: 25202: 25170: 25134: 25111: 25087: 25067: 25043: 24990: 24944: 24917: 24882: 24858: 24825: 24781: 24748: 24688: 24654: 24560: 24534: 24514: 24455: 24388: 24348: 24227: 24207: 24171: 24141: 24118: 24087: 24079:be endowed with the 24034: 23959: 23930: 23871: 23844: 23817: 23794: 23774: 23751: 23728: 23669: 23646: 23605: 23599:variational problems 23566: 23543: 23516: 23484: 23322: 23291: 23225: 23205: 23175: 23155: 23135: 23122:sequentially compact 23090: 23066: 23039: 22974: 22922: 22902: 22896:convex balanced hull 22878: 22766: 22734: 22707: 22630: 22598: 22568: 22502: 22307: 22285: 22258: 22224: 22142: 22114: 22074: 21951: 21872: 21776: 21743: 21687: 21660: 21484: 21423: 21403: 21371: 21260: 21240: 21133: 21107: 21079: 21010: 20954: 20929: 20831: 20782: 20762: 20735: 20730:algebraic dual space 20700: 20696:Corollary to lemma ( 20668: 20626: 20596: 20528: 20462: 20387: 20034: 19951: 19929: 19852: 19832: 19759: 19715: 19682: 19619: 19520: 19424: 19395: 19291: 19208: 19140: 19083: 19061: 19004: 18944: 18923: notation  18410: 18354: 18281: 18256: 18205: 18185: 18121: 18101: 18065: 18012: 17817: 17793: 17770: 17715: 17686: 17664: 17613: 17581: 17548: 17441: 17421: 17417:'s net of values at 17394: 17343: 17314: 17277: 17273:be a scalar and let 17257: 17237: 17201: 17169: 17149: 17122: 17061: 17026: 16990: 16937: 16915: 16893: 16871: 16849: 16829: 16825:of any vector space 16802: 16797:algebraic dual space 16765: 16738: 16713: 16675: 16652: 16632: 16568: 16548: 16474: 16445: 16407: 16371: 16348: 16321: 16273: 16240: 16234:Proof of observation 16205: 16105: 16082: 16052: 16026: 15984: 15956: 15863: 15840: 15808: 15748: 15723: 15670: 15073: 15016: 14989: 14984:algebraic dual space 14925: 14870: 14643: 14578: 14572:positive homogeneous 14554: 14469: 14443: 14410: 14374: 14341: 14289: 14231: 14195: 14169: 14140: 14073: 14007: 13983: 13922: 13893: 13828: 13798: 13731: 13675: 13470: 13357: 13303: 13293:Proof of Proposition 13273: 13240: 13216: 13193: 13173: 13107: 13074: 13031: 12975: 12931: 12757: 12730: 12687: 12656: 12617: 12584: 12555: 12532: 12505: 12485: 12465: 12438: 12414: 12387: 12363: 12332: 12320:is identical to the 12316:(where because this 12270: 12233: 12194: 12161: 12133: 11992: 11966: 11946: 11850: 11827: 11779: 11757: 11737: 11717: 11687: 11655: 11606: 11552: 11489: 11426: 11370: 11343: 11255: 11229: 11136: 11114: 11050: 11046:Characterization of 11006: 10963: 10934: 10912: 10885: 10844: 10801: 10754: 10732: 10693: 10665: 10636: 10616: 10596: 10548: 10520: 10446: 10417: 10218: 10163: 10135: 10043: 10014: 9953: 9897: 9870: 9850: 9799: 9776: 9715: 9657: 9604: 9528: 9505: 9472: 9440: 9310: 9283: 9217: 9156: 9108: 9088: 9061: 9029: 9023:function composition 8986: 8959: 8932: 8906: 8879: 8848: 8825: 8786: 8744: 8724: 8663: 8487: 8227: 8181: 8161: 8133: 8102: 8053: 8018: 7968: 7876: 7828: 7796: 7776: 7756: 7736: 7713: 7693: 7614: 7580: 7551: 7426: 7400: 7379:(which is a type of 7342: 7304: 7251: 7197: 7132: 7098: 7060: 6999: 6986:{\displaystyle \to } 6977: 6887: 6863: 6834: 6800: 6787:{\displaystyle \to } 6778: 6742: 6713: 6652: 6629: 6591: 6555: 6482: 6462: 6442: 6350: 6328: 6260: 6233: 6228:algebraic dual space 6177: 6146: 6117: 6017: 5990: 5966: 5939: 5900: 5880: 5846: 5819: 5799: 5779: 5759: 5735: 5710: 5682: 5610: 5583: 5510: 5480: 5434: 5407: 5375: 5329: 5302: 5230: 5203: 5176: 5130: 5100: 5054: 5027: 4978: 4951: 4947:. So in particular, 4901: 4855: 4828: 4798: 4792:distinguishes points 4775: 4745: 4695: 4668: 4635: 4612: 4588: 4552: 4518: 4468: 4441: 4411: 4381: 4302: 4266: 4233: 4209: 4189: 4169: 4103: 4070: 4025: 3985: 3913: 3844: 3817: 3777: 3730: 3719:{\displaystyle f(u)} 3701: 3638: 3616: 3580: 3558: 3554:in the scalar field 3507: 3478: 3433: 3397: 3325: 3305: 3278: 3217: 3184: 3154: 3108: 3081: 3029: 2970: 2924: 2904: 2795: 2750: 2729: 2615: 2570: 2550: 2441: 2418: 2398: 2350: 2301: 2254: 2231: 2211: 2184: 2144: 2095: 2026: 1999: 1991:. Importantly, the 1919: 1850: 1777: 1705: 1649: 1642:is endowed with the 1619: 1579: 1554: 1547:which is either the 1526: 1506: 1422: 1379: 1359: 1332: 1302: 1256: 1233: 1213: 1101: 1068: 1033: 988: 929: 909: 889: 862: 798: 774: 770:because given a map 721: 694: 648: 621: 577: 547: 519: 443: 369: 306: 280: 274:algebraic dual space 249: 227: 207: 94: 32067:Interpolation space 31599:Operator topologies 31408:Functional calculus 31367:Mahler's conjecture 31346:Von Neumann algebra 31060:Functional analysis 31018:Biorthogonal system 30850:Operator topologies 30744:Functional Analysis 30599:Schaefer, Helmut H. 30567:Functional Analysis 30394:, pp. 225–273. 30371:, pp. 235–240. 30251:which implies that 29624:which implies that 27595:can not be ignored. 27322:be a subset of the 25834: —  25808:Hahn–Banach theorem 25792:Hahn–Banach theorem 25741:Tychonoff's theorem 25613:Hahn–Banach theorem 25551:{\displaystyle p=1} 25478: for all  25382: 24766: 24366: 24259: 24189: 24112:Tychonoff's theorem 23276: 23082:is replaced by its 22894:is replaced by the 20726: —  20723:is weak-* complete) 18588: because  16793: —  15484: for all  15351: for all  15065:(this is proved in 13351:Tychonoff's theorem 11711: —  9268: 6224:subspace topologies 5874: —  5753:normed vector space 5476:-compact subset of 1023: —  543:will be denoted by 124:{\displaystyle C()} 68:Tychonoff's theorem 48:normed vector space 21:functional analysis 32253:Linear functionals 32097:(Pseudo)Metrizable 31929:Minkowski addition 31781:Sublinear function 31433:Riemann hypothesis 31132:Topological vector 30322: 30302: 30241: 30195: 30107: 30045: 30000: 29974: 29942: 29910: 29892: 29848: 29786: 29676: 29647: 29614: 29585: 29552: 29504: 29477: 29450: 29419: 29389: 29364: 29333: 29303: 29257: 29217: 29181: 29160: 29124: 29094: 29058: 29042: 28980: 28933: 28897: 28868: 28846: 28826: 28820: 28754: 28694: 28665: 28632: 28599: 28566: 28537: 28511: 28482: 28428: 28408: 28388: 28359: 28319: 28275: 28244: 28205: 28151: 28119: 28113: 28081: 28054: 28040: 27998: 27950: 27905: 27878: 27869: 27827: 27772:can be written as 27762: 27751: 27682: 27664: 27628: 27585: 27565: 27538: 27506: 27486: 27453: 27417: 27397: 27377: 27357: 27312: 27279: 27246: 27216: 27174:from above. Then 27164: 27137: 27104: 27068: 27001: 26950: 26918: 26898: 26859: 26827: 26792: 26782:such that the set 26772: 26752: 26732: 26712: 26685: 26661: 26641: 26605: 26528: 26488: 26468: 26431: 26404: 26328: 26297: 26270: 26181:Dixmier–Ng theorem 26134:convex compactness 26115: 26111: 26065: 26017: 25983: 25963: 25945:convex compactness 25919: 25899: 25866: 25846: 25832: 25820:convex compactness 25796:real vector spaces 25743:, which under the 25710: 25677: 25653:ultraweak topology 25637: 25584: 25548: 25522: 25409: 25383: 25340: 25326:{\displaystyle X.} 25323: 25300: 25254: 25208: 25188: 25156: 25117: 25093: 25073: 25049: 25022: 24973:F. Riesz's theorem 24957: 24930: 24895: 24864: 24831: 24812: 24767: 24751: 24734: 24674: 24640: 24572: 24546: 24520: 24500: 24441: 24367: 24351: 24332: 24330: 24244: 24223:in a natural way: 24213: 24193: 24174: 24157: 24124: 24100: 24069: 24058: 24020: 23945: 23924: 23901: 23857: 23823: 23806:{\displaystyle F.} 23803: 23790:is a minimizer of 23780: 23763:{\displaystyle x,} 23760: 23740:{\displaystyle F,} 23737: 23714: 23658:{\displaystyle X,} 23655: 23632: 23572: 23555:{\displaystyle X.} 23552: 23529: 23502: 23470: 23309: 23277: 23241: 23221:is separable, let 23211: 23191: 23161: 23141: 23131:Specifically, let 23102:{\displaystyle X.} 23099: 23072: 23052: 23026: 22960: 22908: 22884: 22860: 22797: 22744: 22720: 22689: 22671: 22614: 22584: 22554: 22488: 22341: 22297:{\displaystyle P,} 22294: 22271: 22237: 22210: 22129: 22100: 22060: 21982: 21937: 21858: 21840: 21817: 21762: 21729: 21711: 21673: 21646: 21644: 21624: 21563: 21470: 21409: 21387: 21353: 21291: 21246: 21222: 21178: 21119: 21085: 21065: 20996: 20987: 20937: 20886: 20814: 20768: 20758:of a vector space 20748: 20724: 20713: 20681: 20650: 20644: 20602: 20582: 20514: 20448: 20383:which proves that 20373: 20076: 20020: 19937: 19915: 19838: 19828:The continuity of 19818: 19798: 19745: 19701: 19668: 19605: 19506: 19410: 19381: 19322: 19277: 19194: 19122: 19069: 19047: 18990: 18940:which proves that 18930: 18928: 18779: 18464: 18396: 18340: 18267: 18242: 18201:is continuous and 18191: 18171: 18154: 18107: 18087: 18051: 17995: 17804: 17782:{\displaystyle z,} 17779: 17756: 17701: 17672: 17650: 17599: 17567: 17534: 17481: 17427: 17407: 17379: 17329: 17298: 17263: 17243: 17223: 17187: 17155: 17135: 17108: 17047: 16996: 16976: 16970: 16923: 16901: 16879: 16857: 16835: 16815: 16791: 16780: 16751: 16719: 16699: 16664:{\displaystyle B,} 16661: 16638: 16618: 16554: 16534: 16460: 16431: 16393: 16360:{\displaystyle f.} 16357: 16334: 16307: 16259: 16218: 16191: 16136: 16094:{\displaystyle Y,} 16091: 16064: 16048:is any set and if 16038: 16006: 15970: 15942: 15846: 15836:which proves (2). 15826: 15794: 15734: 15709: 15688: 15652: 15650: 15643: 15574: 15528: 15436: 15209: 15117: 15055: 15049: 15002: 14963: 14911: 14854: 14825: 14630: 14597: 14560: 14540: 14501: 14455: 14429: 14396: 14360: 14327: 14275: 14217: 14181: 14155: 14126: 14059: 14038: 14003:). To prove that 13989: 13969: 13955: 13908: 13870: 13846: 13811: 13783: 13762: 13714: 13693: 13661: 13556: 13501: 13449: 13395: 13339: 13321: 13294: 13279: 13259: 13222: 13205:{\displaystyle U;} 13202: 13179: 13159: 13126: 13093: 13060: 13017: 12960: 12914: 12843: 12788: 12743: 12726:where recall that 12716: 12669: 12642: 12603: 12570: 12544:{\displaystyle X,} 12541: 12517:{\displaystyle X,} 12514: 12491: 12471: 12451: 12420: 12408: 12393: 12369: 12345: 12306: 12288: 12246: 12219: 12180: 12148: 12117: 12078: 12023: 11986:Euclidean topology 11974: 11952: 11928: 11881: 11839:{\displaystyle r,} 11836: 11813: 11765: 11743: 11723: 11709: 11693: 11661: 11641: 11630: 11589: 11576: 11538: 11508: 11475: 11445: 11412: 11356: 11329: 11288: 11237: 11215: 11154: 11126:{\displaystyle r,} 11123: 11097: 11068: 11033: 11024: 10992: 10981: 10949: 10920: 10898: 10871: 10862: 10830: 10819: 10783: 10772: 10740: 10714: 10680: 10648:{\displaystyle X.} 10645: 10622: 10602: 10582: 10531: 10506: 10432: 10399: 10290: 10204: 10146: 10121: 10029: 9993: 9939: 9930: 9883: 9856: 9836: 9782: 9754: 9748: 9694: 9643: 9590: 9517:{\displaystyle X,} 9514: 9491: 9468:is continuous and 9458: 9426: 9399: 9296: 9269: 9220: 9203: 9142: 9094: 9074: 9047: 9011: 8972: 8945: 8918: 8892: 8865: 8837:{\displaystyle X,} 8834: 8807: 8769: 8730: 8710: 8639: 8634: 8469: 8467: 8330: 8295: 8259: 8213: 8167: 8145: 8117: 8088: 8039: 8004: 7986: 7954: 7930: 7894: 7862: 7811: 7782: 7762: 7742: 7725:{\displaystyle s,} 7722: 7699: 7679: 7656: 7600: 7566: 7537: 7459: 7412: 7357: 7328: 7322: 7290: 7284: 7234: 7183: 7165: 7118: 7084: 7078: 7046: 6983: 6960: 6918: 6869: 6849: 6820: 6784: 6759: 6728: 6699: 6635: 6615: 6609: 6570: 6541: 6509: 6468: 6448: 6428: 6381: 6340:{\displaystyle r,} 6337: 6299: 6278: 6246: 6204: 6195: 6160: 6132: 6095:topological spaces 6030: 6003: 5972: 5952: 5913: 5886: 5872: 5852: 5832: 5805: 5795:then the polar of 5785: 5765: 5741: 5716: 5695: 5668: 5596: 5565: 5496: 5466: 5420: 5391: 5361: 5315: 5288: 5216: 5189: 5162: 5116: 5086: 5040: 5010: 4964: 4933: 4887: 4841: 4814: 4781: 4761: 4727: 4681: 4654: 4624:{\displaystyle X,} 4621: 4594: 4574: 4534: 4500: 4454: 4424: 4397: 4367: 4288: 4252: 4215: 4195: 4175: 4155: 4122: 4089: 4056: 4011: 3971: 3899: 3830: 3803: 3761: 3716: 3687: 3624: 3602: 3566: 3544: 3493: 3464: 3419: 3383: 3311: 3301:that converges to 3291: 3264: 3203: 3170: 3150:-closed subset of 3140: 3094: 3064: 3012: 2956: 2910: 2890: 2856: 2779: 2735: 2713: 2679: 2599: 2556: 2536: 2502: 2424: 2404: 2382: 2333: 2283: 2237: 2217: 2197: 2166: 2130: 2081: 2012: 1977: 1905: 1832: 1763: 1684: 1632: 1590: 1562: 1537: 1512: 1500: 1480: 1408: 1365: 1345: 1318: 1288: 1249:is compact in the 1239: 1219: 1196: 1162: 1084: 1039: 1021: 1006: 974: 915: 895: 875: 848: 780: 756: 707: 680: 634: 603: 563: 525: 494: 429: 409: 355: 286: 262: 235: 213: 121: 35:) states that the 32225: 32224: 31944:Relative interior 31690:Bilinear operator 31574:Linear functional 31510: 31509: 31413:Integral operator 31190: 31189: 31026: 31025: 30915:in Hilbert spaces 30757:978-0-471-55604-6 30722:978-0-387-97245-9 30676:978-0-486-45352-1 30646:978-0-12-622760-4 30616:978-1-4612-7155-0 30581:978-0-07-054236-5 30491:978-3-642-64988-2 30180: 29927: 29899: 29894: 29890: 29876: 29749: 29743: 29704: 29698: 29145: 29095: 29079: 29043: 29013: 28927: 28849:{\displaystyle 0} 28814: 28431:{\displaystyle X} 28418:of the origin in 28411:{\displaystyle U} 28212: 28207: 28203: 28189: 28098: 28019: 27983: 27957: 27952: 27948: 27934: 27848: 27812: 27804: 27798: 27736: 27694:ultrafilter lemma 27649: 27509:{\displaystyle U} 27420:{\displaystyle U} 27400:{\displaystyle X} 27053: 27052: 27046: 27008: 27003: 26999: 26985: 26921:{\displaystyle U} 26795:{\displaystyle U} 26775:{\displaystyle X} 26688:{\displaystyle U} 26664:{\displaystyle U} 26590: 26589: 26583: 26491:{\displaystyle X} 26340:subspace topology 26192:Goldstine theorem 26092: 25986:{\displaystyle B} 25922:{\displaystyle B} 25869:{\displaystyle B} 25849:{\displaystyle X} 25826: 25806:). However, the 25788:ultrafilter lemma 25777:ultrafilter Lemma 25594:is not reflexive. 25479: 25246: 25233: 25211:{\displaystyle q} 25120:{\displaystyle X} 25096:{\displaystyle X} 25076:{\displaystyle X} 25052:{\displaystyle X} 24867:{\displaystyle X} 24720: 24632: 24563: 24523:{\displaystyle F} 24216:{\displaystyle D} 24127:{\displaystyle D} 24083:. Because every 24043: 23922: 23826:{\displaystyle F} 23783:{\displaystyle x} 23575:{\displaystyle B} 23468: 23214:{\displaystyle X} 23164:{\displaystyle B} 23144:{\displaystyle X} 23075:{\displaystyle U} 22911:{\displaystyle U} 22887:{\displaystyle U} 22804: 22799: 22795: 22781: 22656: 22453: 22447: 22419: 22413: 22382: 22376: 22348: 22343: 22339: 22325: 22028: 22022: 21989: 21984: 21980: 21966: 21825: 21824: 21819: 21815: 21801: 21718: 21713: 21709: 21695: 21609: 21548: 21412:{\displaystyle X} 21298: 21293: 21289: 21275: 21249:{\displaystyle X} 21185: 21180: 21176: 21162: 21099: 21098: 20972: 20826:topological space 20771:{\displaystyle X} 20695: 20629: 20616: 20615: 20083: 20078: 20074: 20060: 19841:{\displaystyle A} 19805: 19800: 19796: 19782: 19329: 19324: 19320: 19306: 18924: 18895: 18872: 18820: 18786: 18781: 18777: 18763: 18680: 18589: 18582: 18579: 18576: 18518: 18505: 18473: 18466: 18462: 18194:{\displaystyle M} 18161: 18156: 18152: 18138: 18117:" map defined by 18110:{\displaystyle s} 17949: 17742: 17488: 17483: 17479: 17465: 17430:{\displaystyle z} 17266:{\displaystyle s} 17246:{\displaystyle f} 17197:To conclude that 17158:{\displaystyle f} 17145:the converges to 17057:and suppose that 16999:{\displaystyle X} 16955: 16838:{\displaystyle X} 16733: 16641:{\displaystyle Y} 16557:{\displaystyle Y} 16269:and suppose that 16143: 16138: 16134: 16120: 15673: 15662:is closed in the 15630: 15605: 15581: 15576: 15572: 15558: 15543: 15542: where  15513: 15485: 15468: 15455: 15451: 15445: 15421: 15352: 15320: 15317: 15313: 15310: 15288: 15285: 15281: 15278: 15274: 15271: 15267: 15264: 15194: 15190: 15187: 15183: 15180: 15162: 15156: 15153: 15149: 15146: 15142: 15139: 15135: 15132: 15119: 15115: 15034: 14921:which shows that 14810: 14758: 14708: 14661: 14582: 14563:{\displaystyle f} 14524: 14508: 14503: 14499: 14485: 14465:), which implies 14406:(so for example, 14023: 13992:{\displaystyle z} 13940: 13831: 13747: 13678: 13630: 13624: 13600: 13594: 13541: 13540: 13534: 13508: 13503: 13499: 13485: 13402: 13397: 13393: 13379: 13306: 13292: 13225:{\displaystyle f} 13182:{\displaystyle f} 13111: 12887: 12881: 12828: 12827: 12821: 12795: 12790: 12786: 12772: 12494:{\displaystyle U} 12474:{\displaystyle U} 12423:{\displaystyle X} 12406: 12396:{\displaystyle U} 12372:{\displaystyle X} 12273: 12063: 12062: 12056: 12030: 12025: 12021: 12007: 11955:{\displaystyle X} 11888: 11883: 11879: 11865: 11798: 11746:{\displaystyle X} 11726:{\displaystyle U} 11707: 11696:{\displaystyle X} 11676: 11675: 11664:{\displaystyle X} 11637: 11632: 11628: 11614: 11583: 11578: 11574: 11560: 11493: 11430: 11295: 11290: 11286: 11272: 11187: 11139: 11053: 11009: 10966: 10847: 10804: 10795:subspace topology 10757: 10625:{\displaystyle f} 10605:{\displaystyle f} 10297: 10292: 10288: 10274: 9915: 9893:is an element of 9859:{\displaystyle f} 9785:{\displaystyle f} 9733: 9406: 9401: 9397: 9383: 9097:{\displaystyle F} 8779:from a non-empty 8733:{\displaystyle X} 8309: 8280: 8244: 8170:{\displaystyle X} 7971: 7915: 7879: 7785:{\displaystyle s} 7765:{\displaystyle s} 7745:{\displaystyle z} 7702:{\displaystyle z} 7663: 7658: 7654: 7640: 7576:sends a function 7477: 7444: 7396:at a given point 7307: 7269: 7172: 7167: 7163: 7149: 7063: 6925: 6920: 6916: 6902: 6872:{\displaystyle X} 6638:{\displaystyle X} 6594: 6516: 6511: 6507: 6493: 6471:{\displaystyle 0} 6451:{\displaystyle r} 6388: 6383: 6379: 6365: 6263: 6180: 6172:Cartesian product 6082:does not utilize 5975:{\displaystyle X} 5889:{\displaystyle X} 5870: 5855:{\displaystyle X} 5808:{\displaystyle U} 5788:{\displaystyle X} 5768:{\displaystyle U} 5744:{\displaystyle X} 5020:-totally bounded. 4784:{\displaystyle X} 4597:{\displaystyle U} 4218:{\displaystyle f} 4198:{\displaystyle U} 4178:{\displaystyle f} 4107: 3393:To conclude that 3314:{\displaystyle f} 3213:and suppose that 2913:{\displaystyle U} 2841: 2840: 2834: 2738:{\displaystyle U} 2657: 2656: 2650: 2559:{\displaystyle U} 2487: 2486: 2480: 2427:{\displaystyle X} 2407:{\displaystyle U} 2240:{\displaystyle f} 2220:{\displaystyle f} 1993:subspace topology 1515:{\displaystyle X} 1498: 1368:{\displaystyle U} 1242:{\displaystyle X} 1222:{\displaystyle U} 1147: 1146: 1140: 1042:{\displaystyle X} 1019: 918:{\displaystyle x} 898:{\displaystyle f} 783:{\displaystyle f} 528:{\displaystyle X} 439:where the triple 416: 411: 407: 393: 289:{\displaystyle X} 216:{\displaystyle X} 33:Alaoglu's theorem 32260: 32215: 32214: 32189:Uniformly smooth 31858: 31850: 31817:Balanced/Circled 31807:Absorbing/Radial 31537: 31530: 31523: 31514: 31513: 31500: 31499: 31418:Jones polynomial 31336:Operator algebra 31080: 31079: 31053: 31046: 31039: 31030: 31029: 30997:Saturated family 30895:Ultraweak/Weak-* 30804: 30797: 30790: 30781: 30780: 30776: 30774: 30772: 30749: 30734: 30688: 30663:Trèves, François 30658: 30628: 30593: 30557: 30530: 30511: 30478:Köthe, Gottfried 30463: 30462: 30460: 30458: 30437: 30428: 30419: 30413: 30407: 30401: 30395: 30389: 30372: 30366: 30355: 30349: 30332: 30331: 30329: 30328: 30323: 30311: 30309: 30308: 30303: 30292: 30291: 30279: 30262: 30250: 30248: 30247: 30242: 30237: 30236: 30235: 30234: 30217: 30213: 30212: 30211: 30210: 30209: 30194: 30174: 30173: 30168: 30150: 30149: 30144: 30117:it follows that 30116: 30114: 30113: 30108: 30103: 30102: 30101: 30100: 30080: 30079: 30054: 30052: 30051: 30046: 30038: 30021: 30009: 30007: 30006: 30001: 29983: 29981: 29980: 29975: 29964: 29947: 29941: 29919: 29917: 29916: 29911: 29909: 29908: 29897: 29896: 29895: 29893: 29891: 29888: 29884: 29879: 29874: 29857: 29855: 29854: 29849: 29844: 29843: 29831: 29827: 29826: 29825: 29795: 29793: 29792: 29787: 29785: 29784: 29772: 29768: 29767: 29766: 29747: 29741: 29740: 29739: 29727: 29723: 29722: 29721: 29702: 29696: 29685: 29683: 29682: 29677: 29656: 29654: 29653: 29648: 29640: 29639: 29623: 29621: 29620: 29615: 29594: 29592: 29591: 29586: 29578: 29577: 29561: 29559: 29558: 29553: 29551: 29550: 29539: 29535: 29534: 29513: 29511: 29510: 29505: 29503: 29502: 29486: 29484: 29483: 29478: 29476: 29475: 29459: 29457: 29456: 29451: 29449: 29448: 29428: 29426: 29425: 29420: 29418: 29417: 29398: 29396: 29395: 29390: 29374:with respect to 29373: 29371: 29370: 29365: 29363: 29362: 29342: 29340: 29339: 29334: 29332: 29331: 29312: 29310: 29309: 29304: 29299: 29298: 29286: 29285: 29266: 29264: 29263: 29258: 29256: 29255: 29243: 29242: 29227:it follows that 29226: 29224: 29223: 29218: 29216: 29215: 29190: 29188: 29187: 29182: 29177: 29176: 29175: 29174: 29159: 29141: 29140: 29139: 29138: 29123: 29122: 29121: 29109: 29108: 29093: 29075: 29074: 29073: 29072: 29057: 29041: 29040: 29039: 29027: 29026: 29009: 29008: 28989: 28987: 28986: 28981: 28979: 28975: 28974: 28973: 28961: 28960: 28948: 28947: 28932: 28923: 28922: 28906: 28904: 28903: 28898: 28877: 28875: 28874: 28869: 28867: 28855: 28853: 28852: 28847: 28835: 28833: 28832: 28827: 28825: 28824: 28819: 28805: 28801: 28788: 28787: 28763: 28761: 28760: 28755: 28721: 28704: 28703: 28701: 28700: 28695: 28674: 28672: 28671: 28666: 28658: 28657: 28641: 28639: 28638: 28633: 28625: 28624: 28608: 28606: 28605: 28600: 28592: 28591: 28575: 28573: 28572: 28567: 28546: 28544: 28543: 28538: 28520: 28518: 28517: 28512: 28491: 28489: 28488: 28483: 28454: 28453: 28437: 28435: 28434: 28429: 28417: 28415: 28414: 28409: 28397: 28395: 28394: 28389: 28368: 28366: 28365: 28360: 28358: 28357: 28345: 28344: 28328: 28326: 28325: 28320: 28318: 28317: 28305: 28304: 28284: 28282: 28281: 28276: 28274: 28273: 28253: 28251: 28250: 28245: 28243: 28242: 28231: 28227: 28226: 28210: 28209: 28208: 28206: 28204: 28201: 28197: 28192: 28187: 28186: 28185: 28168: 28162: 28160: 28158: 28157: 28152: 28147: 28146: 28131:this is true of 28128: 28126: 28125: 28120: 28118: 28112: 28090: 28088: 28087: 28082: 28080: 28079: 28063: 28061: 28060: 28055: 28050: 28046: 28045: 28039: 28015: 28014: 28008: 28007: 27997: 27982: 27981: 27967: 27966: 27955: 27954: 27953: 27951: 27949: 27946: 27942: 27937: 27932: 27931: 27930: 27914: 27912: 27911: 27906: 27904: 27903: 27887: 27885: 27884: 27879: 27874: 27868: 27844: 27843: 27837: 27836: 27826: 27811: 27810: 27802: 27796: 27795: 27794: 27793: 27792: 27771: 27769: 27768: 27763: 27761: 27760: 27750: 27732: 27731: 27730: 27729: 27707: 27701: 27691: 27689: 27688: 27683: 27681: 27680: 27679: 27678: 27663: 27637: 27635: 27634: 27629: 27627: 27626: 27625: 27624: 27602: 27596: 27594: 27592: 27591: 27586: 27574: 27572: 27571: 27566: 27564: 27563: 27547: 27545: 27544: 27539: 27516:with respect to 27515: 27513: 27512: 27507: 27495: 27493: 27492: 27487: 27485: 27484: 27462: 27460: 27459: 27454: 27426: 27424: 27423: 27418: 27406: 27404: 27403: 27398: 27386: 27384: 27383: 27378: 27366: 27364: 27363: 27358: 27356: 27355: 27321: 27319: 27318: 27313: 27311: 27310: 27288: 27286: 27285: 27280: 27278: 27277: 27255: 27253: 27252: 27247: 27242: 27241: 27225: 27223: 27222: 27217: 27215: 27214: 27196: 27195: 27173: 27171: 27170: 27165: 27163: 27162: 27147:is just the set 27146: 27144: 27143: 27138: 27136: 27135: 27113: 27111: 27110: 27105: 27103: 27102: 27090: 27073: 27067: 27050: 27044: 27043: 27042: 27015: 27014: 27006: 27005: 27004: 27002: 27000: 26997: 26993: 26988: 26983: 26982: 26981: 26959: 26957: 26956: 26951: 26928:with respect to 26927: 26925: 26924: 26919: 26907: 26905: 26904: 26899: 26897: 26896: 26868: 26866: 26865: 26860: 26836: 26834: 26833: 26828: 26801: 26799: 26798: 26793: 26781: 26779: 26778: 26773: 26761: 26759: 26758: 26753: 26741: 26739: 26738: 26733: 26721: 26719: 26718: 26713: 26711: 26710: 26694: 26692: 26691: 26686: 26670: 26668: 26667: 26662: 26650: 26648: 26647: 26642: 26640: 26639: 26627: 26610: 26604: 26587: 26581: 26580: 26579: 26564: 26563: 26554: 26553: 26537: 26535: 26534: 26529: 26527: 26526: 26514: 26513: 26497: 26495: 26494: 26489: 26477: 26475: 26474: 26469: 26456: 26450: 26440: 26438: 26437: 26432: 26430: 26429: 26413: 26411: 26410: 26405: 26400: 26396: 26395: 26391: 26384: 26383: 26363: 26362: 26337: 26335: 26334: 26329: 26327: 26326: 26306: 26304: 26303: 26298: 26296: 26295: 26279: 26277: 26276: 26271: 26269: 26268: 26256: 26255: 26238: 26211: 26202: 26124: 26122: 26121: 26116: 26110: 26109: 26108: 26074: 26072: 26071: 26066: 26061: 26060: 26026: 26024: 26023: 26018: 26016: 26015: 25992: 25990: 25989: 25984: 25972: 25970: 25969: 25964: 25962: 25961: 25947: 25946: 25939: 25938: 25937:quasicompactness 25928: 25926: 25925: 25920: 25908: 25906: 25905: 25900: 25895: 25894: 25875: 25873: 25872: 25867: 25855: 25853: 25852: 25847: 25835: 25831: 25830: 25816:quasicompactness 25719: 25717: 25716: 25711: 25686: 25684: 25683: 25678: 25646: 25644: 25643: 25638: 25593: 25591: 25590: 25585: 25574: 25573: 25558:is not true, as 25557: 25555: 25554: 25549: 25531: 25529: 25528: 25523: 25518: 25517: 25496: 25495: 25480: 25477: 25445: 25444: 25443: 25442: 25418: 25416: 25415: 25410: 25392: 25390: 25389: 25384: 25381: 25376: 25365: 25361: 25360: 25359: 25358: 25332: 25330: 25329: 25324: 25309: 25307: 25306: 25301: 25293: 25292: 25280: 25279: 25263: 25261: 25260: 25255: 25247: 25239: 25234: 25226: 25217: 25215: 25214: 25209: 25197: 25195: 25194: 25189: 25165: 25163: 25162: 25157: 25146: 25145: 25126: 25124: 25123: 25118: 25102: 25100: 25099: 25094: 25082: 25080: 25079: 25074: 25058: 25056: 25055: 25050: 25031: 25029: 25028: 25023: 25021: 25017: 25016: 25015: 24966: 24964: 24963: 24958: 24956: 24955: 24939: 24937: 24936: 24931: 24929: 24928: 24904: 24902: 24901: 24896: 24894: 24893: 24873: 24871: 24870: 24865: 24840: 24838: 24837: 24832: 24821: 24819: 24818: 24813: 24808: 24807: 24776: 24774: 24773: 24768: 24765: 24759: 24743: 24741: 24740: 24735: 24721: 24718: 24715: 24714: 24683: 24681: 24680: 24675: 24673: 24649: 24647: 24646: 24641: 24633: 24630: 24627: 24626: 24614: 24613: 24602: 24598: 24588: 24587: 24571: 24555: 24553: 24552: 24547: 24529: 24527: 24526: 24521: 24510:in the image of 24509: 24507: 24506: 24501: 24499: 24498: 24487: 24483: 24473: 24472: 24450: 24448: 24447: 24442: 24434: 24433: 24422: 24418: 24417: 24400: 24399: 24376: 24374: 24373: 24368: 24365: 24359: 24341: 24339: 24338: 24333: 24331: 24324: 24323: 24283: 24277: 24276: 24261: 24258: 24252: 24242: 24222: 24220: 24219: 24214: 24202: 24200: 24199: 24194: 24188: 24182: 24166: 24164: 24163: 24158: 24153: 24152: 24133: 24131: 24130: 24125: 24109: 24107: 24106: 24101: 24099: 24098: 24081:product topology 24078: 24076: 24075: 24070: 24068: 24067: 24057: 24029: 24027: 24026: 24021: 24004: 23996: 23988: 23971: 23970: 23954: 23952: 23951: 23946: 23910: 23908: 23907: 23902: 23897: 23889: 23888: 23866: 23864: 23863: 23858: 23856: 23855: 23832: 23830: 23829: 23824: 23812: 23810: 23809: 23804: 23789: 23787: 23786: 23781: 23769: 23767: 23766: 23761: 23746: 23744: 23743: 23738: 23723: 23721: 23720: 23715: 23713: 23712: 23694: 23693: 23681: 23680: 23664: 23662: 23661: 23656: 23641: 23639: 23638: 23633: 23631: 23623: 23622: 23581: 23579: 23578: 23573: 23561: 23559: 23558: 23553: 23538: 23536: 23535: 23530: 23528: 23527: 23511: 23509: 23508: 23503: 23479: 23477: 23476: 23471: 23469: 23467: 23466: 23462: 23458: 23457: 23421: 23417: 23413: 23412: 23383: 23380: 23379: 23365: 23360: 23318: 23316: 23315: 23310: 23286: 23284: 23283: 23278: 23275: 23270: 23259: 23255: 23254: 23237: 23236: 23220: 23218: 23217: 23212: 23200: 23198: 23197: 23192: 23187: 23186: 23170: 23168: 23167: 23162: 23150: 23148: 23147: 23142: 23108: 23106: 23105: 23100: 23081: 23079: 23078: 23073: 23061: 23059: 23058: 23053: 23051: 23050: 23035: 23033: 23032: 23027: 23022: 23021: 23016: 23012: 23005: 23004: 22986: 22985: 22969: 22967: 22966: 22961: 22959: 22958: 22934: 22933: 22917: 22915: 22914: 22909: 22893: 22891: 22890: 22885: 22869: 22867: 22866: 22861: 22835: 22834: 22823: 22819: 22818: 22802: 22801: 22800: 22798: 22796: 22793: 22789: 22784: 22779: 22778: 22777: 22753: 22751: 22750: 22745: 22730:with respect to 22729: 22727: 22726: 22721: 22719: 22718: 22698: 22696: 22695: 22690: 22688: 22687: 22686: 22685: 22670: 22652: 22651: 22650: 22649: 22623: 22621: 22620: 22615: 22610: 22609: 22593: 22591: 22590: 22585: 22583: 22582: 22563: 22561: 22560: 22555: 22553: 22552: 22540: 22539: 22524: 22523: 22522: 22521: 22497: 22495: 22494: 22489: 22484: 22480: 22479: 22478: 22477: 22476: 22451: 22445: 22444: 22443: 22442: 22441: 22417: 22411: 22410: 22406: 22405: 22404: 22392: 22391: 22380: 22374: 22373: 22372: 22371: 22370: 22346: 22345: 22344: 22342: 22340: 22337: 22333: 22328: 22323: 22319: 22318: 22303: 22301: 22300: 22295: 22280: 22278: 22277: 22272: 22270: 22269: 22246: 22244: 22243: 22238: 22236: 22235: 22219: 22217: 22216: 22211: 22206: 22202: 22201: 22200: 22188: 22187: 22175: 22174: 22154: 22153: 22138: 22136: 22135: 22130: 22109: 22107: 22106: 22101: 22099: 22098: 22086: 22085: 22069: 22067: 22066: 22061: 22059: 22055: 22054: 22053: 22052: 22051: 22026: 22020: 22019: 22018: 22013: 22004: 22003: 21987: 21986: 21985: 21983: 21981: 21978: 21974: 21969: 21964: 21963: 21962: 21946: 21944: 21943: 21938: 21933: 21932: 21927: 21918: 21917: 21906: 21902: 21901: 21884: 21883: 21867: 21865: 21864: 21859: 21857: 21856: 21855: 21854: 21839: 21822: 21821: 21820: 21818: 21816: 21813: 21809: 21804: 21799: 21798: 21797: 21796: 21795: 21771: 21769: 21768: 21763: 21761: 21760: 21738: 21736: 21735: 21730: 21728: 21727: 21716: 21715: 21714: 21712: 21710: 21707: 21703: 21698: 21693: 21682: 21680: 21679: 21674: 21672: 21671: 21655: 21653: 21652: 21647: 21645: 21641: 21640: 21639: 21638: 21623: 21602: 21600: 21599: 21584: 21580: 21579: 21578: 21577: 21562: 21541: 21539: 21538: 21523: 21520: 21519: 21517: 21516: 21500: 21499: 21479: 21477: 21476: 21471: 21469: 21468: 21457: 21453: 21452: 21435: 21434: 21418: 21416: 21415: 21410: 21396: 21394: 21393: 21388: 21383: 21382: 21362: 21360: 21359: 21354: 21352: 21348: 21347: 21346: 21319: 21318: 21296: 21295: 21294: 21292: 21290: 21287: 21283: 21278: 21273: 21272: 21271: 21255: 21253: 21252: 21247: 21234:absorbing subset 21231: 21229: 21228: 21223: 21183: 21182: 21181: 21179: 21177: 21174: 21170: 21165: 21160: 21128: 21126: 21125: 21120: 21094: 21092: 21091: 21086: 21074: 21072: 21071: 21066: 21064: 21060: 21059: 21055: 21048: 21047: 21027: 21026: 21005: 21003: 21002: 20997: 20992: 20986: 20968: 20967: 20962: 20946: 20944: 20943: 20938: 20936: 20914: 20913: 20895: 20893: 20892: 20887: 20885: 20881: 20880: 20876: 20869: 20868: 20848: 20847: 20823: 20821: 20820: 20815: 20813: 20809: 20802: 20801: 20777: 20775: 20774: 20769: 20757: 20755: 20754: 20749: 20747: 20746: 20727: 20722: 20720: 20719: 20714: 20712: 20711: 20690: 20688: 20687: 20682: 20680: 20679: 20659: 20657: 20656: 20651: 20649: 20643: 20611: 20609: 20608: 20603: 20591: 20589: 20588: 20583: 20524:it follows that 20523: 20521: 20520: 20515: 20474: 20473: 20457: 20455: 20454: 20449: 20399: 20398: 20382: 20380: 20379: 20374: 20357: 20356: 20344: 20343: 20332: 20328: 20312: 20311: 20293: 20292: 20281: 20277: 20267: 20266: 20245: 20244: 20226: 20225: 20214: 20210: 20209: 20205: 20195: 20194: 20173: 20172: 20146: 20145: 20134: 20130: 20129: 20125: 20124: 20099: 20098: 20081: 20080: 20079: 20077: 20075: 20072: 20068: 20063: 20058: 20057: 20053: 20052: 20029: 20027: 20026: 20021: 19946: 19944: 19943: 19938: 19936: 19924: 19922: 19921: 19916: 19875: 19871: 19870: 19847: 19845: 19844: 19839: 19827: 19825: 19824: 19819: 19803: 19802: 19801: 19799: 19797: 19794: 19790: 19785: 19780: 19754: 19752: 19751: 19746: 19744: 19736: 19728: 19710: 19708: 19707: 19702: 19697: 19689: 19677: 19675: 19674: 19669: 19631: 19630: 19615:it follows that 19614: 19612: 19611: 19606: 19586: 19585: 19574: 19570: 19560: 19559: 19532: 19531: 19515: 19513: 19512: 19507: 19490: 19489: 19478: 19474: 19464: 19463: 19436: 19435: 19419: 19417: 19416: 19411: 19390: 19388: 19387: 19382: 19380: 19376: 19366: 19365: 19344: 19343: 19327: 19326: 19325: 19323: 19321: 19318: 19314: 19309: 19304: 19303: 19302: 19286: 19284: 19283: 19278: 19276: 19268: 19254: 19253: 19242: 19238: 19237: 19220: 19219: 19203: 19201: 19200: 19195: 19131: 19129: 19128: 19123: 19078: 19076: 19075: 19070: 19068: 19056: 19054: 19053: 19048: 19016: 19015: 18999: 18997: 18996: 18991: 18956: 18955: 18939: 18937: 18936: 18931: 18929: 18925: 18922: 18919: 18905: 18904: 18893: 18883: 18882: 18873: 18870: 18867: 18865: 18864: 18853: 18849: 18836: 18835: 18818: 18799: 18798: 18784: 18783: 18782: 18780: 18778: 18775: 18771: 18766: 18761: 18760: 18756: 18746: 18745: 18727: 18725: 18724: 18713: 18709: 18699: 18698: 18678: 18668: 18654: 18653: 18642: 18638: 18628: 18627: 18600: 18599: 18590: 18587: 18584: 18580: 18577: 18574: 18573: 18572: 18561: 18557: 18556: 18552: 18542: 18541: 18516: 18506: 18503: 18500: 18489: 18488: 18471: 18468: 18467: 18465: 18463: 18460: 18456: 18451: 18448: 18444: 18434: 18433: 18405: 18403: 18402: 18397: 18349: 18347: 18346: 18341: 18315: 18311: 18301: 18300: 18277:it follows that 18276: 18274: 18273: 18268: 18263: 18251: 18249: 18248: 18243: 18217: 18216: 18200: 18198: 18197: 18192: 18180: 18178: 18177: 18172: 18159: 18158: 18157: 18155: 18153: 18150: 18146: 18141: 18136: 18116: 18114: 18113: 18108: 18096: 18094: 18093: 18088: 18086: 18078: 18060: 18058: 18057: 18052: 18004: 18002: 18001: 17996: 17961: 17960: 17950: 17947: 17905: 17904: 17867: 17866: 17829: 17828: 17813: 17811: 17810: 17805: 17800: 17788: 17786: 17785: 17780: 17765: 17763: 17762: 17757: 17743: 17740: 17710: 17708: 17707: 17702: 17681: 17679: 17678: 17673: 17671: 17659: 17657: 17656: 17651: 17625: 17624: 17608: 17606: 17605: 17600: 17595: 17594: 17589: 17576: 17574: 17573: 17568: 17560: 17559: 17543: 17541: 17540: 17535: 17530: 17529: 17518: 17514: 17504: 17503: 17486: 17485: 17484: 17482: 17480: 17477: 17473: 17468: 17463: 17453: 17452: 17436: 17434: 17433: 17428: 17416: 17414: 17413: 17408: 17406: 17405: 17388: 17386: 17385: 17380: 17378: 17355: 17354: 17338: 17336: 17335: 17330: 17307: 17305: 17304: 17299: 17272: 17270: 17269: 17264: 17252: 17250: 17249: 17244: 17232: 17230: 17229: 17224: 17219: 17218: 17196: 17194: 17193: 17188: 17183: 17182: 17177: 17164: 17162: 17161: 17156: 17144: 17142: 17141: 17136: 17134: 17133: 17117: 17115: 17114: 17109: 17107: 17106: 17095: 17091: 17090: 17073: 17072: 17056: 17054: 17053: 17048: 17046: 17045: 17040: 17011: 17010: 17005: 17003: 17002: 16997: 16985: 16983: 16982: 16977: 16975: 16969: 16951: 16950: 16945: 16932: 16930: 16929: 16924: 16922: 16910: 16908: 16907: 16902: 16900: 16888: 16886: 16885: 16880: 16878: 16866: 16864: 16863: 16858: 16856: 16844: 16842: 16841: 16836: 16824: 16822: 16821: 16816: 16814: 16813: 16794: 16789: 16787: 16786: 16781: 16779: 16778: 16773: 16760: 16758: 16757: 16752: 16750: 16749: 16728: 16726: 16725: 16720: 16708: 16706: 16705: 16700: 16670: 16668: 16667: 16662: 16647: 16645: 16644: 16639: 16627: 16625: 16624: 16619: 16602: 16601: 16580: 16579: 16564:and every value 16563: 16561: 16560: 16555: 16543: 16541: 16540: 16535: 16518: 16517: 16506: 16502: 16492: 16491: 16469: 16467: 16466: 16461: 16440: 16438: 16437: 16432: 16402: 16400: 16399: 16394: 16389: 16388: 16366: 16364: 16363: 16358: 16343: 16341: 16340: 16335: 16333: 16332: 16316: 16314: 16313: 16308: 16306: 16305: 16294: 16290: 16289: 16268: 16266: 16265: 16260: 16258: 16257: 16227: 16225: 16224: 16219: 16217: 16216: 16200: 16198: 16197: 16192: 16190: 16186: 16164: 16163: 16141: 16140: 16139: 16137: 16135: 16132: 16128: 16123: 16118: 16117: 16116: 16100: 16098: 16097: 16092: 16073: 16071: 16070: 16065: 16047: 16045: 16044: 16039: 16015: 16013: 16012: 16007: 16002: 16001: 15979: 15977: 15976: 15971: 15969: 15951: 15949: 15948: 15943: 15941: 15937: 15936: 15935: 15908: 15907: 15902: 15882: 15881: 15880: 15879: 15855: 15853: 15852: 15847: 15835: 15833: 15832: 15827: 15822: 15821: 15816: 15803: 15801: 15800: 15795: 15793: 15792: 15780: 15779: 15767: 15766: 15765: 15764: 15743: 15741: 15740: 15735: 15730: 15718: 15716: 15715: 15710: 15708: 15707: 15702: 15693: 15687: 15664:product topology 15661: 15659: 15658: 15653: 15651: 15647: 15646: 15631: 15628: 15624: 15606: 15603: 15599: 15598: 15579: 15578: 15577: 15575: 15573: 15570: 15566: 15561: 15556: 15555: 15554: 15544: 15541: 15538: 15537: 15527: 15506: 15502: 15501: 15486: 15483: 15481: 15480: 15466: 15465: 15464: 15453: 15449: 15443: 15441: 15435: 15417: 15416: 15405: 15401: 15400: 15386: 15385: 15373: 15369: 15368: 15353: 15350: 15348: 15347: 15318: 15315: 15311: 15308: 15307: 15306: 15301: 15286: 15283: 15279: 15276: 15272: 15269: 15265: 15262: 15261: 15260: 15248: 15244: 15243: 15231: 15214: 15208: 15188: 15185: 15181: 15178: 15177: 15176: 15171: 15160: 15154: 15151: 15147: 15144: 15140: 15137: 15133: 15130: 15129: 15128: 15121: 15120: 15118: 15116: 15113: 15109: 15104: 15096: 15095: 15094: 15093: 15064: 15062: 15061: 15056: 15054: 15048: 15030: 15029: 15024: 15011: 15009: 15008: 15003: 15001: 15000: 14972: 14970: 14969: 14964: 14959: 14958: 14957: 14956: 14920: 14918: 14917: 14912: 14907: 14906: 14894: 14877: 14863: 14861: 14860: 14855: 14847: 14830: 14824: 14806: 14802: 14801: 14797: 14796: 14772: 14768: 14767: 14763: 14759: 14757: 14756: 14744: 14726: 14722: 14709: 14707: 14706: 14694: 14684: 14667: 14662: 14660: 14659: 14647: 14639: 14637: 14636: 14631: 14619: 14602: 14596: 14569: 14567: 14566: 14561: 14549: 14547: 14546: 14541: 14525: 14523: 14522: 14510: 14506: 14505: 14504: 14502: 14500: 14497: 14493: 14488: 14483: 14482: 14481: 14464: 14462: 14461: 14456: 14438: 14436: 14435: 14430: 14422: 14421: 14405: 14403: 14402: 14397: 14392: 14391: 14369: 14367: 14366: 14361: 14353: 14352: 14336: 14334: 14333: 14328: 14323: 14322: 14321: 14320: 14284: 14282: 14281: 14276: 14245: 14244: 14239: 14226: 14224: 14223: 14218: 14213: 14212: 14190: 14188: 14187: 14182: 14164: 14162: 14161: 14156: 14135: 14133: 14132: 14127: 14125: 14124: 14123: 14122: 14105: 14101: 14100: 14087: 14086: 14081: 14068: 14066: 14065: 14060: 14055: 14054: 14053: 14052: 14037: 14019: 14018: 14001:as defined above 13998: 13996: 13995: 13990: 13978: 13976: 13975: 13970: 13968: 13960: 13954: 13936: 13935: 13930: 13917: 13915: 13914: 13909: 13879: 13877: 13876: 13871: 13866: 13865: 13860: 13851: 13845: 13820: 13818: 13817: 13812: 13810: 13809: 13792: 13790: 13789: 13784: 13779: 13778: 13777: 13776: 13761: 13743: 13742: 13723: 13721: 13720: 13715: 13710: 13709: 13708: 13707: 13692: 13670: 13668: 13667: 13662: 13660: 13656: 13655: 13654: 13628: 13622: 13621: 13620: 13598: 13592: 13591: 13590: 13578: 13561: 13555: 13538: 13532: 13531: 13530: 13515: 13514: 13506: 13505: 13504: 13502: 13500: 13497: 13493: 13488: 13483: 13482: 13481: 13458: 13456: 13455: 13450: 13445: 13444: 13432: 13424: 13416: 13400: 13399: 13398: 13396: 13394: 13391: 13387: 13382: 13377: 13376: 13375: 13374: 13373: 13348: 13346: 13345: 13340: 13338: 13337: 13336: 13335: 13320: 13288: 13286: 13285: 13280: 13269:), as desired. 13268: 13266: 13265: 13260: 13258: 13257: 13231: 13229: 13228: 13223: 13211: 13209: 13208: 13203: 13188: 13186: 13185: 13180: 13168: 13166: 13165: 13160: 13148: 13131: 13125: 13102: 13100: 13099: 13094: 13092: 13091: 13069: 13067: 13066: 13061: 13056: 13055: 13043: 13042: 13026: 13024: 13023: 13018: 13013: 13012: 13000: 12999: 12987: 12986: 12969: 12967: 12966: 12961: 12956: 12955: 12943: 12942: 12923: 12921: 12920: 12915: 12910: 12909: 12897: 12896: 12885: 12879: 12878: 12877: 12865: 12848: 12842: 12825: 12819: 12818: 12817: 12802: 12801: 12793: 12792: 12791: 12789: 12787: 12784: 12780: 12775: 12770: 12769: 12768: 12752: 12750: 12749: 12744: 12742: 12741: 12725: 12723: 12722: 12717: 12712: 12711: 12699: 12698: 12678: 12676: 12675: 12670: 12668: 12667: 12651: 12649: 12648: 12643: 12635: 12634: 12612: 12610: 12609: 12604: 12596: 12595: 12579: 12577: 12576: 12571: 12550: 12548: 12547: 12542: 12526:absorbing subset 12523: 12521: 12520: 12515: 12500: 12498: 12497: 12492: 12480: 12478: 12477: 12472: 12460: 12458: 12457: 12452: 12450: 12449: 12429: 12427: 12426: 12421: 12402: 12400: 12399: 12394: 12378: 12376: 12375: 12370: 12354: 12352: 12351: 12346: 12344: 12343: 12318:product topology 12315: 12313: 12312: 12307: 12305: 12304: 12303: 12302: 12287: 12256:is a closed and 12255: 12253: 12252: 12247: 12245: 12244: 12228: 12226: 12225: 12220: 12212: 12211: 12189: 12187: 12186: 12181: 12173: 12172: 12157: 12155: 12154: 12149: 12126: 12124: 12123: 12118: 12113: 12112: 12100: 12083: 12077: 12060: 12054: 12053: 12052: 12037: 12036: 12028: 12027: 12026: 12024: 12022: 12019: 12015: 12010: 12005: 12004: 12003: 11983: 11981: 11980: 11975: 11973: 11961: 11959: 11958: 11953: 11937: 11935: 11934: 11929: 11918: 11910: 11902: 11886: 11885: 11884: 11882: 11880: 11877: 11873: 11868: 11863: 11862: 11861: 11845: 11843: 11842: 11837: 11822: 11820: 11819: 11814: 11812: 11804: 11799: 11796: 11794: 11786: 11774: 11772: 11771: 11766: 11764: 11752: 11750: 11749: 11744: 11732: 11730: 11729: 11724: 11712: 11702: 11700: 11699: 11694: 11670: 11668: 11667: 11662: 11650: 11648: 11647: 11642: 11635: 11634: 11633: 11631: 11629: 11626: 11622: 11617: 11612: 11598: 11596: 11595: 11590: 11588: 11581: 11580: 11579: 11577: 11575: 11572: 11568: 11563: 11558: 11547: 11545: 11544: 11539: 11530: 11513: 11507: 11484: 11482: 11481: 11476: 11467: 11450: 11444: 11421: 11419: 11418: 11413: 11402: 11394: 11386: 11365: 11363: 11362: 11357: 11355: 11354: 11338: 11336: 11335: 11330: 11293: 11292: 11291: 11289: 11287: 11284: 11280: 11275: 11270: 11246: 11244: 11243: 11238: 11224: 11222: 11221: 11216: 11214: 11213: 11188: 11185: 11176: 11159: 11153: 11132: 11130: 11129: 11124: 11106: 11104: 11103: 11098: 11090: 11073: 11067: 11042: 11040: 11039: 11034: 11029: 11023: 11001: 10999: 10998: 10993: 10991: 10990: 10980: 10958: 10956: 10955: 10950: 10929: 10927: 10926: 10921: 10919: 10907: 10905: 10904: 10899: 10897: 10896: 10880: 10878: 10877: 10872: 10867: 10861: 10839: 10837: 10836: 10831: 10829: 10828: 10818: 10793:is equal to the 10792: 10790: 10789: 10784: 10782: 10781: 10771: 10749: 10747: 10746: 10741: 10739: 10723: 10721: 10720: 10715: 10713: 10705: 10704: 10689: 10687: 10686: 10681: 10654: 10652: 10651: 10646: 10631: 10629: 10628: 10623: 10611: 10609: 10608: 10603: 10591: 10589: 10588: 10583: 10581: 10580: 10569: 10565: 10564: 10540: 10538: 10537: 10532: 10527: 10515: 10513: 10512: 10507: 10490: 10489: 10478: 10474: 10464: 10463: 10441: 10439: 10438: 10433: 10408: 10406: 10405: 10400: 10395: 10394: 10383: 10379: 10369: 10368: 10350: 10349: 10338: 10334: 10333: 10329: 10328: 10315: 10314: 10309: 10295: 10294: 10293: 10291: 10289: 10286: 10282: 10277: 10272: 10271: 10267: 10266: 10255: 10251: 10250: 10232: 10231: 10226: 10213: 10211: 10210: 10205: 10178: 10177: 10172: 10155: 10153: 10152: 10147: 10142: 10130: 10128: 10127: 10122: 10111: 10110: 10105: 10096: 10092: 10091: 10080: 10076: 10075: 10057: 10056: 10051: 10038: 10036: 10035: 10030: 10002: 10000: 9999: 9994: 9986: 9985: 9974: 9970: 9969: 9948: 9946: 9945: 9940: 9935: 9929: 9911: 9910: 9905: 9892: 9890: 9889: 9884: 9882: 9881: 9865: 9863: 9862: 9857: 9845: 9843: 9842: 9837: 9832: 9831: 9820: 9816: 9815: 9791: 9789: 9788: 9783: 9766:product topology 9763: 9761: 9760: 9755: 9753: 9747: 9729: 9728: 9723: 9703: 9701: 9700: 9695: 9675: 9674: 9652: 9650: 9649: 9644: 9627: 9623: 9622: 9599: 9597: 9596: 9591: 9574: 9573: 9562: 9558: 9557: 9553: 9552: 9523: 9521: 9520: 9515: 9500: 9498: 9497: 9492: 9484: 9483: 9467: 9465: 9464: 9459: 9435: 9433: 9432: 9427: 9422: 9421: 9404: 9403: 9402: 9400: 9398: 9395: 9391: 9386: 9381: 9380: 9379: 9368: 9364: 9363: 9359: 9358: 9333: 9329: 9328: 9305: 9303: 9302: 9297: 9295: 9294: 9278: 9276: 9275: 9270: 9267: 9262: 9251: 9247: 9246: 9242: 9241: 9212: 9210: 9209: 9204: 9202: 9201: 9190: 9186: 9185: 9181: 9180: 9151: 9149: 9148: 9143: 9126: 9125: 9103: 9101: 9100: 9095: 9083: 9081: 9080: 9075: 9073: 9072: 9056: 9054: 9053: 9048: 9020: 9018: 9017: 9012: 8998: 8997: 8981: 8979: 8978: 8973: 8971: 8970: 8954: 8952: 8951: 8946: 8944: 8943: 8927: 8925: 8924: 8919: 8901: 8899: 8898: 8893: 8891: 8890: 8874: 8872: 8871: 8866: 8855: 8843: 8841: 8840: 8835: 8816: 8814: 8813: 8808: 8778: 8776: 8775: 8770: 8756: 8755: 8739: 8737: 8736: 8731: 8719: 8717: 8716: 8711: 8709: 8708: 8697: 8693: 8692: 8675: 8674: 8648: 8646: 8645: 8640: 8635: 8631: 8627: 8626: 8625: 8614: 8613: 8599: 8598: 8593: 8592: 8569: 8563: 8562: 8558: 8557: 8546: 8537: 8536: 8531: 8517: 8515: 8514: 8509: 8502: 8478: 8476: 8475: 8470: 8468: 8464: 8460: 8459: 8458: 8441: 8437: 8436: 8418: 8417: 8406: 8402: 8401: 8374: 8372: 8371: 8360: 8356: 8355: 8340: 8339: 8335: 8329: 8305: 8301: 8300: 8294: 8266: 8264: 8258: 8242: 8222: 8220: 8219: 8214: 8176: 8174: 8173: 8168: 8154: 8152: 8151: 8146: 8126: 8124: 8123: 8118: 8097: 8095: 8094: 8089: 8087: 8086: 8085: 8084: 8048: 8046: 8045: 8040: 8038: 8037: 8032: 8013: 8011: 8010: 8005: 8003: 8002: 8001: 8000: 7985: 7963: 7961: 7960: 7955: 7950: 7949: 7944: 7935: 7929: 7911: 7910: 7909: 7908: 7893: 7871: 7869: 7868: 7863: 7861: 7860: 7849: 7845: 7844: 7820: 7818: 7817: 7812: 7810: 7809: 7804: 7791: 7789: 7788: 7783: 7771: 7769: 7768: 7763: 7751: 7749: 7748: 7743: 7731: 7729: 7728: 7723: 7708: 7706: 7705: 7700: 7688: 7686: 7685: 7680: 7661: 7660: 7659: 7657: 7655: 7652: 7648: 7643: 7638: 7628: 7627: 7622: 7609: 7607: 7606: 7601: 7599: 7575: 7573: 7572: 7567: 7565: 7564: 7559: 7546: 7544: 7543: 7538: 7536: 7535: 7523: 7522: 7511: 7507: 7506: 7489: 7488: 7478: 7475: 7472: 7464: 7458: 7440: 7439: 7434: 7422:is the function 7421: 7419: 7418: 7413: 7395: 7394: 7366: 7364: 7363: 7358: 7356: 7355: 7350: 7337: 7335: 7334: 7329: 7327: 7321: 7299: 7297: 7296: 7291: 7289: 7283: 7265: 7264: 7259: 7243: 7241: 7240: 7235: 7230: 7229: 7218: 7214: 7213: 7192: 7190: 7189: 7184: 7182: 7181: 7170: 7169: 7168: 7166: 7164: 7161: 7157: 7152: 7147: 7127: 7125: 7124: 7119: 7117: 7093: 7091: 7090: 7085: 7083: 7077: 7055: 7053: 7052: 7047: 7045: 7044: 7033: 7029: 7028: 7011: 7010: 6992: 6990: 6989: 6984: 6969: 6967: 6966: 6961: 6956: 6955: 6923: 6922: 6921: 6919: 6917: 6914: 6910: 6905: 6900: 6899: 6898: 6878: 6876: 6875: 6870: 6858: 6856: 6855: 6850: 6848: 6847: 6842: 6829: 6827: 6826: 6821: 6819: 6793: 6791: 6790: 6785: 6768: 6766: 6765: 6760: 6755: 6737: 6735: 6734: 6729: 6727: 6726: 6721: 6708: 6706: 6705: 6700: 6698: 6697: 6686: 6682: 6681: 6664: 6663: 6644: 6642: 6641: 6636: 6624: 6622: 6621: 6616: 6614: 6608: 6579: 6577: 6576: 6571: 6550: 6548: 6547: 6542: 6514: 6513: 6512: 6510: 6508: 6505: 6501: 6496: 6491: 6477: 6475: 6474: 6469: 6457: 6455: 6454: 6449: 6437: 6435: 6434: 6429: 6418: 6410: 6402: 6386: 6385: 6384: 6382: 6380: 6377: 6373: 6368: 6363: 6362: 6361: 6346: 6344: 6343: 6338: 6313: 6312: 6308: 6306: 6305: 6300: 6295: 6294: 6293: 6292: 6277: 6255: 6253: 6252: 6247: 6245: 6244: 6220:product topology 6213: 6211: 6210: 6205: 6200: 6194: 6169: 6167: 6166: 6161: 6159: 6141: 6139: 6138: 6133: 6131: 6130: 6125: 6080:elementary proof 6074:Elementary proof 6042:F. Riesz theorem 6039: 6037: 6036: 6031: 6029: 6028: 6012: 6010: 6009: 6004: 6002: 6001: 5981: 5979: 5978: 5973: 5961: 5959: 5958: 5953: 5951: 5950: 5922: 5920: 5919: 5914: 5912: 5911: 5895: 5893: 5892: 5887: 5875: 5861: 5859: 5858: 5853: 5841: 5839: 5838: 5833: 5831: 5830: 5814: 5812: 5811: 5806: 5794: 5792: 5791: 5786: 5774: 5772: 5771: 5766: 5750: 5748: 5747: 5742: 5725: 5723: 5722: 5717: 5704: 5702: 5701: 5696: 5694: 5693: 5678:it follows that 5677: 5675: 5674: 5669: 5664: 5660: 5659: 5655: 5648: 5647: 5627: 5626: 5605: 5603: 5602: 5597: 5595: 5594: 5574: 5572: 5571: 5566: 5564: 5560: 5559: 5555: 5548: 5547: 5527: 5526: 5505: 5503: 5502: 5497: 5492: 5491: 5475: 5473: 5472: 5467: 5465: 5461: 5454: 5453: 5429: 5427: 5426: 5421: 5419: 5418: 5400: 5398: 5397: 5392: 5387: 5386: 5370: 5368: 5367: 5362: 5360: 5356: 5349: 5348: 5324: 5322: 5321: 5316: 5314: 5313: 5297: 5295: 5294: 5289: 5284: 5280: 5279: 5275: 5268: 5267: 5247: 5246: 5225: 5223: 5222: 5217: 5215: 5214: 5198: 5196: 5195: 5190: 5188: 5187: 5171: 5169: 5168: 5163: 5161: 5157: 5150: 5149: 5126:Recall that the 5125: 5123: 5122: 5117: 5112: 5111: 5095: 5093: 5092: 5087: 5085: 5081: 5074: 5073: 5049: 5047: 5046: 5041: 5039: 5038: 5019: 5017: 5016: 5011: 5009: 5005: 4998: 4997: 4973: 4971: 4970: 4965: 4963: 4962: 4942: 4940: 4939: 4934: 4932: 4928: 4921: 4920: 4896: 4894: 4893: 4888: 4886: 4882: 4875: 4874: 4850: 4848: 4847: 4842: 4840: 4839: 4823: 4821: 4820: 4815: 4810: 4809: 4790: 4788: 4787: 4782: 4770: 4768: 4767: 4762: 4757: 4756: 4736: 4734: 4733: 4728: 4726: 4722: 4715: 4714: 4690: 4688: 4687: 4682: 4680: 4679: 4663: 4661: 4660: 4655: 4650: 4649: 4630: 4628: 4627: 4622: 4606:absorbing subset 4603: 4601: 4600: 4595: 4583: 4581: 4580: 4575: 4573: 4572: 4543: 4541: 4540: 4535: 4530: 4529: 4509: 4507: 4506: 4501: 4499: 4495: 4488: 4487: 4463: 4461: 4460: 4455: 4453: 4452: 4433: 4431: 4430: 4425: 4423: 4422: 4407:the claim about 4406: 4404: 4403: 4398: 4393: 4392: 4376: 4374: 4373: 4368: 4366: 4365: 4353: 4352: 4340: 4339: 4327: 4326: 4314: 4313: 4297: 4295: 4294: 4289: 4284: 4283: 4261: 4259: 4258: 4253: 4251: 4250: 4224: 4222: 4221: 4216: 4204: 4202: 4201: 4196: 4184: 4182: 4181: 4176: 4164: 4162: 4161: 4156: 4144: 4127: 4121: 4098: 4096: 4095: 4090: 4088: 4087: 4065: 4063: 4062: 4057: 4051: 4050: 4038: 4037: 4020: 4018: 4017: 4012: 4010: 4009: 3997: 3996: 3980: 3978: 3977: 3972: 3967: 3963: 3962: 3958: 3951: 3950: 3930: 3929: 3908: 3906: 3905: 3900: 3898: 3894: 3893: 3889: 3882: 3881: 3861: 3860: 3839: 3837: 3836: 3831: 3829: 3828: 3812: 3810: 3809: 3804: 3802: 3801: 3789: 3788: 3770: 3768: 3767: 3762: 3754: 3737: 3725: 3723: 3722: 3717: 3696: 3694: 3693: 3688: 3683: 3679: 3672: 3664: 3656: 3633: 3631: 3630: 3625: 3623: 3611: 3609: 3608: 3603: 3592: 3591: 3576:and every value 3575: 3573: 3572: 3567: 3565: 3553: 3551: 3550: 3545: 3519: 3518: 3502: 3500: 3499: 3494: 3473: 3471: 3470: 3465: 3457: 3440: 3428: 3426: 3425: 3420: 3415: 3414: 3392: 3390: 3389: 3384: 3379: 3375: 3374: 3370: 3363: 3362: 3342: 3341: 3320: 3318: 3317: 3312: 3300: 3298: 3297: 3292: 3290: 3289: 3273: 3271: 3270: 3265: 3263: 3262: 3251: 3247: 3246: 3229: 3228: 3212: 3210: 3209: 3204: 3202: 3201: 3179: 3177: 3176: 3171: 3166: 3165: 3149: 3147: 3146: 3141: 3139: 3135: 3128: 3127: 3103: 3101: 3100: 3095: 3093: 3092: 3073: 3071: 3070: 3065: 3060: 3059: 3047: 3046: 3021: 3019: 3018: 3013: 3008: 3007: 2995: 2994: 2982: 2981: 2965: 2963: 2962: 2957: 2952: 2948: 2947: 2946: 2919: 2917: 2916: 2911: 2900:be the polar of 2899: 2897: 2896: 2891: 2889: 2885: 2878: 2861: 2855: 2838: 2832: 2831: 2830: 2807: 2806: 2788: 2786: 2785: 2780: 2778: 2774: 2773: 2772: 2746:with respect to 2744: 2742: 2741: 2736: 2722: 2720: 2719: 2714: 2712: 2708: 2701: 2684: 2678: 2677: 2676: 2654: 2648: 2630: 2629: 2608: 2606: 2605: 2600: 2598: 2594: 2593: 2592: 2565: 2563: 2562: 2557: 2546:be the polar of 2545: 2543: 2542: 2537: 2535: 2531: 2524: 2507: 2501: 2484: 2478: 2477: 2476: 2453: 2452: 2433: 2431: 2430: 2425: 2413: 2411: 2410: 2405: 2391: 2389: 2388: 2383: 2378: 2374: 2373: 2372: 2342: 2340: 2339: 2334: 2329: 2325: 2324: 2323: 2297:although unlike 2292: 2290: 2289: 2284: 2282: 2278: 2277: 2276: 2246: 2244: 2243: 2238: 2226: 2224: 2223: 2218: 2206: 2204: 2203: 2198: 2196: 2195: 2175: 2173: 2172: 2167: 2162: 2161: 2139: 2137: 2136: 2131: 2126: 2122: 2115: 2114: 2090: 2088: 2087: 2082: 2080: 2076: 2075: 2071: 2064: 2063: 2043: 2042: 2021: 2019: 2018: 2013: 2011: 2010: 1986: 1984: 1983: 1978: 1973: 1969: 1968: 1964: 1957: 1956: 1936: 1935: 1914: 1912: 1911: 1906: 1904: 1900: 1899: 1895: 1888: 1887: 1867: 1866: 1841: 1839: 1838: 1833: 1831: 1827: 1826: 1822: 1815: 1814: 1794: 1793: 1772: 1770: 1769: 1764: 1759: 1755: 1754: 1750: 1743: 1742: 1722: 1721: 1693: 1691: 1690: 1685: 1680: 1676: 1669: 1668: 1641: 1639: 1638: 1633: 1631: 1630: 1599: 1597: 1596: 1591: 1586: 1571: 1569: 1568: 1563: 1561: 1546: 1544: 1543: 1538: 1533: 1521: 1519: 1518: 1513: 1489: 1487: 1486: 1481: 1476: 1472: 1471: 1467: 1460: 1459: 1439: 1438: 1417: 1415: 1414: 1409: 1407: 1403: 1402: 1401: 1374: 1372: 1371: 1366: 1354: 1352: 1351: 1346: 1344: 1343: 1327: 1325: 1324: 1319: 1314: 1313: 1297: 1295: 1294: 1289: 1287: 1283: 1276: 1275: 1248: 1246: 1245: 1240: 1228: 1226: 1225: 1220: 1205: 1203: 1202: 1197: 1195: 1191: 1184: 1167: 1161: 1144: 1138: 1137: 1136: 1113: 1112: 1093: 1091: 1090: 1085: 1080: 1079: 1048: 1046: 1045: 1040: 1024: 1015: 1013: 1012: 1007: 983: 981: 980: 975: 973: 972: 961: 957: 947: 946: 924: 922: 921: 916: 904: 902: 901: 896: 884: 882: 881: 876: 874: 873: 857: 855: 854: 849: 844: 843: 832: 828: 827: 810: 809: 789: 787: 786: 781: 765: 763: 762: 757: 752: 748: 741: 740: 716: 714: 713: 708: 706: 705: 689: 687: 686: 681: 679: 675: 668: 667: 643: 641: 640: 635: 633: 632: 612: 610: 609: 604: 602: 601: 589: 588: 572: 570: 569: 564: 559: 558: 534: 532: 531: 526: 503: 501: 500: 495: 493: 489: 488: 484: 466: 465: 438: 436: 435: 430: 414: 413: 412: 410: 408: 405: 401: 396: 391: 390: 386: 364: 362: 361: 356: 354: 346: 345: 327: 323: 295: 293: 292: 287: 272:will denote the 271: 269: 268: 263: 261: 260: 244: 242: 241: 236: 234: 222: 220: 219: 214: 148:Leonidas Alaoglu 130: 128: 127: 122: 64:product topology 32268: 32267: 32263: 32262: 32261: 32259: 32258: 32257: 32228: 32227: 32226: 32221: 32203: 31965:B-complete/Ptak 31948: 31892: 31856: 31848: 31827:Bounding points 31790: 31732:Densely defined 31678: 31667:Bounded inverse 31613: 31547: 31541: 31511: 31506: 31488: 31452:Advanced topics 31447: 31371: 31350: 31309: 31275:Hilbert–Schmidt 31248: 31239:Gelfand–Naimark 31186: 31136: 31071: 31057: 31027: 31022: 31006: 30985: 30969: 30948: 30869: 30818: 30808: 30770: 30768: 30758: 30747: 30723: 30713:Springer-Verlag 30701:Conway, John B. 30696: 30694:Further reading 30691: 30677: 30647: 30633:Schechter, Eric 30617: 30582: 30546: 30527: 30492: 30472: 30467: 30466: 30456: 30454: 30435: 30429: 30422: 30418:, Theorem 23.5. 30414: 30410: 30402: 30398: 30390: 30375: 30367: 30358: 30354:, Theorem 3.15. 30350: 30346: 30341: 30336: 30335: 30317: 30314: 30313: 30287: 30283: 30275: 30258: 30256: 30253: 30252: 30230: 30226: 30225: 30221: 30205: 30201: 30200: 30196: 30184: 30179: 30175: 30169: 30167: 30166: 30145: 30143: 30142: 30122: 30119: 30118: 30096: 30092: 30091: 30087: 30075: 30071: 30060: 30057: 30056: 30034: 30017: 30015: 30012: 30011: 29989: 29986: 29985: 29960: 29943: 29931: 29925: 29922: 29921: 29920:if and only if 29904: 29900: 29887: 29885: 29880: 29878: 29877: 29863: 29860: 29859: 29858:By definition, 29839: 29835: 29821: 29817: 29813: 29809: 29801: 29798: 29797: 29780: 29776: 29762: 29758: 29754: 29750: 29735: 29731: 29717: 29713: 29709: 29705: 29691: 29688: 29687: 29662: 29659: 29658: 29635: 29631: 29629: 29626: 29625: 29600: 29597: 29596: 29573: 29569: 29567: 29564: 29563: 29562:that satisfies 29540: 29530: 29526: 29522: 29521: 29519: 29516: 29515: 29514:has an element 29498: 29494: 29492: 29489: 29488: 29471: 29467: 29465: 29462: 29461: 29444: 29440: 29438: 29435: 29434: 29413: 29409: 29407: 29404: 29403: 29379: 29376: 29375: 29358: 29354: 29352: 29349: 29348: 29327: 29323: 29318: 29315: 29314: 29313:thereby making 29294: 29290: 29281: 29277: 29272: 29269: 29268: 29251: 29247: 29238: 29234: 29232: 29229: 29228: 29211: 29207: 29196: 29193: 29192: 29170: 29166: 29165: 29161: 29149: 29134: 29130: 29129: 29125: 29117: 29113: 29104: 29100: 29099: 29083: 29068: 29064: 29063: 29059: 29047: 29035: 29031: 29022: 29018: 29017: 29004: 29000: 28995: 28992: 28991: 28969: 28965: 28956: 28952: 28943: 28939: 28938: 28934: 28931: 28918: 28914: 28912: 28909: 28908: 28883: 28880: 28879: 28863: 28861: 28858: 28857: 28841: 28838: 28837: 28818: 28813: 28809: 28783: 28779: 28778: 28774: 28769: 28766: 28765: 28728: 28725: 28724: 28722: 28718: 28708: 28707: 28680: 28677: 28676: 28653: 28649: 28647: 28644: 28643: 28620: 28616: 28614: 28611: 28610: 28587: 28583: 28581: 28578: 28577: 28552: 28549: 28548: 28526: 28523: 28522: 28497: 28494: 28493: 28449: 28445: 28443: 28440: 28439: 28423: 28420: 28419: 28403: 28400: 28399: 28374: 28371: 28370: 28353: 28349: 28340: 28336: 28334: 28331: 28330: 28329:if and only if 28313: 28309: 28300: 28296: 28294: 28291: 28290: 28269: 28265: 28263: 28260: 28259: 28232: 28222: 28218: 28214: 28213: 28200: 28198: 28193: 28191: 28190: 28181: 28177: 28175: 28172: 28171: 28169: 28165: 28142: 28138: 28136: 28133: 28132: 28114: 28102: 28096: 28093: 28092: 28075: 28071: 28069: 28066: 28065: 28041: 28023: 28010: 28009: 28003: 27999: 27987: 27977: 27976: 27975: 27971: 27962: 27958: 27945: 27943: 27938: 27936: 27935: 27926: 27922: 27920: 27917: 27916: 27899: 27895: 27893: 27890: 27889: 27870: 27852: 27839: 27838: 27832: 27828: 27816: 27806: 27805: 27788: 27784: 27783: 27779: 27777: 27774: 27773: 27756: 27752: 27740: 27725: 27721: 27720: 27716: 27714: 27711: 27710: 27709:The conclusion 27708: 27704: 27698:axiom of choice 27674: 27670: 27669: 27665: 27653: 27647: 27644: 27643: 27640:Hausdorff space 27620: 27616: 27615: 27611: 27609: 27606: 27605: 27603: 27599: 27580: 27577: 27576: 27559: 27555: 27553: 27550: 27549: 27521: 27518: 27517: 27501: 27498: 27497: 27474: 27470: 27468: 27465: 27464: 27463:then the polar 27436: 27433: 27432: 27412: 27409: 27408: 27392: 27389: 27388: 27372: 27369: 27368: 27351: 27347: 27333: 27330: 27329: 27300: 27296: 27294: 27291: 27290: 27267: 27263: 27261: 27258: 27257: 27237: 27233: 27231: 27228: 27227: 27204: 27200: 27185: 27181: 27179: 27176: 27175: 27158: 27154: 27152: 27149: 27148: 27125: 27121: 27119: 27116: 27115: 27098: 27097: 27086: 27069: 27057: 27038: 27034: 27010: 27009: 26996: 26994: 26989: 26987: 26986: 26971: 26967: 26965: 26962: 26961: 26933: 26930: 26929: 26913: 26910: 26909: 26892: 26888: 26874: 26871: 26870: 26842: 26839: 26838: 26807: 26804: 26803: 26787: 26784: 26783: 26767: 26764: 26763: 26747: 26744: 26743: 26727: 26724: 26723: 26706: 26702: 26700: 26697: 26696: 26680: 26677: 26676: 26656: 26653: 26652: 26635: 26634: 26623: 26606: 26594: 26575: 26571: 26559: 26558: 26549: 26545: 26543: 26540: 26539: 26522: 26518: 26509: 26505: 26503: 26500: 26499: 26483: 26480: 26479: 26463: 26460: 26459: 26457: 26453: 26447:totally bounded 26425: 26421: 26419: 26416: 26415: 26379: 26375: 26374: 26370: 26358: 26354: 26353: 26349: 26347: 26344: 26343: 26342:inherited from 26322: 26318: 26316: 26313: 26312: 26311:and the subset 26309:weak-* topology 26291: 26287: 26285: 26282: 26281: 26264: 26260: 26251: 26247: 26245: 26242: 26241: 26239: 26235: 26230: 26209: 26200: 26162: 26127: 26104: 26103: 26096: 26084: 26081: 26080: 26056: 26055: 26032: 26029: 26028: 26011: 26007: 26005: 26002: 26001: 25978: 25975: 25974: 25957: 25956: 25954: 25951: 25950: 25944: 25943: 25936: 25935: 25914: 25911: 25910: 25890: 25886: 25884: 25881: 25880: 25861: 25858: 25857: 25841: 25838: 25837: 25833: 25828: 25827: 25812:weak-* topology 25753:axiom of choice 25737: 25731: 25696: 25693: 25692: 25660: 25657: 25656: 25623: 25620: 25619: 25601: 25569: 25565: 25563: 25560: 25559: 25537: 25534: 25533: 25513: 25509: 25491: 25487: 25476: 25438: 25434: 25433: 25429: 25424: 25421: 25420: 25398: 25395: 25394: 25377: 25366: 25354: 25350: 25349: 25345: 25341: 25338: 25335: 25334: 25315: 25312: 25311: 25288: 25284: 25275: 25271: 25269: 25266: 25265: 25238: 25225: 25223: 25220: 25219: 25203: 25200: 25199: 25171: 25168: 25167: 25141: 25137: 25135: 25132: 25131: 25112: 25109: 25108: 25088: 25085: 25084: 25068: 25065: 25064: 25044: 25041: 25040: 25011: 25007: 25000: 24996: 24991: 24988: 24987: 24951: 24947: 24945: 24942: 24941: 24924: 24920: 24918: 24915: 24914: 24905:with the usual 24889: 24885: 24883: 24880: 24879: 24859: 24856: 24855: 24852: 24847: 24842: 24826: 24823: 24822: 24803: 24799: 24782: 24779: 24778: 24760: 24755: 24749: 24746: 24745: 24717: 24710: 24706: 24689: 24686: 24685: 24669: 24655: 24652: 24651: 24650:the functional 24629: 24622: 24618: 24603: 24583: 24579: 24578: 24574: 24573: 24567: 24561: 24558: 24557: 24535: 24532: 24531: 24515: 24512: 24511: 24488: 24468: 24464: 24463: 24459: 24458: 24456: 24453: 24452: 24423: 24413: 24409: 24405: 24404: 24395: 24391: 24389: 24386: 24385: 24379:weak-* topology 24360: 24355: 24349: 24346: 24345: 24329: 24328: 24313: 24309: 24290: 24282: 24274: 24273: 24268: 24260: 24253: 24248: 24241: 24230: 24228: 24225: 24224: 24208: 24205: 24204: 24183: 24178: 24172: 24169: 24168: 24148: 24144: 24142: 24139: 24138: 24119: 24116: 24115: 24094: 24090: 24088: 24085: 24084: 24063: 24059: 24047: 24035: 24032: 24031: 24000: 23992: 23984: 23966: 23962: 23960: 23957: 23956: 23931: 23928: 23927: 23893: 23884: 23880: 23872: 23869: 23868: 23851: 23847: 23845: 23842: 23841: 23818: 23815: 23814: 23795: 23792: 23791: 23775: 23772: 23771: 23752: 23749: 23748: 23729: 23726: 23725: 23708: 23704: 23689: 23685: 23676: 23672: 23670: 23667: 23666: 23647: 23644: 23643: 23627: 23618: 23614: 23606: 23603: 23602: 23567: 23564: 23563: 23544: 23541: 23540: 23523: 23519: 23517: 23514: 23513: 23485: 23482: 23481: 23453: 23449: 23433: 23429: 23422: 23408: 23404: 23388: 23384: 23382: 23372: 23368: 23361: 23350: 23323: 23320: 23319: 23292: 23289: 23288: 23271: 23260: 23250: 23246: 23242: 23232: 23228: 23226: 23223: 23222: 23206: 23203: 23202: 23182: 23178: 23176: 23173: 23172: 23156: 23153: 23152: 23136: 23133: 23132: 23114: 23091: 23088: 23087: 23067: 23064: 23063: 23046: 23042: 23040: 23037: 23036: 23017: 23000: 22996: 22995: 22991: 22990: 22981: 22977: 22975: 22972: 22971: 22954: 22950: 22929: 22925: 22923: 22920: 22919: 22903: 22900: 22899: 22879: 22876: 22875: 22824: 22814: 22810: 22806: 22805: 22792: 22790: 22785: 22783: 22782: 22773: 22769: 22767: 22764: 22763: 22735: 22732: 22731: 22714: 22710: 22708: 22705: 22704: 22681: 22677: 22676: 22672: 22660: 22645: 22641: 22640: 22636: 22631: 22628: 22627: 22605: 22601: 22599: 22596: 22595: 22578: 22574: 22569: 22566: 22565: 22548: 22544: 22535: 22531: 22517: 22513: 22512: 22508: 22503: 22500: 22499: 22472: 22468: 22467: 22463: 22437: 22433: 22432: 22428: 22424: 22420: 22400: 22396: 22387: 22383: 22366: 22362: 22361: 22357: 22353: 22349: 22336: 22334: 22329: 22327: 22326: 22314: 22310: 22308: 22305: 22304: 22286: 22283: 22282: 22265: 22261: 22259: 22256: 22255: 22231: 22227: 22225: 22222: 22221: 22196: 22192: 22183: 22179: 22170: 22166: 22165: 22161: 22149: 22145: 22143: 22140: 22139: 22115: 22112: 22111: 22094: 22090: 22081: 22077: 22075: 22072: 22071: 22047: 22043: 22042: 22038: 22014: 22009: 22008: 21999: 21995: 21994: 21990: 21977: 21975: 21970: 21968: 21967: 21958: 21954: 21952: 21949: 21948: 21928: 21923: 21922: 21907: 21897: 21893: 21889: 21888: 21879: 21875: 21873: 21870: 21869: 21850: 21846: 21845: 21841: 21829: 21812: 21810: 21805: 21803: 21802: 21791: 21787: 21786: 21782: 21777: 21774: 21773: 21756: 21752: 21744: 21741: 21740: 21723: 21719: 21706: 21704: 21699: 21697: 21696: 21688: 21685: 21684: 21667: 21663: 21661: 21658: 21657: 21643: 21642: 21634: 21630: 21629: 21625: 21613: 21601: 21595: 21591: 21582: 21581: 21573: 21569: 21568: 21564: 21552: 21540: 21534: 21530: 21521: 21518: 21512: 21508: 21501: 21495: 21491: 21487: 21485: 21482: 21481: 21458: 21448: 21444: 21440: 21439: 21430: 21426: 21424: 21421: 21420: 21404: 21401: 21400: 21378: 21374: 21372: 21369: 21368: 21342: 21338: 21314: 21310: 21303: 21299: 21286: 21284: 21279: 21277: 21276: 21267: 21263: 21261: 21258: 21257: 21241: 21238: 21237: 21173: 21171: 21166: 21164: 21163: 21134: 21131: 21130: 21108: 21105: 21104: 21102: 21100: 21080: 21077: 21076: 21043: 21039: 21038: 21034: 21022: 21018: 21017: 21013: 21011: 21008: 21007: 20988: 20976: 20963: 20958: 20957: 20955: 20952: 20951: 20932: 20930: 20927: 20926: 20919: 20911: 20864: 20860: 20859: 20855: 20843: 20839: 20838: 20834: 20832: 20829: 20828: 20797: 20793: 20792: 20788: 20783: 20780: 20779: 20763: 20760: 20759: 20742: 20738: 20736: 20733: 20732: 20725: 20707: 20703: 20701: 20698: 20697: 20675: 20671: 20669: 20666: 20665: 20660:is a Hausdorff 20645: 20633: 20627: 20624: 20623: 20620:The lemma above 20617: 20597: 20594: 20593: 20529: 20526: 20525: 20469: 20465: 20463: 20460: 20459: 20394: 20390: 20388: 20385: 20384: 20352: 20348: 20333: 20307: 20303: 20302: 20298: 20297: 20282: 20262: 20258: 20240: 20236: 20235: 20231: 20230: 20215: 20190: 20186: 20168: 20164: 20163: 20159: 20155: 20151: 20150: 20135: 20120: 20116: 20112: 20108: 20104: 20103: 20094: 20090: 20071: 20069: 20064: 20062: 20061: 20048: 20044: 20040: 20035: 20032: 20031: 19952: 19949: 19948: 19932: 19930: 19927: 19926: 19866: 19862: 19858: 19853: 19850: 19849: 19833: 19830: 19829: 19793: 19791: 19786: 19784: 19783: 19760: 19757: 19756: 19740: 19732: 19724: 19716: 19713: 19712: 19693: 19685: 19683: 19680: 19679: 19626: 19622: 19620: 19617: 19616: 19575: 19555: 19551: 19550: 19546: 19545: 19527: 19523: 19521: 19518: 19517: 19479: 19459: 19455: 19454: 19450: 19449: 19431: 19427: 19425: 19422: 19421: 19396: 19393: 19392: 19361: 19357: 19339: 19335: 19334: 19330: 19317: 19315: 19310: 19308: 19307: 19298: 19294: 19292: 19289: 19288: 19272: 19264: 19243: 19233: 19229: 19225: 19224: 19215: 19211: 19209: 19206: 19205: 19141: 19138: 19137: 19135: 19084: 19081: 19080: 19064: 19062: 19059: 19058: 19011: 19007: 19005: 19002: 19001: 18951: 18947: 18945: 18942: 18941: 18927: 18926: 18921: 18918: 18900: 18896: 18891: 18885: 18884: 18878: 18874: 18869: 18866: 18854: 18831: 18827: 18826: 18822: 18821: 18816: 18810: 18809: 18794: 18790: 18774: 18772: 18767: 18765: 18764: 18741: 18737: 18736: 18732: 18726: 18714: 18694: 18690: 18686: 18682: 18681: 18676: 18670: 18669: 18664: 18643: 18623: 18619: 18618: 18614: 18613: 18595: 18591: 18586: 18583: 18562: 18537: 18533: 18532: 18528: 18524: 18520: 18519: 18514: 18508: 18507: 18502: 18499: 18484: 18480: 18469: 18459: 18457: 18452: 18450: 18449: 18429: 18425: 18424: 18420: 18413: 18411: 18408: 18407: 18355: 18352: 18351: 18296: 18292: 18291: 18287: 18282: 18279: 18278: 18259: 18257: 18254: 18253: 18212: 18208: 18206: 18203: 18202: 18186: 18183: 18182: 18149: 18147: 18142: 18140: 18139: 18122: 18119: 18118: 18102: 18099: 18098: 18082: 18074: 18066: 18063: 18062: 18013: 18010: 18009: 18007: 17956: 17952: 17948: and  17946: 17900: 17896: 17862: 17858: 17824: 17820: 17818: 17815: 17814: 17796: 17794: 17791: 17790: 17771: 17768: 17767: 17741: and  17739: 17716: 17713: 17712: 17687: 17684: 17683: 17667: 17665: 17662: 17661: 17620: 17616: 17614: 17611: 17610: 17590: 17585: 17584: 17582: 17579: 17578: 17555: 17551: 17549: 17546: 17545: 17519: 17499: 17495: 17494: 17490: 17489: 17476: 17474: 17469: 17467: 17466: 17448: 17444: 17442: 17439: 17438: 17422: 17419: 17418: 17401: 17397: 17395: 17392: 17391: 17374: 17350: 17346: 17344: 17341: 17340: 17315: 17312: 17311: 17278: 17275: 17274: 17258: 17255: 17254: 17238: 17235: 17234: 17214: 17210: 17202: 17199: 17198: 17178: 17173: 17172: 17170: 17167: 17166: 17150: 17147: 17146: 17129: 17125: 17123: 17120: 17119: 17096: 17086: 17082: 17078: 17077: 17068: 17064: 17062: 17059: 17058: 17041: 17036: 17035: 17027: 17024: 17023: 17016: 17008: 16991: 16988: 16987: 16971: 16959: 16946: 16941: 16940: 16938: 16935: 16934: 16918: 16916: 16913: 16912: 16896: 16894: 16891: 16890: 16874: 16872: 16869: 16868: 16852: 16850: 16847: 16846: 16830: 16827: 16826: 16809: 16805: 16803: 16800: 16799: 16792: 16774: 16769: 16768: 16766: 16763: 16762: 16745: 16741: 16739: 16736: 16735: 16714: 16711: 16710: 16676: 16673: 16672: 16653: 16650: 16649: 16633: 16630: 16629: 16597: 16593: 16575: 16571: 16569: 16566: 16565: 16549: 16546: 16545: 16507: 16487: 16483: 16482: 16478: 16477: 16475: 16472: 16471: 16446: 16443: 16442: 16408: 16405: 16404: 16384: 16380: 16372: 16369: 16368: 16349: 16346: 16345: 16328: 16324: 16322: 16319: 16318: 16295: 16285: 16281: 16277: 16276: 16274: 16271: 16270: 16253: 16249: 16241: 16238: 16237: 16212: 16208: 16206: 16203: 16202: 16159: 16155: 16148: 16144: 16131: 16129: 16124: 16122: 16121: 16112: 16108: 16106: 16103: 16102: 16083: 16080: 16079: 16053: 16050: 16049: 16027: 16024: 16023: 15997: 15993: 15985: 15982: 15981: 15965: 15957: 15954: 15953: 15931: 15927: 15903: 15898: 15897: 15890: 15886: 15875: 15871: 15870: 15866: 15864: 15861: 15860: 15857: 15841: 15838: 15837: 15817: 15812: 15811: 15809: 15806: 15805: 15788: 15784: 15775: 15771: 15760: 15756: 15755: 15751: 15749: 15746: 15745: 15726: 15724: 15721: 15720: 15703: 15698: 15697: 15689: 15677: 15671: 15668: 15667: 15649: 15648: 15642: 15641: 15627: 15625: 15620: 15617: 15616: 15602: 15600: 15594: 15590: 15583: 15582: 15569: 15567: 15562: 15560: 15559: 15550: 15546: 15540: 15533: 15529: 15517: 15504: 15503: 15497: 15496: 15482: 15476: 15472: 15460: 15456: 15437: 15425: 15406: 15396: 15392: 15388: 15387: 15381: 15380: 15371: 15370: 15364: 15363: 15349: 15343: 15339: 15302: 15297: 15296: 15256: 15255: 15246: 15245: 15239: 15238: 15227: 15210: 15198: 15172: 15167: 15166: 15124: 15123: 15112: 15110: 15105: 15103: 15102: 15097: 15089: 15085: 15084: 15080: 15076: 15074: 15071: 15070: 15067:the lemma below 15050: 15038: 15025: 15020: 15019: 15017: 15014: 15013: 14996: 14992: 14990: 14987: 14986: 14952: 14948: 14947: 14943: 14926: 14923: 14922: 14902: 14898: 14890: 14873: 14871: 14868: 14867: 14843: 14826: 14814: 14792: 14788: 14784: 14780: 14776: 14752: 14748: 14743: 14742: 14738: 14734: 14730: 14702: 14698: 14693: 14692: 14688: 14680: 14663: 14655: 14651: 14646: 14644: 14641: 14640: 14615: 14598: 14586: 14579: 14576: 14575: 14555: 14552: 14551: 14518: 14514: 14509: 14496: 14494: 14489: 14487: 14486: 14477: 14473: 14470: 14467: 14466: 14444: 14441: 14440: 14417: 14413: 14411: 14408: 14407: 14387: 14383: 14375: 14372: 14371: 14348: 14344: 14342: 14339: 14338: 14316: 14312: 14311: 14307: 14290: 14287: 14286: 14240: 14238: 14237: 14232: 14229: 14228: 14208: 14204: 14196: 14193: 14192: 14170: 14167: 14166: 14141: 14138: 14137: 14118: 14114: 14113: 14109: 14096: 14092: 14088: 14082: 14080: 14079: 14074: 14071: 14070: 14048: 14044: 14043: 14039: 14027: 14014: 14010: 14008: 14005: 14004: 13984: 13981: 13980: 13964: 13956: 13944: 13931: 13929: 13928: 13923: 13920: 13919: 13894: 13891: 13890: 13861: 13856: 13855: 13847: 13835: 13829: 13826: 13825: 13805: 13801: 13799: 13796: 13795: 13772: 13768: 13767: 13763: 13751: 13738: 13734: 13732: 13729: 13728: 13703: 13699: 13698: 13694: 13682: 13676: 13673: 13672: 13650: 13646: 13616: 13612: 13605: 13601: 13586: 13585: 13574: 13557: 13545: 13526: 13522: 13510: 13509: 13496: 13494: 13489: 13487: 13486: 13477: 13473: 13471: 13468: 13467: 13440: 13436: 13428: 13420: 13412: 13390: 13388: 13383: 13381: 13380: 13369: 13365: 13364: 13360: 13358: 13355: 13354: 13331: 13327: 13326: 13322: 13310: 13304: 13301: 13300: 13290: 13274: 13271: 13270: 13253: 13249: 13241: 13238: 13237: 13217: 13214: 13213: 13194: 13191: 13190: 13174: 13171: 13170: 13144: 13127: 13115: 13108: 13105: 13104: 13087: 13083: 13075: 13072: 13071: 13051: 13047: 13038: 13034: 13032: 13029: 13028: 13008: 13004: 12995: 12991: 12982: 12978: 12976: 12973: 12972: 12951: 12947: 12938: 12934: 12932: 12929: 12928: 12905: 12901: 12892: 12888: 12873: 12872: 12861: 12844: 12832: 12813: 12809: 12797: 12796: 12783: 12781: 12776: 12774: 12773: 12764: 12760: 12758: 12755: 12754: 12753:was defined as 12737: 12733: 12731: 12728: 12727: 12707: 12703: 12694: 12690: 12688: 12685: 12684: 12681:weak-* topology 12663: 12659: 12657: 12654: 12653: 12630: 12626: 12618: 12615: 12614: 12591: 12587: 12585: 12582: 12581: 12556: 12553: 12552: 12533: 12530: 12529: 12506: 12503: 12502: 12486: 12483: 12482: 12466: 12463: 12462: 12445: 12441: 12439: 12436: 12435: 12415: 12412: 12411: 12388: 12385: 12384: 12383:(TVS) and that 12364: 12361: 12360: 12357: 12339: 12335: 12333: 12330: 12329: 12326:weak-* topology 12298: 12294: 12293: 12289: 12277: 12271: 12268: 12267: 12240: 12236: 12234: 12231: 12230: 12207: 12203: 12195: 12192: 12191: 12168: 12164: 12162: 12159: 12158: 12134: 12131: 12130: 12108: 12107: 12096: 12079: 12067: 12048: 12044: 12032: 12031: 12018: 12016: 12011: 12009: 12008: 11999: 11995: 11993: 11990: 11989: 11969: 11967: 11964: 11963: 11947: 11944: 11943: 11914: 11906: 11898: 11876: 11874: 11869: 11867: 11866: 11857: 11853: 11851: 11848: 11847: 11828: 11825: 11824: 11808: 11800: 11795: 11790: 11782: 11780: 11777: 11776: 11760: 11758: 11755: 11754: 11753:over the field 11738: 11735: 11734: 11718: 11715: 11714: 11710: 11688: 11685: 11684: 11677: 11656: 11653: 11652: 11625: 11623: 11618: 11616: 11615: 11607: 11604: 11603: 11584: 11571: 11569: 11564: 11562: 11561: 11553: 11550: 11549: 11526: 11509: 11497: 11490: 11487: 11486: 11463: 11446: 11434: 11427: 11424: 11423: 11422:(and replacing 11398: 11390: 11382: 11371: 11368: 11367: 11350: 11346: 11344: 11341: 11340: 11283: 11281: 11276: 11274: 11273: 11256: 11253: 11252: 11230: 11227: 11226: 11209: 11205: 11184: 11172: 11155: 11143: 11137: 11134: 11133: 11115: 11112: 11111: 11086: 11069: 11057: 11051: 11048: 11047: 11025: 11013: 11007: 11004: 11003: 10986: 10982: 10970: 10964: 10961: 10960: 10935: 10932: 10931: 10915: 10913: 10910: 10909: 10892: 10888: 10886: 10883: 10882: 10863: 10851: 10845: 10842: 10841: 10824: 10820: 10808: 10802: 10799: 10798: 10777: 10773: 10761: 10755: 10752: 10751: 10735: 10733: 10730: 10729: 10709: 10700: 10696: 10694: 10691: 10690: 10666: 10663: 10662: 10637: 10634: 10633: 10617: 10614: 10613: 10597: 10594: 10593: 10570: 10560: 10556: 10552: 10551: 10549: 10546: 10545: 10523: 10521: 10518: 10517: 10479: 10459: 10455: 10454: 10450: 10449: 10447: 10444: 10443: 10418: 10415: 10414: 10384: 10364: 10360: 10359: 10355: 10354: 10339: 10324: 10320: 10316: 10310: 10308: 10307: 10303: 10299: 10298: 10285: 10283: 10278: 10276: 10275: 10256: 10246: 10242: 10238: 10237: 10233: 10227: 10225: 10224: 10219: 10216: 10215: 10173: 10171: 10170: 10164: 10161: 10160: 10138: 10136: 10133: 10132: 10106: 10104: 10103: 10081: 10071: 10067: 10063: 10062: 10058: 10052: 10050: 10049: 10044: 10041: 10040: 10015: 10012: 10011: 9975: 9965: 9961: 9957: 9956: 9954: 9951: 9950: 9931: 9919: 9906: 9901: 9900: 9898: 9895: 9894: 9877: 9873: 9871: 9868: 9867: 9851: 9848: 9847: 9821: 9811: 9807: 9803: 9802: 9800: 9797: 9796: 9777: 9774: 9773: 9749: 9737: 9724: 9719: 9718: 9716: 9713: 9712: 9670: 9666: 9658: 9655: 9654: 9618: 9614: 9610: 9605: 9602: 9601: 9563: 9548: 9544: 9540: 9536: 9532: 9531: 9529: 9526: 9525: 9506: 9503: 9502: 9479: 9475: 9473: 9470: 9469: 9441: 9438: 9437: 9417: 9413: 9394: 9392: 9387: 9385: 9384: 9369: 9354: 9350: 9346: 9342: 9338: 9337: 9324: 9320: 9316: 9311: 9308: 9307: 9290: 9286: 9284: 9281: 9280: 9263: 9252: 9237: 9233: 9229: 9225: 9221: 9218: 9215: 9214: 9191: 9176: 9172: 9168: 9164: 9160: 9159: 9157: 9154: 9153: 9121: 9117: 9109: 9106: 9105: 9089: 9086: 9085: 9068: 9064: 9062: 9059: 9058: 9030: 9027: 9026: 8993: 8989: 8987: 8984: 8983: 8966: 8962: 8960: 8957: 8956: 8939: 8935: 8933: 8930: 8929: 8907: 8904: 8903: 8886: 8882: 8880: 8877: 8876: 8851: 8849: 8846: 8845: 8826: 8823: 8822: 8787: 8784: 8783: 8751: 8747: 8745: 8742: 8741: 8725: 8722: 8721: 8698: 8688: 8684: 8680: 8679: 8670: 8666: 8664: 8661: 8660: 8633: 8632: 8615: 8609: 8608: 8607: 8594: 8588: 8587: 8586: 8582: 8578: 8576: 8568: 8560: 8559: 8547: 8542: 8541: 8532: 8527: 8526: 8524: 8516: 8510: 8505: 8504: 8501: 8490: 8488: 8485: 8484: 8466: 8465: 8442: 8432: 8428: 8424: 8423: 8407: 8397: 8393: 8389: 8388: 8387: 8383: 8381: 8373: 8361: 8351: 8347: 8343: 8342: 8337: 8336: 8331: 8313: 8296: 8284: 8279: 8275: 8273: 8265: 8260: 8248: 8241: 8230: 8228: 8225: 8224: 8182: 8179: 8178: 8162: 8159: 8158: 8134: 8131: 8130: 8103: 8100: 8099: 8080: 8076: 8075: 8071: 8054: 8051: 8050: 8033: 8028: 8027: 8019: 8016: 8015: 7996: 7992: 7991: 7987: 7975: 7969: 7966: 7965: 7945: 7940: 7939: 7931: 7919: 7904: 7900: 7899: 7895: 7883: 7877: 7874: 7873: 7850: 7840: 7836: 7832: 7831: 7829: 7826: 7825: 7805: 7803: 7802: 7797: 7794: 7793: 7777: 7774: 7773: 7757: 7754: 7753: 7737: 7734: 7733: 7714: 7711: 7710: 7694: 7691: 7690: 7651: 7649: 7644: 7642: 7641: 7623: 7621: 7620: 7615: 7612: 7611: 7595: 7581: 7578: 7577: 7560: 7558: 7557: 7552: 7549: 7548: 7531: 7527: 7512: 7502: 7498: 7494: 7493: 7484: 7480: 7474: 7468: 7460: 7448: 7435: 7433: 7432: 7427: 7424: 7423: 7401: 7398: 7397: 7392: 7391: 7351: 7346: 7345: 7343: 7340: 7339: 7323: 7311: 7305: 7302: 7301: 7285: 7273: 7260: 7255: 7254: 7252: 7249: 7248: 7219: 7209: 7205: 7201: 7200: 7198: 7195: 7194: 7177: 7173: 7160: 7158: 7153: 7151: 7150: 7133: 7130: 7129: 7113: 7099: 7096: 7095: 7079: 7067: 7061: 7058: 7057: 7034: 7024: 7020: 7016: 7015: 7006: 7002: 7000: 6997: 6996: 6978: 6975: 6974: 6945: 6941: 6913: 6911: 6906: 6904: 6903: 6894: 6890: 6888: 6885: 6884: 6881:tuple of values 6864: 6861: 6860: 6843: 6838: 6837: 6835: 6832: 6831: 6815: 6801: 6798: 6797: 6779: 6776: 6775: 6751: 6743: 6740: 6739: 6722: 6717: 6716: 6714: 6711: 6710: 6687: 6677: 6673: 6669: 6668: 6659: 6655: 6653: 6650: 6649: 6630: 6627: 6626: 6610: 6598: 6592: 6589: 6588: 6556: 6553: 6552: 6504: 6502: 6497: 6495: 6494: 6483: 6480: 6479: 6463: 6460: 6459: 6443: 6440: 6439: 6414: 6406: 6398: 6376: 6374: 6369: 6367: 6366: 6357: 6353: 6351: 6348: 6347: 6329: 6326: 6325: 6324:For every real 6318: 6288: 6284: 6283: 6279: 6267: 6261: 6258: 6257: 6240: 6236: 6234: 6231: 6230: 6196: 6184: 6178: 6175: 6174: 6155: 6147: 6144: 6143: 6126: 6121: 6120: 6118: 6115: 6114: 6076: 6065:locally compact 6057:strong topology 6053:locally compact 6024: 6020: 6018: 6015: 6014: 5997: 5993: 5991: 5988: 5987: 5967: 5964: 5963: 5946: 5942: 5940: 5937: 5936: 5933: 5929:weak-* topology 5907: 5903: 5901: 5898: 5897: 5881: 5878: 5877: 5873: 5864:usual dual norm 5847: 5844: 5843: 5826: 5822: 5820: 5817: 5816: 5800: 5797: 5796: 5780: 5777: 5776: 5760: 5757: 5756: 5736: 5733: 5732: 5729: 5711: 5708: 5707: 5689: 5685: 5683: 5680: 5679: 5643: 5639: 5638: 5634: 5622: 5618: 5617: 5613: 5611: 5608: 5607: 5590: 5586: 5584: 5581: 5580: 5543: 5539: 5538: 5534: 5522: 5518: 5517: 5513: 5511: 5508: 5507: 5487: 5483: 5481: 5478: 5477: 5449: 5445: 5444: 5440: 5435: 5432: 5431: 5414: 5410: 5408: 5405: 5404: 5382: 5378: 5376: 5373: 5372: 5344: 5340: 5339: 5335: 5330: 5327: 5326: 5309: 5305: 5303: 5300: 5299: 5263: 5259: 5258: 5254: 5242: 5238: 5237: 5233: 5231: 5228: 5227: 5210: 5206: 5204: 5201: 5200: 5183: 5179: 5177: 5174: 5173: 5145: 5141: 5140: 5136: 5131: 5128: 5127: 5107: 5103: 5101: 5098: 5097: 5069: 5065: 5064: 5060: 5055: 5052: 5051: 5034: 5030: 5028: 5025: 5024: 4993: 4989: 4988: 4984: 4979: 4976: 4975: 4958: 4954: 4952: 4949: 4948: 4945:totally bounded 4916: 4912: 4911: 4907: 4902: 4899: 4898: 4870: 4866: 4865: 4861: 4856: 4853: 4852: 4835: 4831: 4829: 4826: 4825: 4805: 4801: 4799: 4796: 4795: 4776: 4773: 4772: 4752: 4748: 4746: 4743: 4742: 4710: 4706: 4705: 4701: 4696: 4693: 4692: 4675: 4671: 4669: 4666: 4665: 4642: 4638: 4636: 4633: 4632: 4613: 4610: 4609: 4589: 4586: 4585: 4565: 4561: 4553: 4550: 4549: 4546:bipolar theorem 4525: 4521: 4519: 4516: 4515: 4512:totally bounded 4483: 4479: 4478: 4474: 4469: 4466: 4465: 4448: 4444: 4442: 4439: 4438: 4418: 4414: 4412: 4409: 4408: 4388: 4384: 4382: 4379: 4378: 4361: 4357: 4348: 4344: 4335: 4331: 4322: 4318: 4309: 4305: 4303: 4300: 4299: 4279: 4275: 4267: 4264: 4263: 4246: 4242: 4234: 4231: 4230: 4210: 4207: 4206: 4190: 4187: 4186: 4170: 4167: 4166: 4140: 4123: 4111: 4104: 4101: 4100: 4083: 4079: 4071: 4068: 4067: 4046: 4042: 4033: 4029: 4026: 4023: 4022: 4005: 4001: 3992: 3988: 3986: 3983: 3982: 3946: 3942: 3941: 3937: 3925: 3921: 3920: 3916: 3914: 3911: 3910: 3877: 3873: 3872: 3868: 3856: 3852: 3851: 3847: 3845: 3842: 3841: 3824: 3820: 3818: 3815: 3814: 3797: 3793: 3784: 3780: 3778: 3775: 3774: 3750: 3733: 3731: 3728: 3727: 3702: 3699: 3698: 3668: 3660: 3652: 3645: 3641: 3639: 3636: 3635: 3619: 3617: 3614: 3613: 3587: 3583: 3581: 3578: 3577: 3561: 3559: 3556: 3555: 3514: 3510: 3508: 3505: 3504: 3479: 3476: 3475: 3453: 3436: 3434: 3431: 3430: 3410: 3406: 3398: 3395: 3394: 3358: 3354: 3353: 3349: 3337: 3333: 3332: 3328: 3326: 3323: 3322: 3306: 3303: 3302: 3285: 3281: 3279: 3276: 3275: 3252: 3242: 3238: 3234: 3233: 3224: 3220: 3218: 3215: 3214: 3197: 3193: 3185: 3182: 3181: 3161: 3157: 3155: 3152: 3151: 3123: 3119: 3118: 3114: 3109: 3106: 3105: 3088: 3084: 3082: 3079: 3078: 3055: 3051: 3036: 3032: 3030: 3027: 3026: 3003: 2999: 2990: 2986: 2977: 2973: 2971: 2968: 2967: 2942: 2938: 2931: 2927: 2925: 2922: 2921: 2905: 2902: 2901: 2874: 2857: 2845: 2826: 2822: 2815: 2811: 2802: 2798: 2796: 2793: 2792: 2768: 2764: 2757: 2753: 2751: 2748: 2747: 2730: 2727: 2726: 2697: 2680: 2672: 2668: 2661: 2638: 2634: 2622: 2618: 2616: 2613: 2612: 2588: 2584: 2577: 2573: 2571: 2568: 2567: 2551: 2548: 2547: 2520: 2503: 2491: 2472: 2468: 2461: 2457: 2448: 2444: 2442: 2439: 2438: 2419: 2416: 2415: 2399: 2396: 2395: 2368: 2364: 2357: 2353: 2351: 2348: 2347: 2319: 2315: 2308: 2304: 2302: 2299: 2298: 2272: 2268: 2261: 2257: 2255: 2252: 2251: 2232: 2229: 2228: 2212: 2209: 2208: 2191: 2187: 2185: 2182: 2181: 2157: 2153: 2145: 2142: 2141: 2110: 2106: 2105: 2101: 2096: 2093: 2092: 2059: 2055: 2054: 2050: 2038: 2034: 2033: 2029: 2027: 2024: 2023: 2006: 2002: 2000: 1997: 1996: 1989:totally bounded 1952: 1948: 1947: 1943: 1931: 1927: 1926: 1922: 1920: 1917: 1916: 1883: 1879: 1878: 1874: 1862: 1858: 1857: 1853: 1851: 1848: 1847: 1810: 1806: 1805: 1801: 1789: 1785: 1784: 1780: 1778: 1775: 1774: 1738: 1734: 1733: 1729: 1717: 1713: 1712: 1708: 1706: 1703: 1702: 1664: 1660: 1659: 1655: 1650: 1647: 1646: 1644:weak-* topology 1626: 1622: 1620: 1617: 1616: 1582: 1580: 1577: 1576: 1574:complex numbers 1557: 1555: 1552: 1551: 1529: 1527: 1524: 1523: 1507: 1504: 1503: 1496: 1491: 1455: 1451: 1450: 1446: 1434: 1430: 1429: 1425: 1423: 1420: 1419: 1397: 1393: 1386: 1382: 1380: 1377: 1376: 1360: 1357: 1356: 1339: 1335: 1333: 1330: 1329: 1309: 1305: 1303: 1300: 1299: 1271: 1267: 1266: 1262: 1257: 1254: 1253: 1251:weak-* topology 1234: 1231: 1230: 1214: 1211: 1210: 1180: 1163: 1151: 1132: 1128: 1121: 1117: 1108: 1104: 1102: 1099: 1098: 1075: 1071: 1069: 1066: 1065: 1034: 1031: 1030: 1022: 1020:Alaoglu theorem 989: 986: 985: 962: 942: 938: 937: 933: 932: 930: 927: 926: 910: 907: 906: 890: 887: 886: 869: 865: 863: 860: 859: 833: 823: 819: 815: 814: 805: 801: 799: 796: 795: 775: 772: 771: 736: 732: 731: 727: 722: 719: 718: 701: 697: 695: 692: 691: 663: 659: 658: 654: 649: 646: 645: 628: 624: 622: 619: 618: 615:weak-* topology 597: 593: 584: 580: 578: 575: 574: 554: 550: 548: 545: 544: 539:(TVS) then its 520: 517: 516: 474: 470: 461: 457: 450: 446: 444: 441: 440: 404: 402: 397: 395: 394: 376: 372: 370: 367: 366: 350: 341: 337: 313: 309: 307: 304: 303: 281: 278: 277: 256: 252: 250: 247: 246: 230: 228: 225: 224: 208: 205: 204: 201: 187: 179:Alaoglu theorem 163:dual topologies 95: 92: 91: 88:weak-* topology 80: 31:(also known as 17: 12: 11: 5: 32266: 32256: 32255: 32250: 32245: 32240: 32223: 32222: 32220: 32219: 32208: 32205: 32204: 32202: 32201: 32196: 32191: 32186: 32184:Ultrabarrelled 32176: 32170: 32165: 32159: 32154: 32149: 32144: 32139: 32134: 32125: 32119: 32114: 32112:Quasi-complete 32109: 32107:Quasibarrelled 32104: 32099: 32094: 32089: 32084: 32079: 32074: 32069: 32064: 32059: 32054: 32049: 32048: 32047: 32037: 32032: 32027: 32022: 32017: 32012: 32007: 32002: 31997: 31987: 31982: 31972: 31967: 31962: 31956: 31954: 31950: 31949: 31947: 31946: 31936: 31931: 31926: 31921: 31916: 31906: 31900: 31898: 31897:Set operations 31894: 31893: 31891: 31890: 31885: 31880: 31875: 31870: 31865: 31860: 31852: 31844: 31839: 31834: 31829: 31824: 31819: 31814: 31809: 31804: 31798: 31796: 31792: 31791: 31789: 31788: 31783: 31778: 31773: 31768: 31767: 31766: 31761: 31756: 31746: 31741: 31740: 31739: 31734: 31729: 31724: 31719: 31714: 31709: 31699: 31698: 31697: 31686: 31684: 31680: 31679: 31677: 31676: 31671: 31670: 31669: 31659: 31653: 31644: 31639: 31634: 31632:Banach–Alaoglu 31629: 31627:Anderson–Kadec 31623: 31621: 31615: 31614: 31612: 31611: 31606: 31601: 31596: 31591: 31586: 31581: 31576: 31571: 31566: 31561: 31555: 31553: 31552:Basic concepts 31549: 31548: 31540: 31539: 31532: 31525: 31517: 31508: 31507: 31505: 31504: 31493: 31490: 31489: 31487: 31486: 31481: 31476: 31471: 31469:Choquet theory 31466: 31461: 31455: 31453: 31449: 31448: 31446: 31445: 31435: 31430: 31425: 31420: 31415: 31410: 31405: 31400: 31395: 31390: 31385: 31379: 31377: 31373: 31372: 31370: 31369: 31364: 31358: 31356: 31352: 31351: 31349: 31348: 31343: 31338: 31333: 31328: 31323: 31321:Banach algebra 31317: 31315: 31311: 31310: 31308: 31307: 31302: 31297: 31292: 31287: 31282: 31277: 31272: 31267: 31262: 31256: 31254: 31250: 31249: 31247: 31246: 31244:Banach–Alaoglu 31241: 31236: 31231: 31226: 31221: 31216: 31211: 31206: 31200: 31198: 31192: 31191: 31188: 31187: 31185: 31184: 31179: 31174: 31172:Locally convex 31169: 31155: 31150: 31144: 31142: 31138: 31137: 31135: 31134: 31129: 31124: 31119: 31114: 31109: 31104: 31099: 31094: 31089: 31083: 31077: 31073: 31072: 31056: 31055: 31048: 31041: 31033: 31024: 31023: 31021: 31020: 31014: 31012: 31011:Other concepts 31008: 31007: 31005: 31004: 30999: 30993: 30991: 30987: 30986: 30984: 30983: 30977: 30975: 30971: 30970: 30968: 30967: 30962: 30960:Banach–Alaoglu 30956: 30954: 30950: 30949: 30947: 30946: 30941: 30940: 30939: 30934: 30932:polar topology 30924: 30919: 30918: 30917: 30912: 30907: 30897: 30892: 30891: 30890: 30879: 30877: 30871: 30870: 30868: 30867: 30862: 30860:Polar topology 30857: 30852: 30847: 30842: 30837: 30832: 30826: 30824: 30823:Basic concepts 30820: 30819: 30813:and spaces of 30807: 30806: 30799: 30792: 30784: 30778: 30777: 30756: 30735: 30721: 30695: 30692: 30690: 30689: 30675: 30659: 30645: 30629: 30615: 30595: 30580: 30558: 30545:978-1584888666 30544: 30531: 30525: 30512: 30490: 30473: 30471: 30468: 30465: 30464: 30446:(2): 167–170. 30420: 30408: 30396: 30373: 30356: 30343: 30342: 30340: 30337: 30334: 30333: 30321: 30301: 30298: 30295: 30290: 30286: 30282: 30278: 30274: 30271: 30268: 30265: 30261: 30240: 30233: 30229: 30224: 30220: 30216: 30208: 30204: 30199: 30193: 30190: 30187: 30183: 30178: 30172: 30165: 30162: 30159: 30156: 30153: 30148: 30141: 30138: 30135: 30132: 30129: 30126: 30106: 30099: 30095: 30090: 30086: 30083: 30078: 30074: 30070: 30067: 30064: 30044: 30041: 30037: 30033: 30030: 30027: 30024: 30020: 29999: 29996: 29993: 29973: 29970: 29967: 29963: 29959: 29956: 29953: 29950: 29946: 29940: 29937: 29934: 29930: 29907: 29903: 29883: 29873: 29870: 29867: 29847: 29842: 29838: 29834: 29830: 29824: 29820: 29816: 29812: 29808: 29805: 29783: 29779: 29775: 29771: 29765: 29761: 29757: 29753: 29746: 29738: 29734: 29730: 29726: 29720: 29716: 29712: 29708: 29701: 29695: 29686:The inclusion 29675: 29672: 29669: 29666: 29646: 29643: 29638: 29634: 29613: 29610: 29607: 29604: 29584: 29581: 29576: 29572: 29549: 29546: 29543: 29538: 29533: 29529: 29525: 29501: 29497: 29474: 29470: 29447: 29443: 29416: 29412: 29399:(In fact, the 29387: 29384: 29361: 29357: 29330: 29326: 29322: 29302: 29297: 29293: 29289: 29284: 29280: 29276: 29254: 29250: 29246: 29241: 29237: 29214: 29210: 29206: 29203: 29200: 29180: 29173: 29169: 29164: 29158: 29155: 29152: 29148: 29144: 29137: 29133: 29128: 29120: 29116: 29112: 29107: 29103: 29098: 29092: 29089: 29086: 29082: 29078: 29071: 29067: 29062: 29056: 29053: 29050: 29046: 29038: 29034: 29030: 29025: 29021: 29016: 29012: 29007: 29003: 28999: 28978: 28972: 28968: 28964: 28959: 28955: 28951: 28946: 28942: 28937: 28930: 28926: 28921: 28917: 28896: 28893: 28890: 28887: 28866: 28845: 28823: 28817: 28812: 28808: 28804: 28800: 28797: 28794: 28791: 28786: 28782: 28777: 28773: 28753: 28750: 28747: 28744: 28741: 28738: 28735: 28732: 28715: 28714: 28706: 28705: 28693: 28690: 28687: 28684: 28664: 28661: 28656: 28652: 28631: 28628: 28623: 28619: 28598: 28595: 28590: 28586: 28565: 28562: 28559: 28556: 28536: 28533: 28530: 28510: 28507: 28504: 28501: 28481: 28478: 28475: 28472: 28469: 28466: 28463: 28460: 28457: 28452: 28448: 28427: 28407: 28387: 28384: 28381: 28378: 28356: 28352: 28348: 28343: 28339: 28316: 28312: 28308: 28303: 28299: 28272: 28268: 28241: 28238: 28235: 28230: 28225: 28221: 28217: 28196: 28184: 28180: 28163: 28150: 28145: 28141: 28117: 28111: 28108: 28105: 28101: 28078: 28074: 28053: 28049: 28044: 28038: 28035: 28032: 28029: 28026: 28022: 28018: 28013: 28006: 28002: 27996: 27993: 27990: 27986: 27980: 27974: 27970: 27965: 27961: 27941: 27929: 27925: 27902: 27898: 27877: 27873: 27867: 27864: 27861: 27858: 27855: 27851: 27847: 27842: 27835: 27831: 27825: 27822: 27819: 27815: 27809: 27801: 27791: 27787: 27782: 27759: 27755: 27749: 27746: 27743: 27739: 27735: 27728: 27724: 27719: 27702: 27677: 27673: 27668: 27662: 27659: 27656: 27652: 27623: 27619: 27614: 27604:Because every 27597: 27584: 27562: 27558: 27537: 27534: 27531: 27528: 27525: 27505: 27483: 27480: 27477: 27473: 27452: 27449: 27446: 27443: 27440: 27430: 27416: 27396: 27376: 27354: 27350: 27346: 27343: 27340: 27337: 27326: 27309: 27306: 27303: 27299: 27276: 27273: 27270: 27266: 27245: 27240: 27236: 27213: 27210: 27207: 27203: 27199: 27194: 27191: 27188: 27184: 27161: 27157: 27134: 27131: 27128: 27124: 27101: 27096: 27093: 27089: 27085: 27082: 27079: 27076: 27072: 27066: 27063: 27060: 27056: 27049: 27041: 27037: 27033: 27030: 27027: 27024: 27021: 27018: 27013: 26992: 26980: 26977: 26974: 26970: 26949: 26946: 26943: 26940: 26937: 26917: 26895: 26891: 26887: 26884: 26881: 26878: 26858: 26855: 26852: 26849: 26846: 26826: 26823: 26820: 26817: 26814: 26811: 26791: 26771: 26751: 26731: 26709: 26705: 26684: 26674: 26660: 26638: 26633: 26630: 26626: 26622: 26619: 26616: 26613: 26609: 26603: 26600: 26597: 26593: 26586: 26578: 26574: 26570: 26567: 26562: 26557: 26552: 26548: 26525: 26521: 26517: 26512: 26508: 26487: 26467: 26451: 26449:, etc.) space. 26428: 26424: 26403: 26399: 26394: 26390: 26387: 26382: 26378: 26373: 26369: 26366: 26361: 26357: 26352: 26325: 26321: 26294: 26290: 26267: 26263: 26259: 26254: 26250: 26232: 26231: 26229: 26226: 26225: 26224: 26218: 26212: 26203: 26197:James' theorem 26194: 26189: 26183: 26178: 26173: 26168: 26161: 26158: 26150:compact spaces 26125:is not empty. 26114: 26107: 26102: 26099: 26095: 26091: 26088: 26064: 26059: 26054: 26051: 26048: 26045: 26042: 26039: 26036: 26014: 26010: 25996: 25982: 25973:is a cover of 25960: 25948: 25940: 25918: 25898: 25893: 25889: 25865: 25845: 25824: 25821: 25817: 25782: 25766: 25730: 25727: 25726: 25725: 25709: 25706: 25703: 25700: 25676: 25673: 25670: 25667: 25664: 25636: 25633: 25630: 25627: 25616: 25609: 25600: 25597: 25596: 25595: 25583: 25580: 25577: 25572: 25568: 25547: 25544: 25541: 25521: 25516: 25512: 25508: 25505: 25502: 25499: 25494: 25490: 25486: 25483: 25474: 25471: 25467: 25464: 25461: 25458: 25455: 25452: 25448: 25441: 25437: 25432: 25428: 25408: 25405: 25402: 25380: 25375: 25372: 25369: 25364: 25357: 25353: 25348: 25344: 25322: 25319: 25299: 25296: 25291: 25287: 25283: 25278: 25274: 25253: 25250: 25245: 25242: 25237: 25232: 25229: 25207: 25187: 25184: 25181: 25178: 25175: 25155: 25152: 25149: 25144: 25140: 25116: 25092: 25072: 25048: 25037: 25034:James' theorem 25020: 25014: 25010: 25006: 25003: 24999: 24995: 24976: 24970: 24954: 24950: 24927: 24923: 24892: 24888: 24863: 24851: 24848: 24846: 24843: 24830: 24811: 24806: 24802: 24798: 24795: 24792: 24789: 24786: 24764: 24758: 24754: 24733: 24730: 24727: 24724: 24713: 24709: 24705: 24702: 24699: 24696: 24693: 24672: 24668: 24665: 24662: 24659: 24639: 24636: 24631: in  24625: 24621: 24617: 24612: 24609: 24606: 24601: 24597: 24594: 24591: 24586: 24582: 24577: 24570: 24566: 24545: 24542: 24539: 24519: 24497: 24494: 24491: 24486: 24482: 24479: 24476: 24471: 24467: 24462: 24440: 24437: 24432: 24429: 24426: 24421: 24416: 24412: 24408: 24403: 24398: 24394: 24364: 24358: 24354: 24327: 24322: 24319: 24316: 24312: 24308: 24305: 24302: 24299: 24296: 24293: 24291: 24288: 24284: 24281: 24278: 24275: 24272: 24269: 24266: 24262: 24257: 24251: 24247: 24243: 24239: 24236: 24233: 24232: 24212: 24192: 24187: 24181: 24177: 24156: 24151: 24147: 24123: 24097: 24093: 24066: 24062: 24056: 24053: 24050: 24046: 24042: 24039: 24019: 24016: 24013: 24010: 24007: 24003: 23999: 23995: 23991: 23987: 23983: 23980: 23977: 23974: 23969: 23965: 23944: 23941: 23938: 23935: 23921: 23900: 23896: 23892: 23887: 23883: 23879: 23876: 23854: 23850: 23822: 23802: 23799: 23779: 23759: 23756: 23736: 23733: 23711: 23707: 23703: 23700: 23697: 23692: 23688: 23684: 23679: 23675: 23654: 23651: 23630: 23626: 23621: 23617: 23613: 23610: 23571: 23551: 23548: 23526: 23522: 23501: 23498: 23495: 23492: 23489: 23465: 23461: 23456: 23452: 23448: 23445: 23442: 23439: 23436: 23432: 23428: 23425: 23420: 23416: 23411: 23407: 23403: 23400: 23397: 23394: 23391: 23387: 23378: 23375: 23371: 23364: 23359: 23356: 23353: 23349: 23345: 23342: 23339: 23336: 23333: 23330: 23327: 23308: 23305: 23302: 23299: 23296: 23274: 23269: 23266: 23263: 23258: 23253: 23249: 23245: 23240: 23235: 23231: 23210: 23190: 23185: 23181: 23160: 23140: 23113: 23110: 23098: 23095: 23071: 23049: 23045: 23025: 23020: 23015: 23011: 23008: 23003: 22999: 22994: 22989: 22984: 22980: 22957: 22953: 22949: 22946: 22943: 22940: 22937: 22932: 22928: 22907: 22883: 22859: 22856: 22853: 22850: 22847: 22844: 22841: 22838: 22833: 22830: 22827: 22822: 22817: 22813: 22809: 22788: 22776: 22772: 22743: 22740: 22717: 22713: 22684: 22680: 22675: 22669: 22666: 22663: 22659: 22655: 22648: 22644: 22639: 22635: 22613: 22608: 22604: 22581: 22577: 22573: 22551: 22547: 22543: 22538: 22534: 22530: 22527: 22520: 22516: 22511: 22507: 22487: 22483: 22475: 22471: 22466: 22462: 22459: 22456: 22450: 22440: 22436: 22431: 22427: 22423: 22416: 22409: 22403: 22399: 22395: 22390: 22386: 22379: 22369: 22365: 22360: 22356: 22352: 22332: 22322: 22317: 22313: 22293: 22290: 22268: 22264: 22234: 22230: 22209: 22205: 22199: 22195: 22191: 22186: 22182: 22178: 22173: 22169: 22164: 22160: 22157: 22152: 22148: 22128: 22125: 22122: 22119: 22110:and for every 22097: 22093: 22089: 22084: 22080: 22058: 22050: 22046: 22041: 22037: 22034: 22031: 22025: 22017: 22012: 22007: 22002: 21998: 21993: 21973: 21961: 21957: 21936: 21931: 21926: 21921: 21916: 21913: 21910: 21905: 21900: 21896: 21892: 21887: 21882: 21878: 21853: 21849: 21844: 21838: 21835: 21832: 21828: 21808: 21794: 21790: 21785: 21781: 21759: 21755: 21751: 21748: 21726: 21722: 21702: 21692: 21670: 21666: 21637: 21633: 21628: 21622: 21619: 21616: 21612: 21608: 21605: 21603: 21598: 21594: 21590: 21587: 21585: 21583: 21576: 21572: 21567: 21561: 21558: 21555: 21551: 21547: 21544: 21542: 21537: 21533: 21529: 21526: 21524: 21522: 21515: 21511: 21507: 21504: 21502: 21498: 21494: 21490: 21489: 21467: 21464: 21461: 21456: 21451: 21447: 21443: 21438: 21433: 21429: 21408: 21386: 21381: 21377: 21365:weak-* compact 21351: 21345: 21341: 21337: 21334: 21331: 21328: 21325: 21322: 21317: 21313: 21309: 21306: 21302: 21282: 21270: 21266: 21245: 21221: 21218: 21215: 21212: 21209: 21206: 21203: 21200: 21197: 21194: 21191: 21188: 21169: 21159: 21156: 21153: 21150: 21147: 21144: 21141: 21138: 21118: 21115: 21112: 21097: 21096: 21084: 21063: 21058: 21054: 21051: 21046: 21042: 21037: 21033: 21030: 21025: 21021: 21016: 20995: 20991: 20985: 20982: 20979: 20975: 20971: 20966: 20961: 20935: 20921: 20920: 20917: 20912: 20904:locally convex 20884: 20879: 20875: 20872: 20867: 20863: 20858: 20854: 20851: 20846: 20842: 20837: 20812: 20808: 20805: 20800: 20796: 20791: 20787: 20767: 20745: 20741: 20710: 20706: 20693: 20678: 20674: 20648: 20642: 20639: 20636: 20632: 20614: 20613: 20601: 20581: 20578: 20575: 20572: 20569: 20566: 20563: 20560: 20557: 20554: 20551: 20548: 20545: 20542: 20539: 20536: 20533: 20513: 20510: 20507: 20504: 20501: 20498: 20495: 20492: 20489: 20486: 20483: 20480: 20477: 20472: 20468: 20447: 20444: 20441: 20438: 20435: 20432: 20429: 20426: 20423: 20420: 20417: 20414: 20411: 20408: 20405: 20402: 20397: 20393: 20372: 20369: 20366: 20363: 20360: 20355: 20351: 20347: 20342: 20339: 20336: 20331: 20327: 20324: 20321: 20318: 20315: 20310: 20306: 20301: 20296: 20291: 20288: 20285: 20280: 20276: 20273: 20270: 20265: 20261: 20257: 20254: 20251: 20248: 20243: 20239: 20234: 20229: 20224: 20221: 20218: 20213: 20208: 20204: 20201: 20198: 20193: 20189: 20185: 20182: 20179: 20176: 20171: 20167: 20162: 20158: 20154: 20149: 20144: 20141: 20138: 20133: 20128: 20123: 20119: 20115: 20111: 20107: 20102: 20097: 20093: 20089: 20086: 20067: 20056: 20051: 20047: 20043: 20039: 20019: 20016: 20013: 20010: 20007: 20004: 20001: 19998: 19995: 19992: 19989: 19986: 19983: 19980: 19977: 19974: 19971: 19968: 19965: 19962: 19959: 19956: 19935: 19914: 19911: 19908: 19905: 19902: 19899: 19896: 19893: 19890: 19887: 19884: 19881: 19878: 19874: 19869: 19865: 19861: 19857: 19837: 19817: 19814: 19811: 19808: 19789: 19779: 19776: 19773: 19770: 19767: 19764: 19743: 19739: 19735: 19731: 19727: 19723: 19720: 19700: 19696: 19692: 19688: 19667: 19664: 19661: 19658: 19655: 19652: 19649: 19646: 19643: 19640: 19637: 19634: 19629: 19625: 19604: 19601: 19598: 19595: 19592: 19589: 19584: 19581: 19578: 19573: 19569: 19566: 19563: 19558: 19554: 19549: 19544: 19541: 19538: 19535: 19530: 19526: 19505: 19502: 19499: 19496: 19493: 19488: 19485: 19482: 19477: 19473: 19470: 19467: 19462: 19458: 19453: 19448: 19445: 19442: 19439: 19434: 19430: 19409: 19406: 19403: 19400: 19379: 19375: 19372: 19369: 19364: 19360: 19356: 19353: 19350: 19347: 19342: 19338: 19333: 19313: 19301: 19297: 19275: 19271: 19267: 19263: 19260: 19257: 19252: 19249: 19246: 19241: 19236: 19232: 19228: 19223: 19218: 19214: 19193: 19190: 19187: 19184: 19181: 19178: 19175: 19172: 19169: 19166: 19163: 19160: 19157: 19154: 19151: 19148: 19145: 19121: 19118: 19115: 19112: 19109: 19106: 19103: 19100: 19097: 19094: 19091: 19088: 19067: 19057:and limits in 19046: 19043: 19040: 19037: 19034: 19031: 19028: 19025: 19022: 19019: 19014: 19010: 18989: 18986: 18983: 18980: 18977: 18974: 18971: 18968: 18965: 18962: 18959: 18954: 18950: 18920: 18917: 18914: 18911: 18908: 18903: 18899: 18892: 18890: 18887: 18886: 18881: 18877: 18868: 18863: 18860: 18857: 18852: 18848: 18845: 18842: 18839: 18834: 18830: 18825: 18817: 18815: 18812: 18811: 18808: 18805: 18802: 18797: 18793: 18789: 18770: 18759: 18755: 18752: 18749: 18744: 18740: 18735: 18731: 18728: 18723: 18720: 18717: 18712: 18708: 18705: 18702: 18697: 18693: 18689: 18685: 18677: 18675: 18672: 18671: 18667: 18663: 18660: 18657: 18652: 18649: 18646: 18641: 18637: 18634: 18631: 18626: 18622: 18617: 18612: 18609: 18606: 18603: 18598: 18594: 18585: 18571: 18568: 18565: 18560: 18555: 18551: 18548: 18545: 18540: 18536: 18531: 18527: 18523: 18515: 18513: 18510: 18509: 18501: 18498: 18495: 18492: 18487: 18483: 18479: 18476: 18470: 18455: 18447: 18443: 18440: 18437: 18432: 18428: 18423: 18419: 18416: 18415: 18395: 18392: 18389: 18386: 18383: 18380: 18377: 18374: 18371: 18368: 18365: 18362: 18359: 18339: 18336: 18333: 18330: 18327: 18324: 18321: 18318: 18314: 18310: 18307: 18304: 18299: 18295: 18290: 18286: 18266: 18262: 18241: 18238: 18235: 18232: 18229: 18226: 18223: 18220: 18215: 18211: 18190: 18170: 18167: 18164: 18145: 18135: 18132: 18129: 18126: 18106: 18085: 18081: 18077: 18073: 18070: 18050: 18047: 18044: 18041: 18038: 18035: 18032: 18029: 18026: 18023: 18020: 18017: 17994: 17991: 17988: 17985: 17982: 17979: 17976: 17973: 17970: 17967: 17964: 17959: 17955: 17944: 17941: 17938: 17935: 17932: 17929: 17926: 17923: 17920: 17917: 17914: 17911: 17908: 17903: 17899: 17894: 17891: 17888: 17885: 17882: 17879: 17876: 17873: 17870: 17865: 17861: 17856: 17853: 17850: 17847: 17844: 17841: 17838: 17835: 17832: 17827: 17823: 17803: 17799: 17778: 17775: 17755: 17752: 17749: 17746: 17738: 17735: 17732: 17729: 17726: 17723: 17720: 17700: 17697: 17694: 17691: 17670: 17649: 17646: 17643: 17640: 17637: 17634: 17631: 17628: 17623: 17619: 17598: 17593: 17588: 17566: 17563: 17558: 17554: 17533: 17528: 17525: 17522: 17517: 17513: 17510: 17507: 17502: 17498: 17493: 17472: 17462: 17459: 17456: 17451: 17447: 17437: 17426: 17404: 17400: 17377: 17373: 17370: 17367: 17364: 17361: 17358: 17353: 17349: 17328: 17325: 17322: 17319: 17297: 17294: 17291: 17288: 17285: 17282: 17262: 17242: 17222: 17217: 17213: 17209: 17206: 17186: 17181: 17176: 17154: 17132: 17128: 17105: 17102: 17099: 17094: 17089: 17085: 17081: 17076: 17071: 17067: 17044: 17039: 17034: 17031: 17018: 17017: 17015:Proof of lemma 17014: 17009: 16995: 16974: 16968: 16965: 16962: 16958: 16954: 16949: 16944: 16921: 16899: 16877: 16855: 16834: 16812: 16808: 16777: 16772: 16748: 16744: 16731: 16730: 16729: 16718: 16698: 16695: 16692: 16689: 16686: 16683: 16680: 16660: 16657: 16637: 16617: 16614: 16611: 16608: 16605: 16600: 16596: 16592: 16589: 16586: 16583: 16578: 16574: 16553: 16533: 16530: 16527: 16524: 16521: 16516: 16513: 16510: 16505: 16501: 16498: 16495: 16490: 16486: 16481: 16459: 16456: 16453: 16450: 16430: 16427: 16424: 16421: 16418: 16415: 16412: 16392: 16387: 16383: 16379: 16376: 16356: 16353: 16331: 16327: 16304: 16301: 16298: 16293: 16288: 16284: 16280: 16256: 16252: 16248: 16245: 16230: 16229: 16215: 16211: 16189: 16185: 16182: 16179: 16176: 16173: 16170: 16167: 16162: 16158: 16154: 16151: 16147: 16127: 16115: 16111: 16090: 16087: 16063: 16060: 16057: 16037: 16034: 16031: 16005: 16000: 15996: 15992: 15989: 15968: 15964: 15961: 15940: 15934: 15930: 15926: 15923: 15920: 15917: 15914: 15911: 15906: 15901: 15896: 15893: 15889: 15885: 15878: 15874: 15869: 15845: 15825: 15820: 15815: 15791: 15787: 15783: 15778: 15774: 15770: 15763: 15759: 15754: 15733: 15729: 15706: 15701: 15696: 15692: 15686: 15683: 15680: 15676: 15645: 15640: 15637: 15634: 15629: if  15626: 15623: 15619: 15618: 15615: 15612: 15609: 15604: if  15601: 15597: 15593: 15589: 15588: 15586: 15565: 15553: 15549: 15536: 15532: 15526: 15523: 15520: 15516: 15512: 15509: 15507: 15505: 15500: 15495: 15492: 15489: 15479: 15475: 15471: 15463: 15459: 15448: 15440: 15434: 15431: 15428: 15424: 15420: 15415: 15412: 15409: 15404: 15399: 15395: 15391: 15384: 15379: 15376: 15374: 15372: 15367: 15362: 15359: 15356: 15346: 15342: 15338: 15335: 15332: 15329: 15326: 15323: 15305: 15300: 15295: 15291: 15259: 15254: 15251: 15249: 15247: 15242: 15237: 15234: 15230: 15226: 15223: 15220: 15217: 15213: 15207: 15204: 15201: 15197: 15193: 15175: 15170: 15165: 15159: 15127: 15108: 15100: 15098: 15092: 15088: 15083: 15079: 15078: 15053: 15047: 15044: 15041: 15037: 15033: 15028: 15023: 14999: 14995: 14962: 14955: 14951: 14946: 14942: 14939: 14936: 14933: 14930: 14910: 14905: 14901: 14897: 14893: 14889: 14886: 14883: 14880: 14876: 14853: 14850: 14846: 14842: 14839: 14836: 14833: 14829: 14823: 14820: 14817: 14813: 14809: 14805: 14800: 14795: 14791: 14787: 14783: 14779: 14775: 14771: 14766: 14762: 14755: 14751: 14747: 14741: 14737: 14733: 14729: 14725: 14721: 14718: 14715: 14712: 14705: 14701: 14697: 14691: 14687: 14683: 14679: 14676: 14673: 14670: 14666: 14658: 14654: 14650: 14628: 14625: 14622: 14618: 14614: 14611: 14608: 14605: 14601: 14595: 14592: 14589: 14585: 14559: 14538: 14535: 14532: 14529: 14521: 14517: 14513: 14492: 14480: 14476: 14454: 14451: 14448: 14428: 14425: 14420: 14416: 14395: 14390: 14386: 14382: 14379: 14359: 14356: 14351: 14347: 14326: 14319: 14315: 14310: 14306: 14303: 14300: 14297: 14294: 14274: 14271: 14268: 14265: 14262: 14258: 14254: 14251: 14248: 14243: 14236: 14216: 14211: 14207: 14203: 14200: 14180: 14177: 14174: 14154: 14151: 14148: 14145: 14121: 14117: 14112: 14108: 14104: 14099: 14095: 14091: 14085: 14078: 14058: 14051: 14047: 14042: 14036: 14033: 14030: 14026: 14022: 14017: 14013: 13988: 13967: 13963: 13959: 13953: 13950: 13947: 13943: 13939: 13934: 13927: 13907: 13904: 13901: 13898: 13881: 13880: 13869: 13864: 13859: 13854: 13850: 13844: 13841: 13838: 13834: 13808: 13804: 13793: 13782: 13775: 13771: 13766: 13760: 13757: 13754: 13750: 13746: 13741: 13737: 13713: 13706: 13702: 13697: 13691: 13688: 13685: 13681: 13659: 13653: 13649: 13645: 13642: 13639: 13636: 13633: 13627: 13619: 13615: 13611: 13608: 13604: 13597: 13589: 13584: 13581: 13577: 13573: 13570: 13567: 13564: 13560: 13554: 13551: 13548: 13544: 13537: 13529: 13525: 13521: 13518: 13513: 13492: 13480: 13476: 13448: 13443: 13439: 13435: 13431: 13427: 13423: 13419: 13415: 13411: 13408: 13405: 13386: 13372: 13368: 13363: 13349:is compact by 13334: 13330: 13325: 13319: 13316: 13313: 13309: 13291: 13278: 13256: 13252: 13248: 13245: 13221: 13201: 13198: 13178: 13157: 13154: 13151: 13147: 13143: 13140: 13137: 13134: 13130: 13124: 13121: 13118: 13114: 13090: 13086: 13082: 13079: 13059: 13054: 13050: 13046: 13041: 13037: 13016: 13011: 13007: 13003: 12998: 12994: 12990: 12985: 12981: 12959: 12954: 12950: 12946: 12941: 12937: 12913: 12908: 12904: 12900: 12895: 12891: 12884: 12876: 12871: 12868: 12864: 12860: 12857: 12854: 12851: 12847: 12841: 12838: 12835: 12831: 12824: 12816: 12812: 12808: 12805: 12800: 12779: 12767: 12763: 12740: 12736: 12715: 12710: 12706: 12702: 12697: 12693: 12666: 12662: 12641: 12638: 12633: 12629: 12625: 12622: 12602: 12599: 12594: 12590: 12569: 12566: 12563: 12560: 12540: 12537: 12524:it is also an 12513: 12510: 12490: 12470: 12448: 12444: 12419: 12405: 12392: 12368: 12342: 12338: 12301: 12297: 12292: 12286: 12283: 12280: 12276: 12243: 12239: 12218: 12215: 12210: 12206: 12202: 12199: 12179: 12176: 12171: 12167: 12147: 12144: 12141: 12138: 12116: 12111: 12106: 12103: 12099: 12095: 12092: 12089: 12086: 12082: 12076: 12073: 12070: 12066: 12059: 12051: 12047: 12043: 12040: 12035: 12014: 12002: 11998: 11984:has its usual 11972: 11951: 11940:usual topology 11927: 11924: 11921: 11917: 11913: 11909: 11905: 11901: 11897: 11894: 11891: 11872: 11860: 11856: 11835: 11832: 11811: 11807: 11803: 11797: or  11793: 11789: 11785: 11763: 11742: 11722: 11705: 11692: 11682: 11674: 11673: 11660: 11640: 11621: 11611: 11587: 11567: 11557: 11536: 11533: 11529: 11525: 11522: 11519: 11516: 11512: 11506: 11503: 11500: 11496: 11473: 11470: 11466: 11462: 11459: 11456: 11453: 11449: 11443: 11440: 11437: 11433: 11411: 11408: 11405: 11401: 11397: 11393: 11389: 11385: 11381: 11378: 11375: 11353: 11349: 11328: 11325: 11322: 11319: 11316: 11313: 11310: 11307: 11304: 11301: 11298: 11279: 11269: 11266: 11263: 11260: 11235: 11212: 11208: 11204: 11201: 11198: 11195: 11192: 11182: 11179: 11175: 11171: 11168: 11165: 11162: 11158: 11152: 11149: 11146: 11142: 11122: 11119: 11096: 11093: 11089: 11085: 11082: 11079: 11076: 11072: 11066: 11063: 11060: 11056: 11032: 11028: 11022: 11019: 11016: 11012: 10989: 10985: 10979: 10976: 10973: 10969: 10948: 10945: 10942: 10939: 10918: 10895: 10891: 10870: 10866: 10860: 10857: 10854: 10850: 10840:inherits from 10827: 10823: 10817: 10814: 10811: 10807: 10780: 10776: 10770: 10767: 10764: 10760: 10738: 10712: 10708: 10703: 10699: 10679: 10676: 10673: 10670: 10644: 10641: 10621: 10601: 10579: 10576: 10573: 10568: 10563: 10559: 10555: 10542: 10541: 10530: 10526: 10505: 10502: 10499: 10496: 10493: 10488: 10485: 10482: 10477: 10473: 10470: 10467: 10462: 10458: 10453: 10431: 10428: 10425: 10422: 10398: 10393: 10390: 10387: 10382: 10378: 10375: 10372: 10367: 10363: 10358: 10353: 10348: 10345: 10342: 10337: 10332: 10327: 10323: 10319: 10313: 10306: 10302: 10281: 10270: 10265: 10262: 10259: 10254: 10249: 10245: 10241: 10236: 10230: 10223: 10202: 10199: 10196: 10193: 10190: 10187: 10184: 10181: 10176: 10169: 10159:where because 10157: 10156: 10145: 10141: 10120: 10117: 10114: 10109: 10102: 10099: 10095: 10090: 10087: 10084: 10079: 10074: 10070: 10066: 10061: 10055: 10048: 10028: 10025: 10022: 10019: 9992: 9989: 9984: 9981: 9978: 9973: 9968: 9964: 9960: 9938: 9934: 9928: 9925: 9922: 9918: 9914: 9909: 9904: 9880: 9876: 9855: 9835: 9830: 9827: 9824: 9819: 9814: 9810: 9806: 9781: 9752: 9746: 9743: 9740: 9736: 9732: 9727: 9722: 9693: 9690: 9687: 9684: 9681: 9678: 9673: 9669: 9665: 9662: 9642: 9639: 9636: 9633: 9630: 9626: 9621: 9617: 9613: 9609: 9589: 9586: 9583: 9580: 9577: 9572: 9569: 9566: 9561: 9556: 9551: 9547: 9543: 9539: 9535: 9513: 9510: 9490: 9487: 9482: 9478: 9457: 9454: 9451: 9448: 9445: 9425: 9420: 9416: 9412: 9409: 9390: 9378: 9375: 9372: 9367: 9362: 9357: 9353: 9349: 9345: 9341: 9336: 9332: 9327: 9323: 9319: 9315: 9293: 9289: 9266: 9261: 9258: 9255: 9250: 9245: 9240: 9236: 9232: 9228: 9224: 9200: 9197: 9194: 9189: 9184: 9179: 9175: 9171: 9167: 9163: 9141: 9138: 9135: 9132: 9129: 9124: 9120: 9116: 9113: 9093: 9071: 9067: 9046: 9043: 9040: 9037: 9034: 9021:Similarly for 9010: 9007: 9004: 9001: 8996: 8992: 8969: 8965: 8942: 8938: 8928:is denoted by 8917: 8914: 8911: 8889: 8885: 8864: 8861: 8858: 8854: 8833: 8830: 8806: 8803: 8800: 8797: 8794: 8791: 8768: 8765: 8762: 8759: 8754: 8750: 8729: 8707: 8704: 8701: 8696: 8691: 8687: 8683: 8678: 8673: 8669: 8638: 8630: 8624: 8621: 8618: 8612: 8606: 8602: 8597: 8591: 8585: 8581: 8577: 8574: 8570: 8567: 8564: 8561: 8556: 8553: 8550: 8545: 8540: 8535: 8530: 8525: 8522: 8518: 8513: 8508: 8503: 8499: 8496: 8493: 8492: 8463: 8457: 8454: 8451: 8448: 8445: 8440: 8435: 8431: 8427: 8421: 8416: 8413: 8410: 8405: 8400: 8396: 8392: 8386: 8382: 8379: 8375: 8370: 8367: 8364: 8359: 8354: 8350: 8346: 8341: 8338: 8334: 8328: 8325: 8322: 8319: 8316: 8312: 8308: 8304: 8299: 8293: 8290: 8287: 8283: 8278: 8274: 8271: 8267: 8263: 8257: 8254: 8251: 8247: 8243: 8239: 8236: 8233: 8232: 8212: 8209: 8206: 8203: 8200: 8196: 8192: 8189: 8186: 8166: 8144: 8141: 8138: 8116: 8113: 8110: 8107: 8083: 8079: 8074: 8070: 8067: 8064: 8061: 8058: 8036: 8031: 8026: 8023: 7999: 7995: 7990: 7984: 7981: 7978: 7974: 7953: 7948: 7943: 7938: 7934: 7928: 7925: 7922: 7918: 7914: 7907: 7903: 7898: 7892: 7889: 7886: 7882: 7859: 7856: 7853: 7848: 7843: 7839: 7835: 7808: 7801: 7781: 7761: 7741: 7721: 7718: 7698: 7678: 7675: 7672: 7669: 7666: 7647: 7637: 7634: 7631: 7626: 7619: 7598: 7594: 7591: 7588: 7585: 7563: 7556: 7534: 7530: 7526: 7521: 7518: 7515: 7510: 7505: 7501: 7497: 7492: 7487: 7483: 7471: 7467: 7463: 7457: 7454: 7451: 7447: 7443: 7438: 7431: 7411: 7408: 7405: 7386: 7354: 7349: 7326: 7320: 7317: 7314: 7310: 7288: 7282: 7279: 7276: 7272: 7268: 7263: 7258: 7245: 7244: 7233: 7228: 7225: 7222: 7217: 7212: 7208: 7204: 7180: 7176: 7156: 7146: 7143: 7140: 7137: 7116: 7112: 7109: 7106: 7103: 7082: 7076: 7073: 7070: 7066: 7043: 7040: 7037: 7032: 7027: 7023: 7019: 7014: 7009: 7005: 6994: 6982: 6970: 6959: 6954: 6951: 6948: 6944: 6940: 6937: 6934: 6931: 6928: 6909: 6897: 6893: 6882: 6868: 6846: 6841: 6818: 6814: 6811: 6808: 6805: 6795: 6783: 6758: 6754: 6750: 6747: 6725: 6720: 6696: 6693: 6690: 6685: 6680: 6676: 6672: 6667: 6662: 6658: 6634: 6613: 6607: 6604: 6601: 6597: 6569: 6566: 6563: 6560: 6540: 6537: 6534: 6531: 6528: 6525: 6522: 6519: 6500: 6490: 6487: 6467: 6447: 6427: 6424: 6421: 6417: 6413: 6409: 6405: 6401: 6397: 6394: 6391: 6372: 6360: 6356: 6336: 6333: 6320: 6319: 6316: 6311: 6298: 6291: 6287: 6282: 6276: 6273: 6270: 6266: 6243: 6239: 6203: 6199: 6193: 6190: 6187: 6183: 6158: 6154: 6151: 6129: 6124: 6084:duality theory 6078:The following 6075: 6072: 6050: 6027: 6023: 6000: 5996: 5985: 5971: 5949: 5945: 5910: 5906: 5885: 5868: 5851: 5829: 5825: 5804: 5784: 5764: 5740: 5728: 5727: 5715: 5692: 5688: 5667: 5663: 5658: 5654: 5651: 5646: 5642: 5637: 5633: 5630: 5625: 5621: 5616: 5593: 5589: 5563: 5558: 5554: 5551: 5546: 5542: 5537: 5533: 5530: 5525: 5521: 5516: 5495: 5490: 5486: 5464: 5460: 5457: 5452: 5448: 5443: 5439: 5417: 5413: 5401: 5390: 5385: 5381: 5359: 5355: 5352: 5347: 5343: 5338: 5334: 5312: 5308: 5287: 5283: 5278: 5274: 5271: 5266: 5262: 5257: 5253: 5250: 5245: 5241: 5236: 5226:inherits from 5213: 5209: 5186: 5182: 5160: 5156: 5153: 5148: 5144: 5139: 5135: 5115: 5110: 5106: 5084: 5080: 5077: 5072: 5068: 5063: 5059: 5037: 5033: 5023:Conclude that 5021: 5008: 5004: 5001: 4996: 4992: 4987: 4983: 4961: 4957: 4931: 4927: 4924: 4919: 4915: 4910: 4906: 4885: 4881: 4878: 4873: 4869: 4864: 4860: 4838: 4834: 4813: 4808: 4804: 4780: 4760: 4755: 4751: 4739:bounded subset 4725: 4721: 4718: 4713: 4709: 4704: 4700: 4678: 4674: 4653: 4648: 4645: 4641: 4620: 4617: 4593: 4571: 4568: 4564: 4560: 4557: 4533: 4528: 4524: 4498: 4494: 4491: 4486: 4482: 4477: 4473: 4451: 4447: 4435: 4421: 4417: 4396: 4391: 4387: 4364: 4360: 4356: 4351: 4347: 4343: 4338: 4334: 4330: 4325: 4321: 4317: 4312: 4308: 4287: 4282: 4278: 4274: 4271: 4249: 4245: 4241: 4238: 4214: 4194: 4174: 4153: 4150: 4147: 4143: 4139: 4136: 4133: 4130: 4126: 4120: 4117: 4114: 4110: 4086: 4082: 4078: 4075: 4054: 4049: 4045: 4041: 4036: 4032: 4008: 4004: 4000: 3995: 3991: 3981:The inclusion 3970: 3966: 3961: 3957: 3954: 3949: 3945: 3940: 3936: 3933: 3928: 3924: 3919: 3897: 3892: 3888: 3885: 3880: 3876: 3871: 3867: 3864: 3859: 3855: 3850: 3827: 3823: 3800: 3796: 3792: 3787: 3783: 3771: 3760: 3757: 3753: 3749: 3746: 3743: 3740: 3736: 3715: 3712: 3709: 3706: 3686: 3682: 3678: 3675: 3671: 3667: 3663: 3659: 3655: 3651: 3648: 3644: 3622: 3601: 3598: 3595: 3590: 3586: 3564: 3543: 3540: 3537: 3534: 3531: 3528: 3525: 3522: 3517: 3513: 3492: 3489: 3486: 3483: 3463: 3460: 3456: 3452: 3449: 3446: 3443: 3439: 3418: 3413: 3409: 3405: 3402: 3382: 3378: 3373: 3369: 3366: 3361: 3357: 3352: 3348: 3345: 3340: 3336: 3331: 3310: 3288: 3284: 3261: 3258: 3255: 3250: 3245: 3241: 3237: 3232: 3227: 3223: 3200: 3196: 3192: 3189: 3169: 3164: 3160: 3138: 3134: 3131: 3126: 3122: 3117: 3113: 3091: 3087: 3063: 3058: 3054: 3050: 3045: 3042: 3039: 3035: 3023: 3022: 3011: 3006: 3002: 2998: 2993: 2989: 2985: 2980: 2976: 2955: 2951: 2945: 2941: 2937: 2934: 2930: 2909: 2888: 2884: 2881: 2877: 2873: 2870: 2867: 2864: 2860: 2854: 2851: 2848: 2844: 2837: 2829: 2825: 2821: 2818: 2814: 2810: 2805: 2801: 2790: 2777: 2771: 2767: 2763: 2760: 2756: 2734: 2711: 2707: 2704: 2700: 2696: 2693: 2690: 2687: 2683: 2675: 2671: 2667: 2664: 2660: 2653: 2647: 2644: 2641: 2637: 2633: 2628: 2625: 2621: 2610: 2597: 2591: 2587: 2583: 2580: 2576: 2555: 2534: 2530: 2527: 2523: 2519: 2516: 2513: 2510: 2506: 2500: 2497: 2494: 2490: 2483: 2475: 2471: 2467: 2464: 2460: 2456: 2451: 2447: 2423: 2403: 2381: 2377: 2371: 2367: 2363: 2360: 2356: 2332: 2328: 2322: 2318: 2314: 2311: 2307: 2281: 2275: 2271: 2267: 2264: 2260: 2236: 2216: 2194: 2190: 2165: 2160: 2156: 2152: 2149: 2129: 2125: 2121: 2118: 2113: 2109: 2104: 2100: 2079: 2074: 2070: 2067: 2062: 2058: 2053: 2049: 2046: 2041: 2037: 2032: 2022:inherits from 2009: 2005: 1976: 1972: 1967: 1963: 1960: 1955: 1951: 1946: 1942: 1939: 1934: 1930: 1925: 1903: 1898: 1894: 1891: 1886: 1882: 1877: 1873: 1870: 1865: 1861: 1856: 1830: 1825: 1821: 1818: 1813: 1809: 1804: 1800: 1797: 1792: 1788: 1783: 1762: 1758: 1753: 1749: 1746: 1741: 1737: 1732: 1728: 1725: 1720: 1716: 1711: 1699:locally convex 1683: 1679: 1675: 1672: 1667: 1663: 1658: 1654: 1629: 1625: 1589: 1585: 1560: 1536: 1532: 1511: 1497: 1495: 1492: 1479: 1475: 1470: 1466: 1463: 1458: 1454: 1449: 1445: 1442: 1437: 1433: 1428: 1406: 1400: 1396: 1392: 1389: 1385: 1364: 1342: 1338: 1317: 1312: 1308: 1286: 1282: 1279: 1274: 1270: 1265: 1261: 1238: 1218: 1194: 1190: 1187: 1183: 1179: 1176: 1173: 1170: 1166: 1160: 1157: 1154: 1150: 1143: 1135: 1131: 1127: 1124: 1120: 1116: 1111: 1107: 1083: 1078: 1074: 1059:locally convex 1052: 1038: 1017: 1005: 1002: 999: 996: 993: 971: 968: 965: 960: 956: 953: 950: 945: 941: 936: 914: 894: 872: 868: 847: 842: 839: 836: 831: 826: 822: 818: 813: 808: 804: 779: 755: 751: 747: 744: 739: 735: 730: 726: 704: 700: 678: 674: 671: 666: 662: 657: 653: 631: 627: 600: 596: 592: 587: 583: 562: 557: 553: 524: 511: 492: 487: 483: 480: 477: 473: 469: 464: 460: 456: 453: 449: 428: 425: 422: 419: 400: 389: 385: 382: 379: 375: 353: 349: 344: 340: 336: 333: 330: 326: 322: 319: 316: 312: 302: 301:evaluation map 285: 259: 255: 233: 212: 186: 183: 120: 117: 114: 111: 108: 105: 102: 99: 85: 79: 76: 56:weak* topology 15: 9: 6: 4: 3: 2: 32265: 32254: 32251: 32249: 32246: 32244: 32241: 32239: 32236: 32235: 32233: 32218: 32210: 32209: 32206: 32200: 32197: 32195: 32192: 32190: 32187: 32185: 32181: 32177: 32175:) convex 32174: 32171: 32169: 32166: 32164: 32160: 32158: 32155: 32153: 32150: 32148: 32147:Semi-complete 32145: 32143: 32140: 32138: 32135: 32133: 32129: 32126: 32124: 32120: 32118: 32115: 32113: 32110: 32108: 32105: 32103: 32100: 32098: 32095: 32093: 32090: 32088: 32085: 32083: 32080: 32078: 32075: 32073: 32070: 32068: 32065: 32063: 32062:Infrabarreled 32060: 32058: 32055: 32053: 32050: 32046: 32043: 32042: 32041: 32038: 32036: 32033: 32031: 32028: 32026: 32023: 32021: 32020:Distinguished 32018: 32016: 32013: 32011: 32008: 32006: 32003: 32001: 31998: 31996: 31992: 31988: 31986: 31983: 31981: 31977: 31973: 31971: 31968: 31966: 31963: 31961: 31958: 31957: 31955: 31953:Types of TVSs 31951: 31945: 31941: 31937: 31935: 31932: 31930: 31927: 31925: 31922: 31920: 31917: 31915: 31911: 31907: 31905: 31902: 31901: 31899: 31895: 31889: 31886: 31884: 31881: 31879: 31876: 31874: 31873:Prevalent/Shy 31871: 31869: 31866: 31864: 31863:Extreme point 31861: 31859: 31853: 31851: 31845: 31843: 31840: 31838: 31835: 31833: 31830: 31828: 31825: 31823: 31820: 31818: 31815: 31813: 31810: 31808: 31805: 31803: 31800: 31799: 31797: 31795:Types of sets 31793: 31787: 31784: 31782: 31779: 31777: 31774: 31772: 31769: 31765: 31762: 31760: 31757: 31755: 31752: 31751: 31750: 31747: 31745: 31742: 31738: 31737:Discontinuous 31735: 31733: 31730: 31728: 31725: 31723: 31720: 31718: 31715: 31713: 31710: 31708: 31705: 31704: 31703: 31700: 31696: 31693: 31692: 31691: 31688: 31687: 31685: 31681: 31675: 31672: 31668: 31665: 31664: 31663: 31660: 31657: 31654: 31652: 31648: 31645: 31643: 31640: 31638: 31635: 31633: 31630: 31628: 31625: 31624: 31622: 31620: 31616: 31610: 31607: 31605: 31602: 31600: 31597: 31595: 31594:Metrizability 31592: 31590: 31587: 31585: 31582: 31580: 31579:Fréchet space 31577: 31575: 31572: 31570: 31567: 31565: 31562: 31560: 31557: 31556: 31554: 31550: 31545: 31538: 31533: 31531: 31526: 31524: 31519: 31518: 31515: 31503: 31495: 31494: 31491: 31485: 31482: 31480: 31477: 31475: 31474:Weak topology 31472: 31470: 31467: 31465: 31462: 31460: 31457: 31456: 31454: 31450: 31443: 31439: 31436: 31434: 31431: 31429: 31426: 31424: 31421: 31419: 31416: 31414: 31411: 31409: 31406: 31404: 31401: 31399: 31398:Index theorem 31396: 31394: 31391: 31389: 31386: 31384: 31381: 31380: 31378: 31374: 31368: 31365: 31363: 31360: 31359: 31357: 31355:Open problems 31353: 31347: 31344: 31342: 31339: 31337: 31334: 31332: 31329: 31327: 31324: 31322: 31319: 31318: 31316: 31312: 31306: 31303: 31301: 31298: 31296: 31293: 31291: 31288: 31286: 31283: 31281: 31278: 31276: 31273: 31271: 31268: 31266: 31263: 31261: 31258: 31257: 31255: 31251: 31245: 31242: 31240: 31237: 31235: 31232: 31230: 31227: 31225: 31222: 31220: 31217: 31215: 31212: 31210: 31207: 31205: 31202: 31201: 31199: 31197: 31193: 31183: 31180: 31178: 31175: 31173: 31170: 31167: 31163: 31159: 31156: 31154: 31151: 31149: 31146: 31145: 31143: 31139: 31133: 31130: 31128: 31125: 31123: 31120: 31118: 31115: 31113: 31110: 31108: 31105: 31103: 31100: 31098: 31095: 31093: 31090: 31088: 31085: 31084: 31081: 31078: 31074: 31069: 31065: 31061: 31054: 31049: 31047: 31042: 31040: 31035: 31034: 31031: 31019: 31016: 31015: 31013: 31009: 31003: 31000: 30998: 30995: 30994: 30992: 30988: 30982: 30979: 30978: 30976: 30972: 30966: 30963: 30961: 30958: 30957: 30955: 30951: 30945: 30942: 30938: 30935: 30933: 30930: 30929: 30928: 30925: 30923: 30920: 30916: 30913: 30911: 30908: 30906: 30903: 30902: 30901: 30898: 30896: 30893: 30889: 30886: 30885: 30884: 30883:Norm topology 30881: 30880: 30878: 30876: 30872: 30866: 30863: 30861: 30858: 30856: 30853: 30851: 30848: 30846: 30843: 30841: 30840:Dual topology 30838: 30836: 30833: 30831: 30828: 30827: 30825: 30821: 30816: 30812: 30805: 30800: 30798: 30793: 30791: 30786: 30785: 30782: 30767: 30763: 30759: 30753: 30746: 30745: 30740: 30739:Lax, Peter D. 30736: 30732: 30728: 30724: 30718: 30714: 30710: 30706: 30702: 30698: 30697: 30686: 30682: 30678: 30672: 30668: 30664: 30660: 30656: 30652: 30648: 30642: 30638: 30634: 30630: 30626: 30622: 30618: 30612: 30608: 30604: 30600: 30596: 30591: 30587: 30583: 30577: 30573: 30569: 30568: 30563: 30562:Rudin, Walter 30559: 30555: 30551: 30547: 30541: 30537: 30532: 30528: 30526:0-19-851485-9 30522: 30518: 30513: 30509: 30505: 30501: 30497: 30493: 30487: 30483: 30479: 30475: 30474: 30453: 30449: 30445: 30441: 30434: 30427: 30425: 30417: 30412: 30405: 30400: 30393: 30388: 30386: 30384: 30382: 30380: 30378: 30370: 30365: 30363: 30361: 30353: 30348: 30344: 30319: 30312:as desired. 30299: 30296: 30293: 30288: 30284: 30280: 30269: 30263: 30238: 30231: 30227: 30222: 30218: 30214: 30206: 30202: 30197: 30191: 30188: 30185: 30181: 30176: 30170: 30160: 30154: 30146: 30136: 30130: 30124: 30104: 30097: 30093: 30088: 30084: 30081: 30076: 30072: 30068: 30065: 30062: 30042: 30039: 30028: 30022: 29997: 29994: 29991: 29971: 29968: 29965: 29954: 29948: 29938: 29935: 29932: 29901: 29881: 29871: 29868: 29865: 29845: 29836: 29832: 29828: 29822: 29818: 29814: 29810: 29806: 29803: 29777: 29773: 29769: 29763: 29759: 29755: 29751: 29744: 29732: 29728: 29724: 29718: 29714: 29710: 29706: 29699: 29693: 29673: 29670: 29667: 29664: 29644: 29641: 29636: 29632: 29611: 29608: 29605: 29602: 29582: 29579: 29574: 29570: 29547: 29544: 29541: 29536: 29531: 29527: 29523: 29499: 29495: 29472: 29468: 29445: 29441: 29432: 29414: 29410: 29402: 29385: 29382: 29359: 29355: 29346: 29345:least element 29328: 29324: 29320: 29300: 29295: 29291: 29287: 29282: 29278: 29274: 29252: 29248: 29244: 29239: 29235: 29212: 29208: 29204: 29201: 29198: 29178: 29171: 29167: 29162: 29156: 29153: 29150: 29146: 29142: 29135: 29131: 29126: 29118: 29114: 29110: 29105: 29101: 29096: 29090: 29087: 29084: 29080: 29076: 29069: 29065: 29060: 29054: 29051: 29048: 29044: 29036: 29032: 29028: 29023: 29019: 29014: 29010: 29005: 29001: 28997: 28976: 28970: 28966: 28962: 28957: 28953: 28949: 28944: 28940: 28935: 28924: 28919: 28915: 28894: 28891: 28888: 28885: 28843: 28821: 28810: 28806: 28802: 28798: 28795: 28792: 28789: 28784: 28780: 28775: 28771: 28764:the equality 28751: 28742: 28739: 28733: 28730: 28720: 28716: 28713: 28712: 28691: 28688: 28685: 28682: 28662: 28659: 28654: 28650: 28629: 28626: 28621: 28617: 28596: 28593: 28588: 28584: 28563: 28560: 28557: 28554: 28547:is such that 28534: 28531: 28528: 28508: 28505: 28502: 28499: 28479: 28470: 28467: 28458: 28455: 28450: 28446: 28425: 28405: 28385: 28382: 28379: 28376: 28354: 28350: 28346: 28341: 28337: 28314: 28310: 28306: 28301: 28297: 28288: 28287:partial order 28270: 28266: 28257: 28256:least element 28239: 28236: 28233: 28228: 28223: 28219: 28215: 28194: 28182: 28178: 28167: 28161: 28148: 28139: 28109: 28106: 28103: 28099: 28091:is closed in 28072: 28051: 28047: 28036: 28030: 28027: 28024: 28020: 28016: 28004: 28000: 27994: 27991: 27988: 27984: 27972: 27968: 27959: 27939: 27923: 27896: 27875: 27865: 27859: 27856: 27853: 27849: 27845: 27833: 27829: 27823: 27820: 27817: 27813: 27799: 27789: 27785: 27780: 27757: 27753: 27747: 27744: 27741: 27737: 27733: 27726: 27722: 27717: 27706: 27699: 27695: 27675: 27671: 27666: 27660: 27657: 27654: 27650: 27641: 27621: 27617: 27612: 27601: 27582: 27556: 27532: 27529: 27526: 27503: 27481: 27478: 27475: 27471: 27447: 27444: 27441: 27428: 27414: 27394: 27374: 27344: 27341: 27338: 27327: 27324: 27307: 27304: 27301: 27297: 27274: 27271: 27268: 27264: 27243: 27234: 27211: 27208: 27205: 27201: 27197: 27192: 27189: 27186: 27182: 27159: 27155: 27132: 27129: 27126: 27122: 27094: 27091: 27080: 27074: 27064: 27061: 27058: 27047: 27031: 27028: 27025: 27019: 27016: 26990: 26978: 26975: 26972: 26968: 26944: 26941: 26938: 26915: 26885: 26882: 26879: 26853: 26850: 26847: 26824: 26818: 26815: 26812: 26789: 26769: 26749: 26729: 26703: 26682: 26672: 26671:is dependent 26658: 26631: 26628: 26617: 26611: 26601: 26598: 26595: 26584: 26572: 26568: 26565: 26555: 26550: 26546: 26519: 26515: 26510: 26506: 26485: 26465: 26455: 26448: 26444: 26422: 26401: 26397: 26392: 26388: 26385: 26376: 26371: 26367: 26364: 26355: 26350: 26341: 26338:is given the 26319: 26310: 26307:is given the 26288: 26261: 26257: 26248: 26237: 26233: 26222: 26219: 26216: 26215:Mazur's lemma 26213: 26207: 26204: 26198: 26195: 26193: 26190: 26187: 26184: 26182: 26179: 26177: 26174: 26172: 26169: 26167: 26164: 26163: 26157: 26155: 26151: 26147: 26143: 26139: 26135: 26131: 26126: 26112: 26100: 26097: 26093: 26089: 26086: 26078: 26052: 26049: 26046: 26043: 26040: 26037: 26008: 25999: 25998:weak-* closed 25994: 25980: 25942: 25934: 25932: 25916: 25896: 25887: 25879: 25863: 25843: 25823: 25819: 25815: 25813: 25809: 25805: 25801: 25797: 25793: 25789: 25784: 25780: 25778: 25774: 25770: 25764: 25762: 25758: 25754: 25750: 25746: 25742: 25736: 25723: 25704: 25698: 25690: 25674: 25668: 25662: 25654: 25650: 25631: 25625: 25617: 25614: 25610: 25607: 25603: 25602: 25578: 25570: 25566: 25545: 25542: 25539: 25519: 25510: 25506: 25500: 25492: 25488: 25484: 25481: 25472: 25469: 25465: 25462: 25459: 25453: 25450: 25446: 25439: 25435: 25430: 25426: 25406: 25403: 25400: 25373: 25370: 25367: 25362: 25355: 25351: 25346: 25342: 25320: 25317: 25297: 25294: 25289: 25285: 25281: 25276: 25272: 25251: 25248: 25243: 25240: 25235: 25230: 25227: 25205: 25182: 25179: 25176: 25173: 25150: 25142: 25138: 25130: 25127:is the space 25114: 25106: 25090: 25070: 25062: 25046: 25038: 25035: 25018: 25008: 25004: 25001: 24997: 24993: 24985: 24981: 24977: 24974: 24968: 24948: 24921: 24912: 24911: 24910: 24908: 24886: 24877: 24861: 24841: 24828: 24809: 24804: 24800: 24796: 24790: 24784: 24756: 24752: 24731: 24728: 24725: 24722: 24711: 24707: 24703: 24697: 24691: 24663: 24660: 24657: 24637: 24634: 24623: 24619: 24610: 24607: 24604: 24599: 24592: 24584: 24580: 24575: 24568: 24543: 24540: 24537: 24517: 24495: 24492: 24489: 24484: 24477: 24469: 24465: 24460: 24438: 24435: 24430: 24427: 24424: 24419: 24414: 24410: 24406: 24401: 24396: 24392: 24382: 24380: 24356: 24352: 24342: 24325: 24320: 24317: 24314: 24303: 24297: 24292: 24279: 24270: 24249: 24245: 24237: 24234: 24210: 24190: 24179: 24175: 24154: 24145: 24135: 24134:is compact. 24121: 24113: 24095: 24091: 24082: 24064: 24060: 24054: 24051: 24048: 24044: 24040: 24037: 24011: 24005: 23997: 23989: 23981: 23978: 23972: 23967: 23963: 23942: 23939: 23936: 23933: 23920: 23918: 23914: 23885: 23881: 23877: 23874: 23848: 23838: 23836: 23820: 23800: 23797: 23777: 23757: 23754: 23734: 23731: 23705: 23701: 23698: 23695: 23690: 23686: 23682: 23677: 23673: 23652: 23649: 23615: 23611: 23608: 23600: 23596: 23591: 23589: 23585: 23569: 23549: 23546: 23520: 23496: 23493: 23490: 23463: 23454: 23450: 23446: 23443: 23440: 23437: 23430: 23426: 23423: 23418: 23409: 23405: 23401: 23398: 23395: 23392: 23385: 23376: 23373: 23369: 23357: 23354: 23351: 23347: 23343: 23337: 23334: 23331: 23325: 23306: 23303: 23300: 23297: 23294: 23267: 23264: 23261: 23256: 23251: 23247: 23243: 23238: 23233: 23229: 23208: 23188: 23179: 23158: 23138: 23129: 23127: 23123: 23119: 23109: 23096: 23093: 23085: 23069: 23047: 23043: 23023: 23018: 23013: 23009: 23006: 23001: 22997: 22992: 22987: 22982: 22978: 22947: 22944: 22941: 22935: 22926: 22905: 22897: 22881: 22873: 22851: 22848: 22839: 22836: 22831: 22828: 22825: 22820: 22815: 22811: 22807: 22786: 22774: 22770: 22761: 22757: 22741: 22738: 22715: 22711: 22702: 22701:least element 22682: 22678: 22673: 22667: 22664: 22661: 22657: 22653: 22646: 22642: 22637: 22633: 22624: 22611: 22606: 22602: 22579: 22575: 22571: 22549: 22545: 22541: 22536: 22532: 22528: 22525: 22518: 22514: 22509: 22505: 22485: 22481: 22473: 22469: 22464: 22460: 22457: 22454: 22448: 22438: 22434: 22429: 22425: 22421: 22414: 22407: 22401: 22397: 22393: 22388: 22384: 22377: 22367: 22363: 22358: 22354: 22350: 22330: 22320: 22315: 22311: 22291: 22288: 22266: 22262: 22252: 22250: 22232: 22228: 22207: 22203: 22197: 22193: 22189: 22184: 22180: 22176: 22171: 22167: 22162: 22155: 22150: 22146: 22126: 22123: 22120: 22117: 22095: 22091: 22087: 22082: 22078: 22056: 22048: 22044: 22039: 22035: 22032: 22029: 22023: 22015: 22005: 22000: 21996: 21991: 21971: 21959: 21955: 21934: 21929: 21919: 21914: 21911: 21908: 21903: 21898: 21894: 21890: 21885: 21880: 21876: 21851: 21847: 21842: 21836: 21833: 21830: 21826: 21806: 21792: 21788: 21783: 21779: 21753: 21749: 21746: 21724: 21720: 21700: 21690: 21668: 21664: 21635: 21631: 21626: 21620: 21617: 21614: 21610: 21606: 21604: 21592: 21588: 21586: 21574: 21570: 21565: 21559: 21556: 21553: 21549: 21545: 21543: 21531: 21527: 21525: 21509: 21505: 21503: 21496: 21492: 21465: 21462: 21459: 21454: 21449: 21445: 21441: 21436: 21431: 21427: 21406: 21397: 21384: 21375: 21366: 21349: 21343: 21339: 21335: 21329: 21323: 21320: 21311: 21307: 21304: 21300: 21280: 21264: 21243: 21235: 21232:(such as any 21216: 21213: 21210: 21207: 21204: 21201: 21198: 21195: 21192: 21189: 21167: 21157: 21148: 21145: 21139: 21136: 21116: 21113: 21110: 21095: 21082: 21075:is complete. 21061: 21056: 21052: 21049: 21040: 21035: 21031: 21028: 21019: 21014: 20993: 20983: 20980: 20977: 20973: 20969: 20964: 20950: 20949:product space 20923: 20922: 20916: 20915: 20910: 20908: 20905: 20902: 20899: 20882: 20877: 20873: 20870: 20861: 20856: 20852: 20849: 20840: 20835: 20827: 20810: 20806: 20803: 20794: 20789: 20785: 20765: 20739: 20731: 20704: 20692: 20672: 20663: 20640: 20637: 20634: 20630: 20621: 20612: 20599: 20592:as desired. 20579: 20573: 20567: 20564: 20558: 20552: 20549: 20543: 20540: 20537: 20531: 20511: 20505: 20502: 20499: 20493: 20484: 20481: 20478: 20470: 20466: 20458:Because also 20445: 20439: 20433: 20430: 20424: 20418: 20409: 20406: 20403: 20395: 20391: 20367: 20364: 20361: 20353: 20349: 20345: 20340: 20337: 20334: 20329: 20322: 20319: 20316: 20308: 20304: 20299: 20294: 20289: 20286: 20283: 20278: 20271: 20263: 20259: 20255: 20249: 20241: 20237: 20232: 20227: 20222: 20219: 20216: 20211: 20206: 20199: 20191: 20187: 20183: 20177: 20169: 20165: 20160: 20156: 20152: 20147: 20142: 20139: 20136: 20131: 20126: 20121: 20117: 20113: 20109: 20105: 20100: 20095: 20091: 20087: 20084: 20065: 20054: 20049: 20045: 20041: 20037: 20014: 20008: 20005: 19999: 19993: 19990: 19981: 19975: 19972: 19966: 19960: 19954: 19906: 19900: 19897: 19891: 19885: 19879: 19872: 19867: 19863: 19859: 19855: 19848:implies that 19835: 19815: 19812: 19809: 19806: 19787: 19774: 19771: 19768: 19762: 19729: 19721: 19718: 19698: 19690: 19659: 19653: 19650: 19644: 19638: 19627: 19623: 19602: 19596: 19590: 19582: 19579: 19576: 19571: 19564: 19556: 19552: 19547: 19542: 19536: 19528: 19524: 19500: 19494: 19486: 19483: 19480: 19475: 19468: 19460: 19456: 19451: 19446: 19440: 19432: 19428: 19407: 19404: 19401: 19398: 19377: 19370: 19362: 19358: 19354: 19348: 19340: 19336: 19331: 19311: 19299: 19295: 19269: 19258: 19255: 19250: 19247: 19244: 19239: 19234: 19230: 19226: 19221: 19216: 19212: 19204:Define a net 19191: 19185: 19179: 19176: 19170: 19164: 19161: 19155: 19152: 19149: 19143: 19133: 19132:as desired. 19119: 19113: 19110: 19104: 19101: 19095: 19089: 19086: 19041: 19038: 19032: 19023: 19020: 19012: 19008: 19000:Because also 18987: 18981: 18975: 18972: 18963: 18960: 18952: 18948: 18912: 18909: 18901: 18897: 18888: 18879: 18875: 18861: 18858: 18855: 18850: 18843: 18840: 18832: 18828: 18823: 18813: 18803: 18795: 18791: 18787: 18768: 18757: 18750: 18742: 18738: 18733: 18729: 18721: 18718: 18715: 18710: 18703: 18695: 18691: 18687: 18683: 18673: 18658: 18655: 18650: 18647: 18644: 18639: 18632: 18624: 18620: 18615: 18610: 18604: 18596: 18592: 18569: 18566: 18563: 18558: 18553: 18546: 18538: 18534: 18529: 18525: 18521: 18511: 18493: 18485: 18481: 18477: 18474: 18453: 18445: 18438: 18430: 18426: 18421: 18417: 18390: 18384: 18381: 18378: 18369: 18363: 18357: 18331: 18325: 18319: 18312: 18305: 18297: 18293: 18288: 18284: 18264: 18236: 18230: 18221: 18213: 18209: 18188: 18168: 18165: 18162: 18143: 18130: 18124: 18104: 18071: 18068: 18048: 18042: 18036: 18033: 18030: 18024: 18021: 18015: 18005: 17992: 17986: 17983: 17977: 17968: 17965: 17957: 17953: 17942: 17936: 17933: 17930: 17924: 17915: 17912: 17909: 17901: 17897: 17892: 17886: 17880: 17871: 17863: 17859: 17854: 17848: 17842: 17833: 17825: 17821: 17801: 17776: 17773: 17753: 17750: 17747: 17744: 17736: 17733: 17730: 17727: 17724: 17721: 17718: 17698: 17695: 17692: 17689: 17644: 17638: 17629: 17621: 17617: 17596: 17591: 17564: 17556: 17552: 17531: 17526: 17523: 17520: 17515: 17508: 17500: 17496: 17491: 17470: 17457: 17449: 17445: 17424: 17402: 17398: 17390: 17368: 17365: 17359: 17351: 17347: 17326: 17323: 17320: 17317: 17308: 17295: 17292: 17289: 17286: 17283: 17280: 17260: 17240: 17220: 17211: 17207: 17204: 17184: 17179: 17152: 17126: 17103: 17100: 17097: 17092: 17087: 17083: 17079: 17074: 17069: 17065: 17042: 17032: 17029: 17020: 17019: 17013: 17012: 17007: 16993: 16966: 16963: 16960: 16956: 16952: 16947: 16845:over a field 16832: 16806: 16798: 16775: 16761:is closed in 16742: 16716: 16696: 16693: 16690: 16684: 16678: 16658: 16655: 16635: 16615: 16612: 16606: 16598: 16594: 16590: 16584: 16576: 16572: 16551: 16528: 16522: 16514: 16511: 16508: 16503: 16496: 16488: 16484: 16479: 16457: 16454: 16451: 16448: 16428: 16425: 16422: 16416: 16410: 16390: 16385: 16381: 16377: 16374: 16354: 16351: 16329: 16325: 16302: 16299: 16296: 16291: 16286: 16282: 16278: 16254: 16250: 16246: 16243: 16235: 16232: 16231: 16213: 16209: 16187: 16183: 16180: 16174: 16168: 16165: 16160: 16156: 16152: 16149: 16145: 16125: 16113: 16109: 16088: 16085: 16077: 16061: 16058: 16055: 16035: 16032: 16029: 16021: 16018: 16017: 16016: 16003: 15998: 15994: 15990: 15987: 15962: 15959: 15938: 15932: 15928: 15924: 15918: 15912: 15909: 15904: 15894: 15891: 15887: 15883: 15876: 15872: 15867: 15856: 15843: 15823: 15818: 15785: 15781: 15772: 15768: 15761: 15757: 15752: 15731: 15704: 15694: 15684: 15681: 15678: 15674: 15665: 15638: 15635: 15632: 15613: 15610: 15607: 15595: 15591: 15584: 15563: 15551: 15547: 15534: 15530: 15524: 15521: 15518: 15514: 15510: 15508: 15493: 15490: 15487: 15477: 15473: 15469: 15461: 15457: 15446: 15432: 15429: 15426: 15422: 15418: 15413: 15410: 15407: 15402: 15397: 15393: 15389: 15377: 15375: 15360: 15357: 15354: 15344: 15340: 15336: 15330: 15324: 15321: 15303: 15293: 15289: 15252: 15250: 15235: 15232: 15221: 15215: 15205: 15202: 15199: 15191: 15173: 15163: 15157: 15106: 15099: 15090: 15086: 15081: 15068: 15045: 15042: 15039: 15035: 15031: 15026: 14993: 14985: 14980: 14978: 14974: 14973:as desired. 14960: 14953: 14949: 14944: 14940: 14934: 14928: 14908: 14903: 14899: 14895: 14884: 14878: 14864: 14851: 14848: 14837: 14831: 14821: 14818: 14815: 14807: 14803: 14798: 14793: 14789: 14785: 14781: 14777: 14773: 14769: 14764: 14760: 14753: 14749: 14745: 14739: 14735: 14731: 14727: 14723: 14716: 14710: 14703: 14699: 14695: 14689: 14685: 14674: 14668: 14656: 14652: 14648: 14626: 14623: 14620: 14609: 14603: 14593: 14590: 14587: 14573: 14557: 14536: 14533: 14530: 14527: 14519: 14515: 14511: 14490: 14478: 14474: 14452: 14449: 14446: 14426: 14423: 14418: 14414: 14393: 14388: 14384: 14380: 14377: 14357: 14354: 14349: 14345: 14324: 14317: 14313: 14308: 14304: 14298: 14292: 14272: 14266: 14260: 14256: 14249: 14241: 14214: 14205: 14201: 14198: 14178: 14175: 14172: 14152: 14149: 14146: 14143: 14119: 14115: 14110: 14106: 14102: 14093: 14089: 14083: 14056: 14049: 14045: 14040: 14034: 14031: 14028: 14024: 14020: 14011: 14002: 13986: 13951: 13948: 13945: 13941: 13937: 13932: 13905: 13902: 13899: 13896: 13887: 13885: 13867: 13862: 13852: 13842: 13839: 13836: 13832: 13824: 13823:product space 13802: 13794: 13780: 13773: 13769: 13764: 13758: 13755: 13752: 13748: 13744: 13735: 13727: 13726: 13725: 13711: 13704: 13700: 13695: 13689: 13686: 13683: 13679: 13657: 13651: 13647: 13643: 13637: 13631: 13625: 13613: 13609: 13606: 13602: 13595: 13582: 13579: 13568: 13562: 13552: 13549: 13546: 13535: 13523: 13519: 13516: 13490: 13474: 13465: 13464:compact space 13462: 13441: 13437: 13433: 13425: 13417: 13409: 13406: 13384: 13370: 13366: 13361: 13352: 13332: 13328: 13323: 13317: 13314: 13311: 13307: 13299: 13298:product space 13289: 13276: 13250: 13246: 13243: 13235: 13219: 13199: 13196: 13176: 13155: 13152: 13149: 13138: 13132: 13122: 13119: 13116: 13084: 13080: 13077: 13057: 13048: 13044: 13035: 13014: 13005: 13001: 12992: 12988: 12983: 12979: 12970: 12957: 12948: 12944: 12939: 12935: 12924: 12911: 12902: 12898: 12889: 12882: 12869: 12866: 12855: 12849: 12839: 12836: 12833: 12822: 12810: 12806: 12803: 12777: 12765: 12761: 12738: 12734: 12713: 12708: 12704: 12700: 12691: 12682: 12660: 12639: 12636: 12631: 12627: 12623: 12620: 12600: 12597: 12592: 12588: 12567: 12564: 12561: 12558: 12551:so for every 12538: 12535: 12527: 12511: 12508: 12488: 12468: 12442: 12433: 12417: 12404: 12390: 12382: 12366: 12356: 12336: 12327: 12323: 12319: 12299: 12295: 12290: 12284: 12281: 12278: 12274: 12266: 12265:product space 12262: 12259: 12237: 12216: 12213: 12208: 12204: 12200: 12197: 12177: 12174: 12169: 12165: 12145: 12142: 12139: 12136: 12129:If for every 12127: 12114: 12104: 12101: 12090: 12084: 12074: 12071: 12068: 12057: 12045: 12041: 12038: 12012: 11996: 11987: 11949: 11941: 11922: 11919: 11911: 11903: 11895: 11892: 11870: 11858: 11854: 11833: 11830: 11805: 11787: 11740: 11720: 11704: 11690: 11680: 11672: 11658: 11638: 11619: 11609: 11602: 11565: 11555: 11534: 11531: 11520: 11514: 11504: 11501: 11498: 11471: 11468: 11457: 11451: 11441: 11438: 11435: 11406: 11403: 11395: 11387: 11379: 11376: 11351: 11347: 11326: 11320: 11317: 11314: 11311: 11305: 11299: 11277: 11264: 11258: 11250: 11210: 11206: 11202: 11196: 11190: 11180: 11177: 11166: 11160: 11150: 11147: 11144: 11120: 11117: 11108: 11107: 11094: 11091: 11080: 11074: 11064: 11061: 11058: 11043: 11030: 11020: 11017: 11014: 11010: 10987: 10983: 10977: 10974: 10971: 10967: 10946: 10943: 10940: 10937: 10908:is closed in 10893: 10889: 10868: 10858: 10855: 10852: 10848: 10825: 10821: 10815: 10812: 10809: 10805: 10797:that the set 10796: 10778: 10774: 10768: 10765: 10762: 10758: 10727: 10706: 10701: 10697: 10677: 10674: 10671: 10668: 10660: 10655: 10642: 10639: 10632:pointwise on 10619: 10599: 10592:converges to 10577: 10574: 10571: 10566: 10561: 10557: 10553: 10528: 10516:converges in 10500: 10494: 10486: 10483: 10480: 10475: 10468: 10460: 10456: 10451: 10429: 10426: 10423: 10420: 10412: 10411: 10410: 10396: 10391: 10388: 10385: 10380: 10373: 10365: 10361: 10356: 10351: 10346: 10343: 10340: 10335: 10330: 10325: 10321: 10317: 10311: 10300: 10279: 10268: 10263: 10260: 10257: 10252: 10247: 10243: 10239: 10234: 10228: 10197: 10191: 10188: 10182: 10174: 10143: 10131:converges in 10115: 10107: 10093: 10088: 10085: 10082: 10077: 10072: 10068: 10064: 10059: 10053: 10026: 10023: 10020: 10017: 10009: 10008: 10007: 10005: 9990: 9982: 9979: 9976: 9971: 9966: 9962: 9958: 9949:then the net 9936: 9926: 9923: 9920: 9916: 9912: 9907: 9878: 9874: 9853: 9833: 9828: 9825: 9822: 9817: 9812: 9808: 9804: 9795: 9779: 9771: 9767: 9744: 9741: 9738: 9734: 9730: 9725: 9709: 9708: 9704: 9691: 9685: 9679: 9671: 9667: 9663: 9660: 9637: 9631: 9624: 9619: 9615: 9611: 9607: 9584: 9578: 9570: 9567: 9564: 9559: 9554: 9549: 9545: 9541: 9537: 9533: 9511: 9508: 9488: 9480: 9476: 9455: 9449: 9446: 9443: 9423: 9418: 9414: 9410: 9407: 9388: 9376: 9373: 9370: 9365: 9360: 9355: 9351: 9347: 9343: 9339: 9334: 9330: 9325: 9321: 9317: 9313: 9291: 9287: 9259: 9256: 9253: 9248: 9243: 9238: 9234: 9230: 9226: 9222: 9198: 9195: 9192: 9187: 9182: 9177: 9173: 9169: 9165: 9161: 9139: 9136: 9130: 9127: 9122: 9118: 9114: 9111: 9091: 9069: 9065: 9044: 9038: 9035: 9032: 9024: 9008: 9002: 8994: 8990: 8967: 8963: 8940: 8936: 8915: 8912: 8909: 8887: 8883: 8862: 8859: 8831: 8828: 8820: 8804: 8798: 8795: 8792: 8782: 8766: 8760: 8757: 8752: 8748: 8727: 8705: 8702: 8699: 8694: 8689: 8685: 8681: 8676: 8671: 8667: 8659: 8654: 8653: 8649: 8636: 8628: 8622: 8616: 8604: 8600: 8595: 8583: 8579: 8565: 8554: 8548: 8538: 8533: 8511: 8497: 8494: 8482: 8481:homeomorphism 8461: 8455: 8449: 8446: 8443: 8438: 8433: 8429: 8425: 8419: 8414: 8411: 8408: 8403: 8398: 8394: 8390: 8384: 8368: 8365: 8362: 8357: 8352: 8348: 8344: 8326: 8320: 8317: 8314: 8310: 8306: 8302: 8291: 8288: 8285: 8281: 8276: 8255: 8252: 8249: 8245: 8237: 8234: 8207: 8201: 8194: 8190: 8187: 8184: 8164: 8157: 8142: 8139: 8136: 8127: 8114: 8111: 8108: 8105: 8081: 8077: 8072: 8068: 8062: 8056: 8034: 8024: 8021: 7997: 7993: 7988: 7982: 7979: 7976: 7972: 7951: 7946: 7936: 7926: 7923: 7920: 7916: 7912: 7905: 7901: 7896: 7890: 7887: 7884: 7880: 7857: 7854: 7851: 7846: 7841: 7837: 7833: 7822: 7806: 7779: 7759: 7739: 7719: 7716: 7709:and function 7696: 7676: 7670: 7664: 7645: 7632: 7624: 7589: 7586: 7583: 7561: 7532: 7528: 7519: 7516: 7513: 7508: 7503: 7499: 7495: 7490: 7485: 7481: 7455: 7452: 7449: 7445: 7441: 7436: 7409: 7406: 7403: 7388: 7384: 7382: 7381:inverse limit 7378: 7374: 7370: 7352: 7318: 7315: 7312: 7308: 7280: 7277: 7274: 7270: 7266: 7261: 7231: 7226: 7223: 7220: 7215: 7210: 7206: 7202: 7178: 7174: 7154: 7141: 7135: 7107: 7104: 7101: 7074: 7071: 7068: 7064: 7041: 7038: 7035: 7030: 7025: 7021: 7017: 7012: 7007: 7003: 6972: 6971: 6957: 6952: 6949: 6946: 6935: 6929: 6907: 6895: 6891: 6880: 6866: 6844: 6830:belonging to 6809: 6806: 6803: 6796:: A function 6773: 6772: 6771: 6770: 6756: 6745: 6723: 6694: 6691: 6688: 6683: 6678: 6674: 6670: 6665: 6660: 6656: 6648: 6632: 6605: 6602: 6599: 6595: 6585: 6584: 6580: 6567: 6564: 6561: 6558: 6535: 6532: 6529: 6526: 6523: 6520: 6498: 6488: 6485: 6465: 6445: 6422: 6419: 6411: 6403: 6395: 6392: 6370: 6358: 6354: 6334: 6331: 6322: 6321: 6315: 6314: 6310: 6296: 6289: 6285: 6280: 6274: 6271: 6268: 6264: 6237: 6229: 6225: 6221: 6217: 6201: 6191: 6188: 6185: 6181: 6173: 6149: 6127: 6112: 6108: 6104: 6100: 6096: 6092: 6089: 6085: 6081: 6071: 6069: 6066: 6062: 6058: 6054: 6048: 6045: 6043: 6021: 5994: 5983: 5969: 5943: 5932: 5930: 5926: 5925:operator norm 5904: 5883: 5867: 5865: 5849: 5823: 5802: 5782: 5762: 5754: 5738: 5726: 5713: 5690: 5686: 5665: 5661: 5656: 5652: 5649: 5640: 5635: 5631: 5628: 5619: 5614: 5591: 5587: 5578: 5561: 5556: 5552: 5549: 5540: 5535: 5531: 5528: 5519: 5514: 5493: 5484: 5462: 5458: 5455: 5446: 5441: 5437: 5415: 5411: 5402: 5388: 5379: 5357: 5353: 5350: 5341: 5336: 5332: 5310: 5306: 5285: 5281: 5276: 5272: 5269: 5260: 5255: 5251: 5248: 5239: 5234: 5207: 5180: 5158: 5154: 5151: 5142: 5137: 5133: 5113: 5104: 5082: 5078: 5075: 5066: 5061: 5057: 5035: 5031: 5022: 5006: 5002: 4999: 4990: 4985: 4981: 4959: 4955: 4946: 4929: 4925: 4922: 4913: 4908: 4904: 4883: 4879: 4876: 4867: 4862: 4858: 4832: 4811: 4802: 4793: 4778: 4758: 4749: 4740: 4723: 4719: 4716: 4707: 4702: 4698: 4676: 4672: 4651: 4646: 4643: 4639: 4618: 4615: 4607: 4591: 4569: 4566: 4562: 4558: 4555: 4547: 4531: 4522: 4513: 4496: 4492: 4489: 4480: 4475: 4471: 4449: 4445: 4436: 4419: 4415: 4394: 4385: 4362: 4358: 4354: 4345: 4341: 4336: 4332: 4328: 4319: 4315: 4306: 4285: 4280: 4276: 4272: 4269: 4243: 4239: 4236: 4228: 4212: 4192: 4172: 4151: 4148: 4145: 4134: 4128: 4118: 4115: 4112: 4080: 4076: 4073: 4052: 4047: 4043: 4039: 4030: 4002: 3998: 3993: 3989: 3968: 3964: 3959: 3955: 3952: 3943: 3938: 3934: 3931: 3922: 3917: 3895: 3890: 3886: 3883: 3874: 3869: 3865: 3862: 3853: 3848: 3825: 3821: 3798: 3794: 3790: 3781: 3772: 3758: 3755: 3744: 3738: 3710: 3704: 3684: 3680: 3676: 3673: 3665: 3657: 3649: 3646: 3642: 3596: 3588: 3584: 3538: 3532: 3523: 3515: 3511: 3490: 3487: 3484: 3481: 3461: 3458: 3447: 3441: 3416: 3407: 3403: 3400: 3380: 3376: 3371: 3367: 3364: 3355: 3350: 3346: 3343: 3334: 3329: 3308: 3282: 3259: 3256: 3253: 3248: 3243: 3239: 3235: 3230: 3225: 3221: 3194: 3190: 3187: 3167: 3158: 3136: 3132: 3129: 3120: 3115: 3111: 3085: 3076: 3075: 3074: 3061: 3056: 3052: 3048: 3043: 3040: 3037: 3033: 3009: 3000: 2996: 2987: 2983: 2978: 2974: 2953: 2949: 2939: 2935: 2932: 2928: 2907: 2886: 2882: 2879: 2868: 2862: 2852: 2849: 2846: 2835: 2823: 2819: 2816: 2812: 2808: 2799: 2791: 2775: 2765: 2761: 2758: 2754: 2745: 2732: 2709: 2705: 2702: 2691: 2685: 2673: 2669: 2665: 2662: 2651: 2645: 2642: 2639: 2635: 2631: 2626: 2623: 2619: 2611: 2595: 2585: 2581: 2578: 2574: 2553: 2532: 2528: 2525: 2514: 2508: 2498: 2495: 2492: 2481: 2469: 2465: 2462: 2458: 2454: 2449: 2445: 2437: 2436: 2435: 2421: 2401: 2392: 2379: 2375: 2365: 2361: 2358: 2354: 2346: 2330: 2326: 2316: 2312: 2309: 2305: 2296: 2279: 2269: 2265: 2262: 2258: 2248: 2234: 2214: 2207:converges to 2188: 2179: 2163: 2154: 2150: 2147: 2127: 2123: 2119: 2116: 2107: 2102: 2098: 2077: 2072: 2068: 2065: 2056: 2051: 2047: 2044: 2035: 2030: 2003: 1994: 1990: 1974: 1970: 1965: 1961: 1958: 1949: 1944: 1940: 1937: 1928: 1923: 1901: 1896: 1892: 1889: 1880: 1875: 1871: 1868: 1859: 1854: 1845: 1828: 1823: 1819: 1816: 1807: 1802: 1798: 1795: 1786: 1781: 1760: 1756: 1751: 1747: 1744: 1735: 1730: 1726: 1723: 1714: 1709: 1700: 1697: 1681: 1677: 1673: 1670: 1661: 1656: 1652: 1645: 1623: 1613: 1611: 1607: 1603: 1587: 1575: 1550: 1534: 1509: 1490: 1477: 1473: 1468: 1464: 1461: 1452: 1447: 1443: 1440: 1431: 1426: 1404: 1394: 1390: 1387: 1383: 1362: 1340: 1336: 1315: 1306: 1284: 1280: 1277: 1268: 1263: 1259: 1252: 1236: 1229:of origin in 1216: 1209: 1192: 1188: 1185: 1174: 1168: 1158: 1155: 1152: 1141: 1129: 1125: 1122: 1118: 1114: 1109: 1105: 1097: 1081: 1072: 1064: 1060: 1056: 1050: 1036: 1028: 1016: 1003: 997: 991: 969: 966: 963: 958: 951: 943: 939: 934: 912: 892: 885:converges to 870: 866: 845: 840: 837: 834: 829: 824: 820: 816: 811: 806: 802: 793: 777: 769: 753: 749: 745: 742: 733: 728: 724: 698: 676: 672: 669: 660: 655: 651: 625: 616: 594: 590: 581: 560: 551: 542: 538: 522: 513: 509: 507: 490: 485: 481: 478: 475: 471: 467: 458: 454: 451: 447: 423: 417: 398: 387: 383: 380: 377: 373: 338: 334: 331: 328: 324: 320: 317: 314: 310: 300: 299: 283: 275: 253: 210: 200: 196: 192: 182: 180: 176: 172: 168: 164: 160: 156: 151: 149: 145: 141: 138: 134: 133:Stefan Banach 112: 109: 106: 97: 89: 83: 75: 71: 69: 65: 61: 57: 53: 49: 45: 41: 38: 34: 30: 26: 22: 32123:Polynomially 32052:Grothendieck 32045:tame Fréchet 31995:Bornological 31855:Linear cone 31847:Convex cone 31822:Banach disks 31764:Sesquilinear 31631: 31619:Main results 31609:Vector space 31564:Completeness 31559:Banach space 31464:Balanced set 31438:Distribution 31376:Applications 31243: 31229:Krein–Milman 31214:Closed graph 30965:Mackey–Arens 30959: 30953:Main results 30769:. Retrieved 30743: 30704: 30666: 30636: 30602: 30566: 30535: 30516: 30481: 30455:. Retrieved 30443: 30439: 30411: 30399: 30347: 28719: 28710: 28709: 28166: 27705: 27600: 27323: 26454: 26236: 26128: 25825: 25803: 25799: 25785: 25760: 25756: 25748: 25738: 24980:Banach space 24876:normed space 24854:Assume that 24853: 24845:Consequences 24383: 24343: 24136: 23925: 23839: 23592: 23130: 23115: 22625: 22254:In fact, if 22253: 21398: 21101: 20924: 20694: 20618: 19134: 18006: 17766:in place of 17309: 17118:is a net in 17021: 16732: 16317:is a net in 16233: 16019: 15858: 14981: 14977:Proof of (2) 14976: 14975: 14865: 14337:Recall that 13999:coordinate ( 13888: 13884:Proof of (1) 13883: 13882: 13295: 12926: 12925: 12410:Assume that 12409: 12358: 12128: 11706: 11678: 11601:identity map 11247:denotes the 11109: 11045: 11044: 10656: 10543: 10158: 9710: 9706: 9705: 8902:at an index 8781:directed set 8655: 8651: 8650: 8129:If a subset 8128: 7823: 7389: 7246: 6586: 6582: 6581: 6458:centered at 6323: 6077: 6046: 5934: 5869: 5730: 5705:is compact. 5577:complete TVS 5172:topology on 4824:a subset of 3274:is a net in 3024: 2393: 2295:dual pairing 2249: 2091:is equal to 1844:complete TVS 1842:is always a 1614: 1549:real numbers 1501: 1208:neighborhood 1053:necessarily 1018: 514: 365:defined by 202: 178: 174: 170: 154: 152: 140:normed space 81: 72: 32: 28: 18: 32117:Quasinormed 32030:FK-AK space 31924:Linear span 31919:Convex hull 31904:Affine hull 31707:Almost open 31647:Hahn–Banach 31393:Heat kernel 31383:Hardy space 31290:Trace class 31204:Hahn–Banach 31166:Topological 30944:Ultrastrong 30927:Strong dual 30835:Dual system 28289:defined by 28170:This tuple 27328:dual space 26130:Compactness 26000:subsets of 25949:: whenever 25689:trace class 24684:defined by 24556:such that 24530:indexed by 24167:denoted by 22699:the unique 21480:such that 19287:by letting 19136:Proof that 18008:Proof that 16020:Observation 12927:Proof that 11988:). Define 11708:Proposition 7385:projections 7128:defined by 6879:-indexed) " 6091:convergence 2725:bipolar of 2250:The triple 1846:; however, 1606:dual system 508:called the 506:dual system 195:Dual system 25:mathematics 32232:Categories 32157:Stereotype 32015:(DF)-space 32010:Convenient 31749:Functional 31717:Continuous 31702:Linear map 31642:F. Riesz's 31584:Linear map 31326:C*-algebra 31141:Properties 30875:Topologies 30830:Dual space 30470:References 30404:Köthe 1983 30352:Rudin 1991 29657:for every 29595:for every 28675:for every 28369:for every 27638:is also a 27407:such that 27325:continuous 26027:such that 25771:case (see 25733:See also: 25419:such that 24451:and a net 23926:For every 23126:metrizable 21367:subset of 19391:for every 17682:for every 14136:for every 13236:(that is, 12613:such that 10930:for every 10413:for every 10010:for every 9866:and every 8156:partitions 8098:for every 8049:such that 7732:"plugging 6995:: A tuple 5984:impossible 5862:(with the 5050:is also a 4514:subset of 4437:Show that 4229:(that is, 3773:Show that 3474:for every 3077:Show that 2966:Note that 2434:and let: 1773:The space 1694:then this 1328:Moreover, 189:See also: 44:dual space 32173:Uniformly 32132:Reflexive 31980:Barrelled 31976:Countably 31888:Symmetric 31786:Transpose 31300:Unbounded 31295:Transpose 31253:Operators 31182:Separable 31177:Reflexive 31162:Algebraic 31148:Barrelled 31002:Total set 30888:Dual norm 30855:Polar set 30685:853623322 30665:(2006) . 30655:175294365 30625:840278135 30554:144216834 30508:840293704 30480:(1983) . 30339:Citations 30320:◼ 30294:≤ 30281:≤ 30189:∈ 30182:∏ 30161:∈ 30098:∙ 30085:∏ 30069:∩ 30066:∈ 30040:≤ 29995:∈ 29966:≤ 29936:∈ 29906:# 29869:∈ 29841:# 29833:∩ 29815:∩ 29807:∈ 29782:# 29774:∩ 29756:∩ 29745:⊆ 29737:′ 29729:∩ 29711:∩ 29700:⊆ 29668:∈ 29642:≤ 29606:∈ 29545:∈ 29383:⊆ 29321:∩ 29288:∈ 29275:∩ 29245:∈ 29240:∙ 29205:∩ 29202:⊆ 29154:∈ 29147:∏ 29111:∈ 29106:∙ 29097:⋂ 29088:∈ 29081:∏ 29052:∈ 29045:∏ 29029:∈ 29024:∙ 29015:⋂ 28998:∩ 28963:∈ 28958:∙ 28889:∈ 28796:∈ 28772:∩ 28746:∞ 28734:⊆ 28686:∈ 28660:≤ 28594:≤ 28558:∈ 28503:∈ 28474:∞ 28462:→ 28451:∙ 28380:∈ 28347:≤ 28315:∙ 28307:≤ 28302:∙ 28237:∈ 28183:∙ 28144:# 28107:∈ 28100:∏ 28077:# 28034:∖ 28028:∈ 28021:∏ 28017:× 27992:∈ 27985:∏ 27969:∩ 27964:# 27928:# 27901:# 27863:∖ 27857:∈ 27850:∏ 27846:× 27821:∈ 27814:∏ 27745:∈ 27738:∏ 27658:∈ 27651:∏ 27583:ν 27561:# 27533:ν 27482:ν 27476:∘ 27448:ν 27375:ν 27353:′ 27345:σ 27308:σ 27302:∘ 27275:σ 27269:∘ 27239:# 27212:σ 27206:∘ 27193:τ 27187:∘ 27160:∘ 27133:τ 27127:∘ 27092:≤ 27062:∈ 27040:′ 27032:σ 27020:∈ 26979:σ 26973:∘ 26945:σ 26894:′ 26886:σ 26854:σ 26819:σ 26750:σ 26730:τ 26708:# 26629:≤ 26599:∈ 26577:′ 26569:∈ 26551:∘ 26524:# 26511:∘ 26466:τ 26427:′ 26381:′ 26368:σ 26360:′ 26324:′ 26293:′ 26266:′ 26258:⊆ 26253:′ 26101:∈ 26094:⋂ 26090:∩ 26053:∈ 26041:∩ 26013:′ 25892:′ 25781:Hausdorff 25769:separable 25606:reflexive 25579:μ 25515:′ 25501:μ 25485:∈ 25473:μ 25460:∫ 25457:→ 25454:μ 25427:∫ 25404:∈ 25379:∞ 25298:… 25186:∞ 25151:μ 25013:′ 24994:σ 24984:reflexive 24953:′ 24926:′ 24907:dual norm 24891:′ 24829:◼ 24805:∙ 24801:λ 24763:′ 24726:∈ 24708:λ 24667:→ 24624:∙ 24620:λ 24616:→ 24608:∈ 24541:∈ 24493:∈ 24436:∈ 24428:∈ 24411:λ 24397:∙ 24393:λ 24363:′ 24318:∈ 24287:↦ 24265:→ 24256:′ 24186:′ 24150:′ 24052:∈ 24045:∏ 24015:‖ 24009:‖ 24006:≤ 23982:∈ 23937:∈ 23853:′ 23710:′ 23702:∈ 23699:… 23625:→ 23620:′ 23525:′ 23500:⟩ 23497:⋅ 23491:⋅ 23488:⟨ 23480:in which 23460:⟩ 23441:− 23435:⟨ 23415:⟩ 23396:− 23390:⟨ 23374:− 23363:∞ 23348:∑ 23326:ρ 23304:∈ 23273:∞ 23234:∙ 23184:′ 23118:separable 23048:∙ 23019:∘ 23007:⁡ 22983:∘ 22956:# 22945:⁡ 22931:# 22918:(because 22855:∞ 22843:→ 22829:∈ 22775:∙ 22739:⊆ 22665:∈ 22658:∏ 22647:∙ 22634:∏ 22572:⋂ 22542:∈ 22529:∩ 22519:∙ 22506:∏ 22474:∙ 22461:∏ 22458:⊆ 22439:∙ 22426:∏ 22394:∈ 22389:∙ 22368:∙ 22355:∏ 22321:⁡ 22233:∙ 22190:∈ 22185:∙ 22121:∈ 22088:∈ 22083:∙ 22049:∙ 22036:∏ 22033:⊆ 22006:∈ 22001:∙ 21920:∈ 21912:∈ 21881:∙ 21834:∈ 21827:∏ 21793:∙ 21780:∏ 21758:# 21725:∘ 21669:∙ 21618:∈ 21611:∏ 21607:∩ 21597:′ 21557:∈ 21550:∏ 21546:∩ 21536:# 21514:# 21497:∘ 21463:∈ 21432:∙ 21380:# 21336:⊆ 21316:# 21308:∈ 21269:# 21214:∈ 21152:∞ 21114:⊆ 21083:◼ 21045:# 21032:σ 21024:# 20981:∈ 20974:∏ 20901:Hausdorff 20866:# 20853:σ 20845:# 20799:# 20786:σ 20744:# 20728:When the 20709:# 20677:# 20638:∈ 20631:∏ 20600:◼ 20491:→ 20471:∙ 20416:→ 20396:∙ 20354:∙ 20338:∈ 20287:∈ 20220:∈ 20140:∈ 20096:∙ 20088:∘ 20050:∙ 19877:→ 19868:∙ 19738:→ 19730:× 19691:× 19633:→ 19628:∙ 19588:→ 19580:∈ 19529:∙ 19492:→ 19484:∈ 19433:∙ 19402:∈ 19270:× 19262:→ 19248:∈ 19217:∙ 19030:→ 19013:∙ 18970:→ 18953:∙ 18902:∙ 18859:∈ 18719:∈ 18662:→ 18648:∈ 18597:∙ 18567:∈ 18486:∙ 18478:∘ 18431:∙ 18317:→ 18298:∙ 18228:→ 18214:∙ 18080:→ 17975:→ 17958:∙ 17922:→ 17902:∙ 17878:→ 17864:∙ 17840:→ 17826:∙ 17711:By using 17693:∈ 17636:→ 17622:∙ 17562:→ 17557:∙ 17524:∈ 17450:∙ 17403:∙ 17372:→ 17352:∙ 17321:∈ 17290:∈ 17216:# 17208:∈ 17131:# 17101:∈ 17070:∙ 17033:∈ 16964:∈ 16957:∏ 16811:# 16747:# 16717:◼ 16691:∈ 16648:) subset 16613:⊆ 16591:∈ 16520:→ 16512:∈ 16452:∈ 16423:⊆ 16378:∈ 16300:∈ 16247:∈ 16181:⊆ 16153:∈ 16059:⊆ 16033:⊆ 15925:⊆ 15895:∈ 15844:◼ 15790:# 15777:# 15769:∩ 15682:∈ 15675:∏ 15611:∈ 15522:∈ 15515:∏ 15491:∈ 15470:∈ 15430:∈ 15423:∏ 15419:∈ 15411:∈ 15358:∈ 15337:∈ 15294:∈ 15233:≤ 15203:∈ 15164:∈ 15043:∈ 15036:∏ 14998:# 14941:∈ 14896:≤ 14849:≤ 14819:∈ 14808:≤ 14621:≤ 14591:∈ 14531:∈ 14450:∈ 14381:∈ 14305:∈ 14210:# 14202:∈ 14176:∈ 14147:∈ 14107:⊆ 14098:# 14032:∈ 14025:∏ 14021:⊆ 14016:# 13962:→ 13949:∈ 13942:∏ 13900:∈ 13840:∈ 13833:∏ 13807:# 13756:∈ 13749:∏ 13745:⊆ 13740:# 13687:∈ 13680:∏ 13644:⊆ 13618:# 13610:∈ 13580:≤ 13550:∈ 13528:# 13520:∈ 13479:# 13461:Hausdorff 13434:≤ 13410:∈ 13315:∈ 13308:∏ 13277:◼ 13255:′ 13247:∈ 13150:≤ 13120:∈ 13089:# 13081:∈ 13053:′ 13045:⊆ 13040:# 13010:′ 13002:∩ 12997:# 12984:∘ 12953:# 12940:∘ 12907:′ 12899:∩ 12894:# 12867:≤ 12837:∈ 12815:′ 12807:∈ 12766:∘ 12739:∘ 12709:∘ 12696:# 12665:# 12624:∈ 12562:∈ 12461:and that 12447:′ 12341:# 12282:∈ 12275:∏ 12242:# 12201:∈ 12140:∈ 12102:≤ 12072:∈ 12050:# 12042:∈ 12001:# 11938:with its 11920:≤ 11896:∈ 11502:∈ 11469:≤ 11439:∈ 11380:∈ 11318:∈ 11203:⊆ 11178:≤ 11148:∈ 11092:≤ 11062:∈ 11018:∈ 11011:∏ 10975:∈ 10968:∏ 10941:∈ 10856:∈ 10849:∏ 10813:∈ 10806:∏ 10766:∈ 10759:∏ 10707:⊆ 10672:∈ 10575:∈ 10492:→ 10484:∈ 10424:∈ 10389:∈ 10344:∈ 10261:∈ 10098:→ 10086:∈ 10021:∈ 10004:converges 9988:→ 9980:∈ 9924:∈ 9917:∏ 9826:∈ 9742:∈ 9735:∏ 9677:→ 9672:∙ 9664:∘ 9629:→ 9620:∙ 9576:→ 9568:∈ 9486:→ 9481:∙ 9453:→ 9419:∙ 9411:∘ 9374:∈ 9326:∙ 9292:∙ 9265:∞ 9196:∈ 9134:→ 9123:∙ 9115:∘ 9070:∙ 9042:→ 8995:∙ 8913:∈ 8888:∙ 8857:→ 8799:≤ 8764:→ 8753:∙ 8703:∈ 8672:∙ 8620:∖ 8573:↦ 8552:∖ 8539:× 8521:→ 8453:∖ 8447:∈ 8412:∈ 8378:↦ 8366:∈ 8324:∖ 8318:∈ 8311:∏ 8307:× 8289:∈ 8282:∏ 8270:→ 8253:∈ 8246:∏ 8205:∖ 8195:∪ 8140:⊆ 8109:∈ 8069:∈ 8025:∈ 7980:∈ 7973:∏ 7924:∈ 7917:∏ 7913:⊆ 7888:∈ 7881:∏ 7855:∈ 7593:→ 7525:↦ 7517:∈ 7486:∙ 7466:→ 7453:∈ 7446:∏ 7407:∈ 7316:∈ 7309:∏ 7278:∈ 7271:∏ 7224:∈ 7111:→ 7072:∈ 7065:∏ 7039:∈ 7008:∙ 6981:→ 6950:∈ 6896:∙ 6813:→ 6782:→ 6774:Function 6749:→ 6692:∈ 6661:∙ 6645:-indexed 6603:∈ 6596:∏ 6562:⊆ 6533:∈ 6420:≤ 6396:∈ 6272:∈ 6265:∏ 6242:# 6189:∈ 6182:∏ 6153:→ 6068:Hausdorff 6063:that all 6026:′ 5999:′ 5948:′ 5909:′ 5828:′ 5714:◼ 5691:∘ 5645:# 5632:σ 5624:# 5592:∘ 5545:# 5532:σ 5524:# 5489:′ 5451:′ 5438:σ 5416:∘ 5384:# 5346:# 5333:σ 5311:∘ 5265:# 5252:σ 5244:# 5212:′ 5185:′ 5147:′ 5134:σ 5109:# 5071:# 5058:σ 5036:∘ 4995:′ 4982:σ 4960:∘ 4918:′ 4905:σ 4872:′ 4859:σ 4837:′ 4807:′ 4754:′ 4712:′ 4699:σ 4677:∘ 4647:∘ 4644:∘ 4570:∘ 4567:∘ 4559:⊆ 4527:′ 4485:′ 4472:σ 4450:∘ 4420:∘ 4390:′ 4363:∘ 4350:′ 4342:∩ 4337:∘ 4324:′ 4316:∩ 4311:# 4281:∘ 4273:∈ 4262:) and so 4248:′ 4240:∈ 4146:≤ 4116:∈ 4085:# 4077:∈ 4048:∘ 4040:⊆ 4035:# 4007:# 3999:⊆ 3994:∘ 3948:′ 3935:σ 3927:′ 3879:# 3866:σ 3858:# 3826:∘ 3799:∘ 3786:# 3756:≤ 3674:≤ 3650:∈ 3634:) subset 3530:→ 3485:∈ 3459:≤ 3412:# 3404:∈ 3360:# 3347:σ 3339:# 3287:# 3257:∈ 3226:∙ 3199:# 3191:∈ 3163:# 3125:# 3112:σ 3090:# 3057:∘ 3049:⊆ 3044:∘ 3041:∘ 3038:∘ 3005:′ 2997:∩ 2992:# 2979:∘ 2944:# 2880:≤ 2850:∈ 2828:# 2820:∈ 2804:# 2770:′ 2703:≤ 2674:∘ 2666:∈ 2643:∈ 2627:∘ 2624:∘ 2590:′ 2526:≤ 2496:∈ 2474:′ 2466:∈ 2450:∘ 2370:′ 2321:# 2274:′ 2193:′ 2159:′ 2151:∈ 2112:′ 2099:σ 2061:# 2048:σ 2040:# 2008:′ 1954:# 1941:σ 1933:# 1885:′ 1872:σ 1864:′ 1812:# 1799:σ 1791:# 1740:# 1727:σ 1719:# 1696:Hausdorff 1666:# 1653:σ 1628:# 1602:polar set 1457:# 1444:σ 1436:# 1399:# 1341:∘ 1311:′ 1273:′ 1260:σ 1186:≤ 1156:∈ 1134:′ 1126:∈ 1110:∘ 1077:′ 1055:Hausdorff 967:∈ 871:∙ 838:∈ 807:∙ 738:′ 725:σ 703:′ 665:# 652:σ 630:# 599:# 591:⊆ 586:′ 556:′ 482:⋅ 476:⋅ 463:# 348:→ 343:# 335:× 321:⋅ 315:⋅ 258:# 199:Polar set 185:Statement 137:separable 40:unit ball 32217:Category 32168:Strictly 32142:Schwartz 32082:LF-space 32077:LB-space 32035:FK-space 32005:Complete 31985:BK-space 31910:Relative 31857:(subset) 31849:(subset) 31776:Seminorm 31759:Bilinear 31502:Category 31314:Algebras 31196:Theorems 31153:Complete 31122:Schwartz 31068:glossary 30937:operator 30910:operator 30771:July 22, 30766:47767143 30741:(2002). 30731:21195908 30703:(1990). 30635:(1996). 30590:21163277 30564:(1991). 28492:For any 28129:because 27888:The set 27114:so that 26160:See also 26132:implies 26075:has the 25720:has the 25218:satisfy 25198:and let 25129:Lp space 24744:lies in 24377:has the 24030:and let 22872:seminorm 22760:balanced 21868:for any 21256:), then 20898:complete 19420:Because 18181:Because 17544:Because 17310:For any 16470:because 16441:For any 15636:∉ 14550:Because 14227:Because 14191:and let 13889:For any 12971:Because 12261:subspace 11599:and the 11249:supremum 10724:is some 10442:the net 10039:the net 9711:The set 9707:Topology 8819:sequence 7373:category 6993:Function 6551:for any 5506:Because 4974:is also 4771:Because 4099:so that 3503:Because 2950:⟩ 2929:⟨ 2776:⟩ 2755:⟨ 2596:⟩ 2575:⟨ 2376:⟩ 2355:⟨ 2327:⟩ 2306:⟨ 2280:⟩ 2259:⟨ 1405:⟩ 1384:⟨ 1025:For any 858:the net 794:of maps 504:forms a 491:⟩ 486:⟩ 472:⟨ 448:⟨ 388:⟩ 374:⟨ 325:⟩ 311:⟨ 298:bilinear 159:Bourbaki 32182:)  32130:)  32072:K-space 32057:Hilbert 32040:Fréchet 32025:F-space 32000:Brauner 31993:)  31978:)  31960:Asplund 31942:)  31912:)  31832:Bounded 31727:Compact 31712:Bounded 31649: ( 31305:Unitary 31285:Nuclear 31270:Compact 31265:Bounded 31260:Adjoint 31234:Min–max 31127:Sobolev 31112:Nuclear 31102:Hilbert 31097:Fréchet 31062: ( 30990:Subsets 30922:Mackey 30845:Duality 30811:Duality 30500:0248498 29984:so let 29431:nullary 28254:is the 26445:(resp. 26443:compact 26079:, then 25393:and an 23084:closure 22249:infimum 17389:denote 16867:(where 16734:Lemma ( 14165:So fix 12263:of the 12258:compact 11775:(where 10881:And if 9213:(or by 7371:in the 4544:By the 4205:; thus 2723:be the 2345:pairing 1206:of any 1061:) with 173:or the 78:History 60:product 54:in the 52:compact 42:of the 32194:Webbed 32180:Quasi- 32102:Montel 32092:Mackey 31991:Ultra- 31970:Banach 31878:Radial 31842:Convex 31812:Affine 31754:Linear 31722:Closed 31546:(TVSs) 31280:Normal 31117:Orlicz 31107:Hölder 31087:Banach 31076:Spaces 31064:topics 30815:linear 30764:  30754:  30729:  30719:  30683:  30673:  30653:  30643:  30623:  30613:  30588:  30578:  30552:  30542:  30523:  30506:  30498:  30488:  30457:26 Dec 29898:  29875:  29748:  29742:  29703:  29697:  29401:family 28711:Proofs 28211:  28188:  27956:  27933:  27803:  27797:  27051:  27045:  27007:  26984:  26588:  26582:  26154:convex 26138:family 25995:convex 25931:weak-* 25166:where 23201:Since 22803:  22780:  22756:convex 22564:where 22498:then 22452:  22446:  22418:  22412:  22381:  22375:  22347:  22324:  22027:  22021:  21988:  21965:  21823:  21800:  21717:  21694:  21297:  21274:  21184:  21161:  20082:  20059:  19804:  19781:  19328:  19305:  18894:  18819:  18785:  18762:  18679:  18581:  18578:  18575:  18517:  18472:  18160:  18137:  17487:  17464:  16236:: Let 16142:  16119:  16076:closed 15580:  15557:  15467:  15454:  15450:  15444:  15319:  15316:  15312:  15309:  15287:  15284:  15280:  15277:  15273:  15270:  15266:  15263:  15189:  15186:  15182:  15179:  15161:  15155:  15152:  15148:  15145:  15141:  15138:  15134:  15131:  14507:  14484:  13629:  13623:  13599:  13593:  13539:  13533:  13507:  13484:  13401:  13378:  12886:  12880:  12826:  12820:  12794:  12771:  12061:  12055:  12029:  12006:  11887:  11864:  11636:  11613:  11582:  11559:  11294:  11271:  11225:where 10296:  10273:  9846:where 9792:and a 9405:  9382:  8817:Every 7662:  7639:  7171:  7148:  6973:Tuple 6924:  6901:  6647:tuples 6515:  6492:  6387:  6364:  6222:, and 6218:, the 4604:is an 2839:  2833:  2655:  2649:  2485:  2479:  1608:, and 1145:  1139:  1029:(TVS) 790:and a 573:where 415:  392:  197:, and 37:closed 27:, the 32152:Smith 32137:Riesz 32128:Semi- 31940:Quasi 31934:Polar 31092:Besov 30905:polar 30748:(PDF) 30436:(PDF) 30055:From 29191:From 28576:then 26695:(and 26441:is a 26414:then 26228:Notes 25909:Then 25773:above 25059:is a 24874:is a 23923:Proof 23840:When 23539:with 22942:cobal 22870:is a 22070:then 21363:is a 20896:is a 16101:then 16074:is a 16022:: If 15744:Thus 14866:Thus 14570:is a 13459:is a 13232:is a 13212:thus 13103:then 12430:is a 12379:is a 12229:then 10959:then 10544:Thus 10214:and 9084:into 9025:, if 8177:into 7792:into 7752:into 6794:Tuple 5751:is a 5575:is a 5430:is a 5325:is a 4691:is a 4464:is a 4225:is a 3104:is a 2293:is a 1995:that 1499:Proof 1096:polar 535:is a 245:then 46:of a 31771:Norm 31695:form 31683:Maps 31440:(or 31158:Dual 30974:Maps 30900:Weak 30817:maps 30773:2020 30762:OCLC 30752:ISBN 30727:OCLC 30717:ISBN 30681:OCLC 30671:ISBN 30651:OCLC 30641:ISBN 30621:OCLC 30611:ISBN 30586:OCLC 30576:ISBN 30550:OCLC 30540:ISBN 30521:ISBN 30504:OCLC 30486:ISBN 30459:2021 29460:and 29343:the 29267:and 28907:let 28642:and 28532:> 26960:by 26673:only 25836:Let 25822:); 25794:for 25687:the 25264:Let 25183:< 25177:< 24777:and 23955:let 22758:and 21739:(so 21202:> 19711:Let 19516:and 18061:Let 17339:let 17022:Let 16795:The 15980:and 14982:The 14355:> 13918:let 13296:The 12598:> 12175:> 11713:Let 11671:). 11532:< 11404:< 11251:and 7821:". 7390:The 7377:sets 6478:and 6109:and 6061:Weil 5579:and 4066:let 3909:and 3180:Let 2394:Let 1094:the 153:The 30607:GTM 30448:doi 30073:Box 29929:sup 29889:def 29819:Box 29760:Box 29715:Box 29469:Box 29411:Box 29356:Box 29347:of 29325:Box 29292:Box 29279:Box 29209:Box 29002:Box 28929:inf 28816:inf 28521:if 28258:of 28202:def 27947:def 27496:of 27429:not 27427:is 27055:sup 26998:def 26869:by 26675:on 26651:of 26592:sup 26458:If 25993:by 25941:or 25765:not 25761:ZFC 25039:If 24982:is 24969:not 24909:. 24565:lim 23086:in 22898:of 22794:def 22712:Box 22703:of 22603:Box 22576:Box 22546:Box 22533:Box 22338:def 22312:Box 22263:Box 22159:inf 21979:def 21947:if 21814:def 21708:def 21288:def 21236:of 21175:def 20073:def 19925:in 19795:def 19678:in 19319:def 18776:def 18461:def 18252:in 18151:def 17660:in 17577:in 17478:def 17165:in 16911:or 16889:is 16544:in 16133:def 15666:on 15571:def 15196:sup 15114:def 14979:: 14812:sup 14584:sup 14498:def 13886:: 13543:sup 13498:def 13392:def 13113:sup 13070:If 12830:sup 12785:def 12528:of 12065:sup 12020:def 11878:def 11681:not 11651:on 11627:def 11573:def 11495:sup 11432:sup 11285:def 11234:sup 11141:sup 11055:sup 10728:of 10287:def 9794:net 9653:or 9501:in 9396:def 9279:if 8821:in 8720:in 8658:net 7653:def 7610:to 7387:. 7375:of 7162:def 7056:in 6915:def 6506:def 6378:def 6093:in 6088:net 6049:not 5962:of 5876:If 5842:of 5731:If 4851:is 4794:of 4741:of 4608:of 4109:sup 3321:in 2843:sup 2659:sup 2489:sup 2180:in 2178:net 1612:. 1572:or 1522:by 1298:on 1149:sup 1057:or 1051:not 792:net 717:by 644:by 617:on 515:If 512:. 406:def 276:of 203:If 165:on 161:to 84:the 50:is 19:In 32234:: 31066:– 30760:. 30725:. 30715:. 30707:. 30679:. 30649:. 30619:. 30605:. 30584:. 30574:. 30548:. 30502:. 30496:MR 30494:. 30444:77 30442:. 30438:. 30423:^ 30376:^ 30359:^ 30164:Pr 30140:Pr 30043:1. 25933:) 25804:HB 25800:HB 25757:ZF 25749:ZF 25608:). 25252:1. 24978:A 23919:. 23590:. 22998:cl 20909:. 15991::= 15963::= 14852:1. 14424::= 14235:Pr 14077:Pr 13926:Pr 11639:Id 10305:Pr 10222:Pr 10168:Pr 10101:Pr 10047:Pr 8656:A 7800:Pr 7618:Pr 7555:Pr 7430:Pr 6883:" 5931:. 4548:, 3759:1. 2176:a 1604:, 193:, 181:. 32178:( 32163:B 32161:( 32121:( 31989:( 31974:( 31938:( 31908:( 31658:) 31536:e 31529:t 31522:v 31444:) 31168:) 31164:/ 31160:( 31070:) 31052:e 31045:t 31038:v 30803:e 30796:t 30789:v 30775:. 30733:. 30687:. 30657:. 30627:. 30592:. 30556:. 30529:. 30510:. 30461:. 30450:: 30300:, 30297:1 30289:u 30285:m 30277:| 30273:) 30270:u 30267:( 30264:f 30260:| 30239:, 30232:u 30228:m 30223:B 30219:= 30215:) 30207:x 30203:m 30198:B 30192:X 30186:x 30177:( 30171:u 30158:) 30155:f 30152:( 30147:u 30137:= 30134:) 30131:u 30128:( 30125:f 30105:, 30094:m 30089:B 30082:= 30077:P 30063:f 30036:| 30032:) 30029:u 30026:( 30023:f 30019:| 29998:U 29992:u 29972:, 29969:1 29962:| 29958:) 29955:u 29952:( 29949:f 29945:| 29939:U 29933:u 29902:U 29882:= 29872:P 29866:f 29846:. 29837:X 29829:) 29823:P 29811:( 29804:f 29778:X 29770:) 29764:P 29752:( 29733:X 29725:) 29719:P 29707:( 29694:P 29674:. 29671:U 29665:u 29645:1 29637:u 29633:m 29612:, 29609:U 29603:u 29583:1 29580:= 29575:u 29571:r 29548:X 29542:x 29537:) 29532:x 29528:r 29524:( 29500:P 29496:T 29473:P 29446:P 29442:T 29415:P 29386:. 29360:P 29329:P 29301:, 29296:P 29283:P 29253:P 29249:T 29236:m 29213:P 29199:P 29179:. 29172:x 29168:m 29163:B 29157:X 29151:x 29143:= 29136:x 29132:R 29127:B 29119:P 29115:T 29102:R 29091:X 29085:x 29077:= 29070:x 29066:R 29061:B 29055:X 29049:x 29037:P 29033:T 29020:R 29011:= 29006:P 28977:} 28971:P 28967:T 28954:R 28950:: 28945:x 28941:R 28936:{ 28925:= 28920:x 28916:m 28895:, 28892:X 28886:x 28865:K 28844:0 28822:A 28811:B 28807:= 28803:} 28799:A 28793:a 28790:: 28785:a 28781:B 28776:{ 28752:, 28749:) 28743:, 28740:0 28737:[ 28731:A 28692:. 28689:U 28683:u 28663:1 28655:u 28651:m 28630:0 28627:= 28622:0 28618:m 28597:r 28589:x 28585:m 28564:U 28561:r 28555:x 28535:0 28529:r 28509:, 28506:X 28500:x 28480:. 28477:) 28471:, 28468:0 28465:[ 28459:X 28456:: 28447:m 28426:X 28406:U 28386:. 28383:X 28377:x 28355:x 28351:S 28342:x 28338:R 28311:S 28298:R 28271:P 28267:T 28240:X 28234:x 28229:) 28224:x 28220:m 28216:( 28195:= 28179:m 28149:. 28140:X 28116:K 28110:X 28104:x 28073:U 28052:. 28048:] 28043:K 28037:U 28031:X 28025:x 28012:) 28005:1 28001:B 27995:U 27989:u 27979:( 27973:[ 27960:X 27940:= 27924:U 27897:U 27876:. 27872:K 27866:U 27860:X 27854:x 27841:) 27834:1 27830:B 27824:U 27818:u 27808:( 27800:= 27790:1 27786:B 27781:U 27758:x 27754:C 27748:X 27742:x 27734:= 27727:1 27723:B 27718:U 27700:. 27676:x 27672:r 27667:B 27661:X 27655:x 27622:x 27618:r 27613:B 27557:U 27536:) 27530:, 27527:X 27524:( 27504:U 27479:, 27472:U 27451:) 27445:, 27442:X 27439:( 27415:U 27395:X 27349:) 27342:, 27339:X 27336:( 27305:, 27298:U 27272:, 27265:U 27244:. 27235:U 27209:, 27202:U 27198:= 27190:, 27183:U 27156:U 27130:, 27123:U 27100:} 27095:1 27088:| 27084:) 27081:u 27078:( 27075:f 27071:| 27065:U 27059:u 27048:: 27036:) 27029:, 27026:X 27023:( 27017:f 27012:{ 26991:= 26976:, 26969:U 26948:) 26942:, 26939:X 26936:( 26916:U 26890:) 26883:, 26880:X 26877:( 26857:) 26851:, 26848:X 26845:( 26825:. 26822:) 26816:, 26813:X 26810:( 26790:U 26770:X 26704:X 26683:U 26659:U 26637:} 26632:1 26625:| 26621:) 26618:u 26615:( 26612:f 26608:| 26602:U 26596:u 26585:: 26573:X 26566:f 26561:{ 26556:= 26547:U 26520:U 26516:= 26507:U 26486:X 26423:B 26402:, 26398:) 26393:) 26389:X 26386:, 26377:X 26372:( 26365:, 26356:X 26351:( 26320:B 26289:X 26262:X 26249:B 26113:C 26106:C 26098:C 26087:B 26063:} 26058:C 26050:C 26047:: 26044:C 26038:B 26035:{ 26009:X 25981:B 25959:C 25917:B 25897:. 25888:X 25864:B 25844:X 25798:( 25747:( 25708:) 25705:H 25702:( 25699:B 25675:, 25672:) 25669:H 25666:( 25663:B 25635:) 25632:H 25629:( 25626:B 25582:) 25576:( 25571:1 25567:L 25546:1 25543:= 25540:p 25520:. 25511:X 25507:= 25504:) 25498:( 25493:q 25489:L 25482:g 25470:d 25466:g 25463:f 25451:d 25447:g 25440:k 25436:n 25431:f 25407:X 25401:f 25374:1 25371:= 25368:k 25363:) 25356:k 25352:n 25347:f 25343:( 25321:. 25318:X 25295:, 25290:2 25286:f 25282:, 25277:1 25273:f 25249:= 25244:q 25241:1 25236:+ 25231:p 25228:1 25206:q 25180:p 25174:1 25154:) 25148:( 25143:p 25139:L 25115:X 25091:X 25071:X 25047:X 25036:. 25019:) 25009:X 25005:, 25002:X 24998:( 24949:X 24922:X 24887:X 24862:X 24810:. 24797:= 24794:) 24791:g 24788:( 24785:F 24757:1 24753:B 24732:, 24729:X 24723:x 24712:x 24704:= 24701:) 24698:x 24695:( 24692:g 24671:C 24664:X 24661:: 24658:g 24638:, 24635:D 24611:X 24605:x 24600:) 24596:) 24593:x 24590:( 24585:i 24581:f 24576:( 24569:i 24544:I 24538:i 24518:F 24496:X 24490:x 24485:) 24481:) 24478:x 24475:( 24470:i 24466:f 24461:( 24439:D 24431:X 24425:x 24420:) 24415:x 24407:( 24402:= 24357:1 24353:B 24326:. 24321:X 24315:x 24311:) 24307:) 24304:x 24301:( 24298:f 24295:( 24280:f 24271:D 24250:1 24246:B 24238:: 24235:F 24211:D 24191:, 24180:1 24176:B 24155:, 24146:X 24122:D 24096:x 24092:D 24065:x 24061:D 24055:X 24049:x 24041:= 24038:D 24018:} 24012:x 24002:| 23998:c 23994:| 23990:: 23986:C 23979:c 23976:{ 23973:= 23968:x 23964:D 23943:, 23940:X 23934:x 23899:) 23895:R 23891:( 23886:0 23882:C 23878:= 23875:X 23849:X 23821:F 23801:. 23798:F 23778:x 23758:, 23755:x 23735:, 23732:F 23706:X 23696:, 23691:2 23687:x 23683:, 23678:1 23674:x 23653:, 23650:X 23629:R 23616:X 23612:: 23609:F 23570:B 23550:. 23547:X 23521:X 23494:, 23464:| 23455:n 23451:x 23447:, 23444:y 23438:x 23431:| 23427:+ 23424:1 23419:| 23410:n 23406:x 23402:, 23399:y 23393:x 23386:| 23377:n 23370:2 23358:1 23355:= 23352:n 23344:= 23341:) 23338:y 23335:, 23332:x 23329:( 23307:B 23301:y 23298:, 23295:x 23268:1 23265:= 23262:n 23257:) 23252:n 23248:x 23244:( 23239:= 23230:x 23209:X 23189:. 23180:X 23159:B 23139:X 23097:. 23094:X 23070:U 23044:m 23024:, 23014:] 23010:U 23002:X 22993:[ 22988:= 22979:U 22952:] 22948:U 22939:[ 22936:= 22927:U 22906:U 22882:U 22858:) 22852:, 22849:0 22846:[ 22840:X 22837:: 22832:X 22826:x 22821:) 22816:x 22812:m 22808:( 22787:= 22771:m 22742:; 22716:P 22683:x 22679:m 22674:B 22668:X 22662:x 22654:= 22643:m 22638:B 22612:. 22607:P 22580:P 22550:P 22537:P 22526:= 22515:m 22510:B 22486:, 22482:} 22470:R 22465:B 22455:P 22449:: 22435:R 22430:B 22422:{ 22415:= 22408:} 22402:P 22398:T 22385:R 22378:: 22364:R 22359:B 22351:{ 22331:= 22316:P 22292:, 22289:P 22267:P 22229:m 22208:, 22204:} 22198:P 22194:T 22181:R 22177:: 22172:x 22168:R 22163:{ 22156:= 22151:x 22147:m 22127:, 22124:X 22118:x 22096:P 22092:T 22079:m 22057:} 22045:R 22040:B 22030:P 22024:: 22016:X 22011:R 21997:R 21992:{ 21972:= 21960:P 21956:T 21935:, 21930:X 21925:R 21915:X 21909:x 21904:) 21899:x 21895:R 21891:( 21886:= 21877:R 21852:x 21848:R 21843:B 21837:X 21831:x 21807:= 21789:R 21784:B 21754:U 21750:= 21747:P 21721:U 21701:= 21691:P 21665:m 21636:x 21632:m 21627:B 21621:X 21615:x 21593:X 21589:= 21575:x 21571:m 21566:B 21560:X 21554:x 21532:X 21528:= 21510:U 21506:= 21493:U 21466:X 21460:x 21455:) 21450:x 21446:m 21442:( 21437:= 21428:m 21407:X 21385:. 21376:X 21350:} 21344:1 21340:B 21333:) 21330:U 21327:( 21324:f 21321:: 21312:X 21305:f 21301:{ 21281:= 21265:U 21244:X 21220:} 21217:U 21211:u 21208:, 21205:0 21199:r 21196:: 21193:u 21190:r 21187:{ 21168:= 21158:U 21155:) 21149:, 21146:0 21143:( 21140:= 21137:X 21117:X 21111:U 21062:) 21057:) 21053:X 21050:, 21041:X 21036:( 21029:, 21020:X 21015:( 20994:. 20990:K 20984:X 20978:x 20970:= 20965:X 20960:K 20934:K 20883:) 20878:) 20874:X 20871:, 20862:X 20857:( 20850:, 20841:X 20836:( 20811:) 20807:X 20804:, 20795:X 20790:( 20766:X 20740:X 20705:X 20673:X 20647:K 20641:X 20635:x 20580:, 20577:) 20574:y 20571:( 20568:f 20565:+ 20562:) 20559:x 20556:( 20553:f 20550:= 20547:) 20544:y 20541:+ 20538:x 20535:( 20532:f 20512:, 20509:) 20506:y 20503:+ 20500:x 20497:( 20494:f 20488:) 20485:y 20482:+ 20479:x 20476:( 20467:f 20446:. 20443:) 20440:y 20437:( 20434:f 20431:+ 20428:) 20425:x 20422:( 20419:f 20413:) 20410:y 20407:+ 20404:x 20401:( 20392:f 20371:) 20368:y 20365:+ 20362:x 20359:( 20350:f 20346:= 20341:I 20335:i 20330:) 20326:) 20323:y 20320:+ 20317:x 20314:( 20309:i 20305:f 20300:( 20295:= 20290:I 20284:i 20279:) 20275:) 20272:y 20269:( 20264:i 20260:f 20256:+ 20253:) 20250:x 20247:( 20242:i 20238:f 20233:( 20228:= 20223:I 20217:i 20212:) 20207:) 20203:) 20200:y 20197:( 20192:i 20188:f 20184:, 20181:) 20178:x 20175:( 20170:i 20166:f 20161:( 20157:A 20153:( 20148:= 20143:I 20137:i 20132:) 20127:) 20122:i 20118:z 20114:( 20110:A 20106:( 20101:= 20092:z 20085:A 20066:= 20055:) 20046:z 20042:( 20038:A 20018:) 20015:y 20012:( 20009:f 20006:+ 20003:) 20000:x 19997:( 19994:f 19991:= 19988:) 19985:) 19982:y 19979:( 19976:f 19973:, 19970:) 19967:x 19964:( 19961:f 19958:( 19955:A 19934:K 19913:) 19910:) 19907:y 19904:( 19901:f 19898:, 19895:) 19892:x 19889:( 19886:f 19883:( 19880:A 19873:) 19864:z 19860:( 19856:A 19836:A 19816:. 19813:y 19810:+ 19807:x 19788:= 19778:) 19775:y 19772:, 19769:x 19766:( 19763:A 19742:K 19734:K 19726:K 19722:: 19719:A 19699:. 19695:K 19687:K 19666:) 19663:) 19660:y 19657:( 19654:f 19651:, 19648:) 19645:x 19642:( 19639:f 19636:( 19624:z 19603:, 19600:) 19597:y 19594:( 19591:f 19583:I 19577:i 19572:) 19568:) 19565:y 19562:( 19557:i 19553:f 19548:( 19543:= 19540:) 19537:y 19534:( 19525:f 19504:) 19501:x 19498:( 19495:f 19487:I 19481:i 19476:) 19472:) 19469:x 19466:( 19461:i 19457:f 19452:( 19447:= 19444:) 19441:x 19438:( 19429:f 19408:. 19405:I 19399:i 19378:) 19374:) 19371:y 19368:( 19363:i 19359:f 19355:, 19352:) 19349:x 19346:( 19341:i 19337:f 19332:( 19312:= 19300:i 19296:z 19274:K 19266:K 19259:I 19256:: 19251:I 19245:i 19240:) 19235:i 19231:z 19227:( 19222:= 19213:z 19192:: 19189:) 19186:y 19183:( 19180:f 19177:+ 19174:) 19171:x 19168:( 19165:f 19162:= 19159:) 19156:y 19153:+ 19150:x 19147:( 19144:f 19120:, 19117:) 19114:x 19111:s 19108:( 19105:f 19102:= 19099:) 19096:x 19093:( 19090:f 19087:s 19066:K 19045:) 19042:x 19039:s 19036:( 19033:f 19027:) 19024:x 19021:s 19018:( 19009:f 18988:. 18985:) 18982:x 18979:( 18976:f 18973:s 18967:) 18964:x 18961:s 18958:( 18949:f 18916:) 18913:x 18910:s 18907:( 18898:f 18889:= 18880:i 18876:f 18862:I 18856:i 18851:) 18847:) 18844:x 18841:s 18838:( 18833:i 18829:f 18824:( 18814:= 18807:) 18804:x 18801:( 18796:i 18792:f 18788:s 18769:= 18758:) 18754:) 18751:x 18748:( 18743:i 18739:f 18734:( 18730:M 18722:I 18716:i 18711:) 18707:) 18704:x 18701:( 18696:i 18692:f 18688:s 18684:( 18674:= 18666:K 18659:I 18656:: 18651:I 18645:i 18640:) 18636:) 18633:x 18630:( 18625:i 18621:f 18616:( 18611:= 18608:) 18605:x 18602:( 18593:f 18570:I 18564:i 18559:) 18554:) 18550:) 18547:x 18544:( 18539:i 18535:f 18530:( 18526:M 18522:( 18512:= 18497:) 18494:x 18491:( 18482:f 18475:M 18454:= 18446:) 18442:) 18439:x 18436:( 18427:f 18422:( 18418:M 18394:) 18391:x 18388:( 18385:f 18382:s 18379:= 18376:) 18373:) 18370:x 18367:( 18364:f 18361:( 18358:M 18338:) 18335:) 18332:x 18329:( 18326:f 18323:( 18320:M 18313:) 18309:) 18306:x 18303:( 18294:f 18289:( 18285:M 18265:, 18261:K 18240:) 18237:x 18234:( 18231:f 18225:) 18222:x 18219:( 18210:f 18189:M 18169:. 18166:c 18163:s 18144:= 18134:) 18131:c 18128:( 18125:M 18105:s 18084:K 18076:K 18072:: 18069:M 18049:: 18046:) 18043:x 18040:( 18037:f 18034:s 18031:= 18028:) 18025:x 18022:s 18019:( 18016:f 17993:. 17990:) 17987:x 17984:s 17981:( 17978:f 17972:) 17969:x 17966:s 17963:( 17954:f 17943:, 17940:) 17937:y 17934:+ 17931:x 17928:( 17925:f 17919:) 17916:y 17913:+ 17910:x 17907:( 17898:f 17893:, 17890:) 17887:y 17884:( 17881:f 17875:) 17872:y 17869:( 17860:f 17855:, 17852:) 17849:x 17846:( 17843:f 17837:) 17834:x 17831:( 17822:f 17802:: 17798:K 17777:, 17774:z 17754:, 17751:y 17748:+ 17745:x 17737:, 17734:x 17731:s 17728:, 17725:y 17722:, 17719:x 17699:. 17696:X 17690:z 17669:K 17648:) 17645:z 17642:( 17639:f 17633:) 17630:z 17627:( 17618:f 17597:, 17592:X 17587:K 17565:f 17553:f 17532:. 17527:I 17521:i 17516:) 17512:) 17509:z 17506:( 17501:i 17497:f 17492:( 17471:= 17461:) 17458:z 17455:( 17446:f 17425:z 17399:f 17376:K 17369:I 17366:: 17363:) 17360:z 17357:( 17348:f 17327:, 17324:X 17318:z 17296:. 17293:X 17287:y 17284:, 17281:x 17261:s 17241:f 17221:, 17212:X 17205:f 17185:. 17180:X 17175:K 17153:f 17127:X 17104:I 17098:i 17093:) 17088:i 17084:f 17080:( 17075:= 17066:f 17043:X 17038:K 17030:f 16994:X 16973:K 16967:X 16961:x 16953:= 16948:X 16943:K 16920:C 16898:R 16876:K 16854:K 16833:X 16807:X 16790:) 16776:X 16771:K 16743:X 16697:, 16694:B 16688:) 16685:u 16682:( 16679:f 16659:, 16656:B 16636:Y 16616:B 16610:) 16607:U 16604:( 16599:i 16595:f 16588:) 16585:u 16582:( 16577:i 16573:f 16552:Y 16532:) 16529:u 16526:( 16523:f 16515:I 16509:i 16504:) 16500:) 16497:u 16494:( 16489:i 16485:f 16480:( 16458:, 16455:U 16449:u 16429:. 16426:B 16420:) 16417:U 16414:( 16411:f 16391:, 16386:B 16382:U 16375:f 16355:. 16352:f 16330:B 16326:U 16303:I 16297:i 16292:) 16287:i 16283:f 16279:( 16255:X 16251:Y 16244:f 16214:X 16210:Y 16188:} 16184:B 16178:) 16175:U 16172:( 16169:f 16166:: 16161:X 16157:Y 16150:f 16146:{ 16126:= 16114:B 16110:U 16089:, 16086:Y 16062:Y 16056:B 16036:X 16030:U 16004:. 15999:1 15995:B 15988:B 15967:K 15960:Y 15939:} 15933:1 15929:B 15922:) 15919:U 15916:( 15913:f 15910:: 15905:X 15900:K 15892:f 15888:{ 15884:= 15877:1 15873:B 15868:U 15824:, 15819:X 15814:K 15786:U 15782:= 15773:X 15762:1 15758:B 15753:U 15732:. 15728:K 15705:X 15700:K 15695:= 15691:K 15685:X 15679:x 15639:U 15633:x 15622:K 15614:U 15608:x 15596:1 15592:B 15585:{ 15564:= 15552:x 15548:C 15535:x 15531:C 15525:X 15519:x 15511:= 15499:} 15494:U 15488:u 15478:1 15474:B 15462:u 15458:f 15447:: 15439:K 15433:X 15427:x 15414:X 15408:x 15403:) 15398:x 15394:f 15390:( 15383:{ 15378:= 15366:} 15361:U 15355:u 15345:1 15341:B 15334:) 15331:u 15328:( 15325:f 15322:: 15304:X 15299:K 15290:f 15258:{ 15253:= 15241:} 15236:1 15229:| 15225:) 15222:u 15219:( 15216:f 15212:| 15206:U 15200:u 15192:: 15174:X 15169:K 15158:f 15126:{ 15107:= 15091:1 15087:B 15082:U 15052:K 15046:X 15040:x 15032:= 15027:X 15022:K 14994:X 14961:, 14954:x 14950:r 14945:B 14938:) 14935:x 14932:( 14929:f 14909:, 14904:x 14900:r 14892:| 14888:) 14885:x 14882:( 14879:f 14875:| 14845:| 14841:) 14838:u 14835:( 14832:f 14828:| 14822:U 14816:u 14804:| 14799:) 14794:x 14790:u 14786:( 14782:f 14778:| 14774:= 14770:| 14765:) 14761:x 14754:x 14750:r 14746:1 14740:( 14736:f 14732:| 14728:= 14724:| 14720:) 14717:x 14714:( 14711:f 14704:x 14700:r 14696:1 14690:| 14686:= 14682:| 14678:) 14675:x 14672:( 14669:f 14665:| 14657:x 14653:r 14649:1 14627:, 14624:1 14617:| 14613:) 14610:u 14607:( 14604:f 14600:| 14594:U 14588:u 14558:f 14537:. 14534:U 14528:x 14520:x 14516:r 14512:1 14491:= 14479:x 14475:u 14453:U 14447:u 14427:1 14419:u 14415:r 14394:U 14389:x 14385:r 14378:x 14358:0 14350:x 14346:r 14325:. 14318:x 14314:r 14309:B 14302:) 14299:x 14296:( 14293:f 14273:, 14270:) 14267:x 14264:( 14261:f 14257:= 14253:) 14250:f 14247:( 14242:x 14215:. 14206:U 14199:f 14179:X 14173:x 14153:. 14150:X 14144:x 14120:x 14116:r 14111:B 14103:) 14094:U 14090:( 14084:x 14057:, 14050:x 14046:r 14041:B 14035:X 14029:x 14012:U 13987:z 13966:K 13958:K 13952:X 13946:x 13938:: 13933:z 13906:, 13903:X 13897:z 13868:. 13863:X 13858:K 13853:= 13849:K 13843:X 13837:x 13803:U 13781:. 13774:x 13770:r 13765:B 13759:X 13753:x 13736:U 13712:. 13705:x 13701:r 13696:B 13690:X 13684:x 13658:} 13652:1 13648:B 13641:) 13638:U 13635:( 13632:f 13626:: 13614:X 13607:f 13603:{ 13596:= 13588:} 13583:1 13576:| 13572:) 13569:u 13566:( 13563:f 13559:| 13553:U 13547:u 13536:: 13524:X 13517:f 13512:{ 13491:= 13475:U 13447:} 13442:x 13438:r 13430:| 13426:s 13422:| 13418:: 13414:K 13407:s 13404:{ 13385:= 13371:x 13367:r 13362:B 13333:x 13329:r 13324:B 13318:X 13312:x 13251:X 13244:f 13220:f 13200:; 13197:U 13177:f 13156:, 13153:1 13146:| 13142:) 13139:u 13136:( 13133:f 13129:| 13123:U 13117:u 13085:U 13078:f 13058:. 13049:X 13036:U 13015:, 13006:X 12993:U 12989:= 12980:U 12958:: 12949:U 12945:= 12936:U 12912:. 12903:X 12890:U 12883:= 12875:} 12870:1 12863:| 12859:) 12856:u 12853:( 12850:f 12846:| 12840:U 12834:u 12823:: 12811:X 12804:f 12799:{ 12778:= 12762:U 12735:U 12714:, 12705:U 12701:= 12692:U 12661:U 12640:. 12637:U 12632:x 12628:r 12621:x 12601:0 12593:x 12589:r 12568:, 12565:X 12559:x 12539:, 12536:X 12512:, 12509:X 12489:U 12469:U 12443:X 12418:X 12391:U 12367:X 12337:U 12300:x 12296:r 12291:B 12285:X 12279:x 12238:U 12217:, 12214:U 12209:x 12205:r 12198:x 12178:0 12170:x 12166:r 12146:, 12143:X 12137:x 12115:. 12110:} 12105:1 12098:| 12094:) 12091:u 12088:( 12085:f 12081:| 12075:U 12069:u 12058:: 12046:X 12039:f 12034:{ 12013:= 11997:U 11971:K 11950:X 11942:( 11926:} 11923:r 11916:| 11912:s 11908:| 11904:: 11900:K 11893:s 11890:{ 11871:= 11859:r 11855:B 11834:, 11831:r 11810:C 11806:= 11802:K 11792:R 11788:= 11784:K 11762:K 11741:X 11721:U 11691:X 11659:X 11620:= 11610:f 11586:K 11566:= 11556:X 11535:r 11528:| 11524:) 11521:u 11518:( 11515:f 11511:| 11505:U 11499:u 11472:r 11465:| 11461:) 11458:u 11455:( 11452:f 11448:| 11442:U 11436:u 11410:} 11407:r 11400:| 11396:c 11392:| 11388:: 11384:K 11377:c 11374:{ 11352:r 11348:B 11327:. 11324:} 11321:U 11315:u 11312:: 11309:) 11306:u 11303:( 11300:f 11297:{ 11278:= 11268:) 11265:U 11262:( 11259:f 11211:r 11207:B 11200:) 11197:U 11194:( 11191:f 11181:r 11174:| 11170:) 11167:u 11164:( 11161:f 11157:| 11151:U 11145:u 11121:, 11118:r 11095:r 11088:| 11084:) 11081:u 11078:( 11075:f 11071:| 11065:U 11059:u 11031:. 11027:K 11021:X 11015:x 10988:x 10984:S 10978:X 10972:x 10947:, 10944:X 10938:x 10917:K 10894:x 10890:S 10869:. 10865:K 10859:X 10853:x 10826:x 10822:S 10816:X 10810:x 10779:x 10775:S 10769:X 10763:x 10737:K 10711:K 10702:x 10698:S 10678:, 10675:X 10669:x 10643:. 10640:X 10620:f 10600:f 10578:I 10572:i 10567:) 10562:i 10558:f 10554:( 10529:, 10525:K 10504:) 10501:z 10498:( 10495:f 10487:I 10481:i 10476:) 10472:) 10469:z 10466:( 10461:i 10457:f 10452:( 10430:, 10427:X 10421:z 10397:, 10392:I 10386:i 10381:) 10377:) 10374:z 10371:( 10366:i 10362:f 10357:( 10352:= 10347:I 10341:i 10336:) 10331:) 10326:i 10322:f 10318:( 10312:z 10301:( 10280:= 10269:) 10264:I 10258:i 10253:) 10248:i 10244:f 10240:( 10235:( 10229:z 10201:) 10198:z 10195:( 10192:f 10189:= 10186:) 10183:f 10180:( 10175:z 10144:, 10140:K 10119:) 10116:f 10113:( 10108:z 10094:) 10089:I 10083:i 10078:) 10073:i 10069:f 10065:( 10060:( 10054:z 10027:, 10024:X 10018:z 9991:f 9983:I 9977:i 9972:) 9967:i 9963:f 9959:( 9937:, 9933:K 9927:X 9921:x 9913:= 9908:X 9903:K 9879:i 9875:f 9854:f 9834:, 9829:I 9823:i 9818:) 9813:i 9809:f 9805:( 9780:f 9751:K 9745:X 9739:x 9731:= 9726:X 9721:K 9692:. 9689:) 9686:x 9683:( 9680:F 9668:x 9661:F 9641:) 9638:x 9635:( 9632:F 9625:) 9616:x 9612:( 9608:F 9588:) 9585:x 9582:( 9579:F 9571:I 9565:i 9560:) 9555:) 9550:i 9546:x 9542:( 9538:F 9534:( 9512:, 9509:X 9489:x 9477:x 9456:Y 9450:X 9447:: 9444:F 9424:, 9415:x 9408:F 9389:= 9377:I 9371:i 9366:) 9361:) 9356:i 9352:x 9348:( 9344:F 9340:( 9335:= 9331:) 9322:x 9318:( 9314:F 9288:x 9260:1 9257:= 9254:i 9249:) 9244:) 9239:i 9235:x 9231:( 9227:F 9223:( 9199:I 9193:i 9188:) 9183:) 9178:i 9174:x 9170:( 9166:F 9162:( 9140:, 9137:Y 9131:I 9128:: 9119:x 9112:F 9092:F 9066:x 9045:Y 9039:X 9036:: 9033:F 9009:. 9006:) 9003:i 9000:( 8991:x 8968:i 8964:x 8941:i 8937:x 8916:I 8910:i 8884:x 8863:, 8860:X 8853:N 8832:, 8829:X 8805:. 8802:) 8796:, 8793:I 8790:( 8767:X 8761:I 8758:: 8749:x 8728:X 8706:I 8700:i 8695:) 8690:i 8686:x 8682:( 8677:= 8668:x 8637:. 8629:) 8623:U 8617:X 8611:| 8605:f 8601:, 8596:U 8590:| 8584:f 8580:( 8566:f 8555:U 8549:X 8544:K 8534:U 8529:K 8512:X 8507:K 8498:: 8495:H 8462:) 8456:U 8450:X 8444:x 8439:) 8434:x 8430:f 8426:( 8420:, 8415:U 8409:u 8404:) 8399:u 8395:f 8391:( 8385:( 8369:X 8363:x 8358:) 8353:x 8349:f 8345:( 8333:K 8327:U 8321:X 8315:x 8303:) 8298:K 8292:U 8286:u 8277:( 8262:K 8256:X 8250:x 8238:: 8235:H 8211:) 8208:U 8202:X 8199:( 8191:U 8188:= 8185:X 8165:X 8143:X 8137:U 8115:. 8112:X 8106:x 8082:x 8078:r 8073:B 8066:) 8063:x 8060:( 8057:s 8035:X 8030:K 8022:s 7998:x 7994:r 7989:B 7983:X 7977:x 7952:, 7947:X 7942:K 7937:= 7933:K 7927:X 7921:x 7906:x 7902:r 7897:B 7891:X 7885:x 7858:X 7852:x 7847:) 7842:x 7838:r 7834:( 7807:z 7780:s 7760:s 7740:z 7720:, 7717:s 7697:z 7677:. 7674:) 7671:z 7668:( 7665:s 7646:= 7636:) 7633:s 7630:( 7625:z 7597:K 7590:X 7587:: 7584:s 7562:z 7533:z 7529:s 7520:X 7514:x 7509:) 7504:x 7500:s 7496:( 7491:= 7482:s 7470:K 7462:K 7456:X 7450:x 7442:: 7437:z 7410:X 7404:z 7353:X 7348:K 7325:K 7319:X 7313:x 7287:K 7281:X 7275:x 7267:= 7262:X 7257:K 7232:. 7227:X 7221:x 7216:) 7211:x 7207:s 7203:( 7179:x 7175:s 7155:= 7145:) 7142:x 7139:( 7136:s 7115:K 7108:X 7105:: 7102:s 7081:K 7075:X 7069:x 7042:X 7036:x 7031:) 7026:x 7022:s 7018:( 7013:= 7004:s 6958:. 6953:X 6947:x 6943:) 6939:) 6936:x 6933:( 6930:s 6927:( 6908:= 6892:s 6867:X 6845:X 6840:K 6817:K 6810:X 6807:: 6804:s 6757:, 6753:K 6746:X 6724:X 6719:K 6695:X 6689:x 6684:) 6679:x 6675:s 6671:( 6666:= 6657:s 6633:X 6612:K 6606:X 6600:x 6568:, 6565:X 6559:U 6539:} 6536:U 6530:u 6527:: 6524:u 6521:r 6518:{ 6499:= 6489:U 6486:r 6466:0 6446:r 6426:} 6423:r 6416:| 6412:c 6408:| 6404:: 6400:K 6393:c 6390:{ 6371:= 6359:r 6355:B 6335:, 6332:r 6297:. 6290:x 6286:r 6281:B 6275:X 6269:x 6238:X 6202:, 6198:K 6192:X 6186:x 6157:K 6150:X 6128:X 6123:K 6022:X 5995:X 5970:X 5944:X 5905:X 5884:X 5850:X 5824:X 5803:U 5783:X 5763:U 5739:X 5687:U 5666:, 5662:) 5657:) 5653:X 5650:, 5641:X 5636:( 5629:, 5620:X 5615:( 5588:U 5562:) 5557:) 5553:X 5550:, 5541:X 5536:( 5529:, 5520:X 5515:( 5494:: 5485:X 5463:) 5459:X 5456:, 5447:X 5442:( 5412:U 5389:. 5380:X 5358:) 5354:X 5351:, 5342:X 5337:( 5307:U 5286:. 5282:) 5277:) 5273:X 5270:, 5261:X 5256:( 5249:, 5240:X 5235:( 5208:X 5181:X 5159:) 5155:X 5152:, 5143:X 5138:( 5114:: 5105:X 5083:) 5079:X 5076:, 5067:X 5062:( 5032:U 5007:) 5003:X 5000:, 4991:X 4986:( 4956:U 4943:- 4930:) 4926:X 4923:, 4914:X 4909:( 4884:) 4880:X 4877:, 4868:X 4863:( 4833:X 4812:, 4803:X 4779:X 4759:. 4750:X 4737:- 4724:) 4720:X 4717:, 4708:X 4703:( 4673:U 4652:; 4640:U 4619:, 4616:X 4592:U 4563:U 4556:U 4532:: 4523:X 4510:- 4497:) 4493:X 4490:, 4481:X 4476:( 4446:U 4416:U 4395:, 4386:X 4359:U 4355:= 4346:X 4333:U 4329:= 4320:X 4307:U 4286:, 4277:U 4270:f 4244:X 4237:f 4213:f 4193:U 4173:f 4152:, 4149:1 4142:| 4138:) 4135:u 4132:( 4129:f 4125:| 4119:U 4113:u 4081:U 4074:f 4053:, 4044:U 4031:U 4003:U 3990:U 3969:: 3965:) 3960:) 3956:X 3953:, 3944:X 3939:( 3932:, 3923:X 3918:( 3896:) 3891:) 3887:X 3884:, 3875:X 3870:( 3863:, 3854:X 3849:( 3822:U 3795:U 3791:= 3782:U 3752:| 3748:) 3745:u 3742:( 3739:f 3735:| 3714:) 3711:u 3708:( 3705:f 3685:, 3681:} 3677:1 3670:| 3666:s 3662:| 3658:: 3654:K 3647:s 3643:{ 3621:K 3600:) 3597:u 3594:( 3589:i 3585:f 3563:K 3542:) 3539:u 3536:( 3533:f 3527:) 3524:u 3521:( 3516:i 3512:f 3491:. 3488:U 3482:u 3462:1 3455:| 3451:) 3448:u 3445:( 3442:f 3438:| 3417:, 3408:U 3401:f 3381:. 3377:) 3372:) 3368:X 3365:, 3356:X 3351:( 3344:, 3335:X 3330:( 3309:f 3283:U 3260:I 3254:i 3249:) 3244:i 3240:f 3236:( 3231:= 3222:f 3195:X 3188:f 3168:: 3159:X 3137:) 3133:X 3130:, 3121:X 3116:( 3086:U 3062:. 3053:U 3034:U 3010:. 3001:X 2988:U 2984:= 2975:U 2954:. 2940:X 2936:, 2933:X 2908:U 2887:} 2883:1 2876:| 2872:) 2869:u 2866:( 2863:f 2859:| 2853:U 2847:u 2836:: 2824:X 2817:f 2813:{ 2809:= 2800:U 2789:; 2766:X 2762:, 2759:X 2733:U 2710:} 2706:1 2699:| 2695:) 2692:x 2689:( 2686:f 2682:| 2670:U 2663:f 2652:: 2646:X 2640:x 2636:{ 2632:= 2620:U 2609:; 2586:X 2582:, 2579:X 2554:U 2533:} 2529:1 2522:| 2518:) 2515:u 2512:( 2509:f 2505:| 2499:U 2493:u 2482:: 2470:X 2463:f 2459:{ 2455:= 2446:U 2422:X 2402:U 2380:. 2366:X 2362:, 2359:X 2331:, 2317:X 2313:, 2310:X 2270:X 2266:, 2263:X 2235:f 2215:f 2189:X 2164:, 2155:X 2148:f 2128:. 2124:) 2120:X 2117:, 2108:X 2103:( 2078:) 2073:) 2069:X 2066:, 2057:X 2052:( 2045:, 2036:X 2031:( 2004:X 1975:. 1971:) 1966:) 1962:X 1959:, 1950:X 1945:( 1938:, 1929:X 1924:( 1902:) 1897:) 1893:X 1890:, 1881:X 1876:( 1869:, 1860:X 1855:( 1829:) 1824:) 1820:X 1817:, 1808:X 1803:( 1796:, 1787:X 1782:( 1761:. 1757:) 1752:) 1748:X 1745:, 1736:X 1731:( 1724:, 1715:X 1710:( 1682:, 1678:) 1674:X 1671:, 1662:X 1657:( 1624:X 1588:. 1584:C 1559:R 1535:, 1531:K 1510:X 1478:. 1474:) 1469:) 1465:X 1462:, 1453:X 1448:( 1441:, 1432:X 1427:( 1395:X 1391:, 1388:X 1363:U 1337:U 1316:. 1307:X 1285:) 1281:X 1278:, 1269:X 1264:( 1237:X 1217:U 1193:} 1189:1 1182:| 1178:) 1175:u 1172:( 1169:f 1165:| 1159:U 1153:u 1142:: 1130:X 1123:f 1119:{ 1115:= 1106:U 1082:, 1073:X 1049:( 1037:X 1004:. 1001:) 998:x 995:( 992:f 970:I 964:i 959:) 955:) 952:x 949:( 944:i 940:f 935:( 913:x 893:f 867:f 846:, 841:I 835:i 830:) 825:i 821:f 817:( 812:= 803:f 778:f 754:. 750:) 746:X 743:, 734:X 729:( 699:X 677:) 673:X 670:, 661:X 656:( 626:X 595:X 582:X 561:, 552:X 523:X 479:, 468:, 459:X 455:, 452:X 427:) 424:x 421:( 418:f 399:= 384:f 381:, 378:x 352:K 339:X 332:X 329:: 318:, 284:X 254:X 232:K 211:X 119:) 116:] 113:b 110:, 107:a 104:[ 101:( 98:C

Index

functional analysis
mathematics
closed
unit ball
dual space
normed vector space
compact
weak* topology
product
product topology
Tychonoff's theorem
weak-* topology
Stefan Banach
separable
normed space
sequential compactness
Leonidas Alaoglu
Bourbaki
dual topologies
locally convex spaces
Topological vector space § Dual space
Dual system
Polar set
algebraic dual space
bilinear
dual system
topological vector space
continuous dual space
weak-* topology
topology of pointwise convergence

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.