Knowledge

Bilayer graphene

Source đź“ť

48:-stacked form, where half of the atoms lie directly over the center of a hexagon in the lower graphene sheet, and half of the atoms lie over an atom, or, less commonly, in the AA form, in which the layers are exactly aligned. In Bernal stacked graphene, twin boundaries are common; transitioning from AB to BA stacking. Twisted layers, where one layer is rotated relative to the other, have also been extensively studied. 85:. An experimental demonstration of a tunable bandgap in bilayer graphene came in 2009. In 2015 researchers observed 1D ballistic electron conducting channels at bilayer graphene domain walls. Another group showed that the band gap of bilayer films on silicon carbide could be controlled by selectively adjusting the carrier concentration. 330:
Electrical conductivity of 438 S/cm was obtained. Even after the infiltration of sulfur, electrical conductivity of 107 S cm/1 was retained. The graphene's unique porous structure allowed the effective storage of sulfur in the interlayer space, which gives rise to an efficient connection between the
306:
During CVD synthesis the protuberances produce intrinsically unstacked double-layer graphene after the removal of the nanoflakes. The presence of such protuberances on the surface can weaken the π-π interactions between graphene layers and thus reduce stacking. The bilayer graphene shows a specific
229:
or tunneling field effect transistors, exploiting the small energy gap. However, the energy gap is smaller than 250 meV and therefore requires the use of low operating voltage (< 250 mV), which is too small to obtain reasonable performance for a field effect transistor, but is very suited to the
249:
In 2017 an international group of researchers showed that bilayer graphene could act as a single-phase mixed conductor which exhibited Li diffusion faster than in graphite by an order of magnitude. In combination with the fast electronic conduction of graphene sheets, this system offers both ionic
1514:
Lu, Xiaobo; Stepanov, Petr; Yang, Wei; Xie, Ming; Aamir, Mohammed Ali; Das, Ipsita; Urgell, Carles; Watanabe, Kenji; Taniguchi, Takashi; Zhang, Guangyu; Bachtold, Adrian; MacDonald, Allan H.; Efetov, Dmitri K. (2019). "Superconductors, orbital magnets and correlated states in magic-angle bilayer
172:
that the amount of energy a free electron would require to tunnel between two graphene sheets radically changes at this angle. The graphene bilayer was prepared from exfoliated monolayers of graphene, with the second layer being manually rotated to a set angle with respect to the first layer. A
212:
Jarillo-Herrero has suggested that it may be possible to “...... imagine making a superconducting transistor out of graphene, which you can switch on and off, from superconducting to insulating. That opens many possibilities for quantum devices.” The study of such lattices has been dubbed
282:
Hybridization processes change the intrinsic properties of graphene and/or induce poor interfaces. In 2014 a general route to obtain unstacked graphene via facile, templated, catalytic growth was announced. The resulting material has a specific surface area of 1628 m2 g-1, is
54:
methods have been used to calculate the binding energies of AA- and AB-stacked bilayer graphene, which are 11.5(9) and 17.7(9) meV per atom, respectively. This is consistent with the observation that the AB-stacked structure is more stable than the AA-stacked structure.
294:
The material is made with a mesoporous nanoflake template. Graphene layers are deposited onto the template. The carbon atoms accumulate in the mesopores, forming protuberances that act as spacers to prevent stacking. The protuberance density is approximately
71:
and colleagues showed that large single-crystal bilayer graphene could be produced by oxygen-activated chemical vapour deposition. Later in the same year a Korean group reported the synthesis of wafer-scale single-crystal AB-stacked bilayer graphene
80:
Like monolayer graphene, bilayer graphene has a zero bandgap and thus behaves like a semimetal. In 2007, researchers predicted that a bandgap could be introduced if an electric displacement field were applied to the two layers: a so-called tunable
1362:, V Fatemi, A Demir,, S Fang, SL Tomarken, JY Luo, J D Sanchez-Yamagishi, K Watanabe, T Taniguchi, E Kaxiras, R C Ashoori, P Jarillo-Herrero (2018). "Correlated insulator behaviour at half-filling in magic-angle graphene superlattices". 153: 237:(TT). They operate at a lower operating voltage range (150 mV) than silicon transistors (500 mV). Bilayer graphene's energy band is unlike that of most semiconductors in that the electrons around the edges form a (high density) 2150:
Wu, Jiang-Bin; Zhang, Xin; Ijäs, Mari; Han, Wen-Peng; Qiao, Xiao-Fen; Li, Xiao-Li; Jiang, De-Sheng; Ferrari, Andrea C.; Tan, Ping-Heng (10 November 2014). "Resonant Raman spectroscopy of twisted multilayer graphene".
322:
yielded reversible capacities of 1034 and 734 mA h/g at discharge rates of 5 and 10 C, respectively. After 1000 cycles reversible capacities of some 530 and 380 mA h/g were retained at 5 and 10 C, with
368:
Quantitative determination of bilayer graphene's structural parameters---such as surface roughness, inter- and intralayer spacings, stacking order, and interlayer twist---is obtainable using 3D
387:
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A.A. (2004). "Electric Field Effect in Atomically Thin Carbon Film".
1358: 97:
and showed that this could be tuned by an electric field. In 2017 the observation of an even-denominator fractional quantum Hall state was reported in bilayer graphene.
207: 241:. This supplies sufficient electrons to increase current flow across the energy barrier. Bilayer graphene transistors use "electrical" rather than "chemical" doping. 274:. This was attributed to a graphite-diamond transition, and the behavior appeared to be unique to bilayer graphene. This could have applications in personal armor. 362:
and number of layers. Monitoring graphene's G and D peaks (around 1580 and 1360 cm) intensity gives direct information on the number of layers of the sample.
350:
imaging is an accurate and rapid technique to spatially characterize product quality. The vibrational modes of a system characterize it, providing information on
2254:
Sung, S.H.; Schnitzer, N.; Brown, L.; Park, J.; Hovden, R. (2019-06-25). "Stacking, strain, and twist in 2D materials quantified by 3D electron diffraction".
704:
W Liu; et al. (2014). "Controllable and rapid synthesis of high-quality and large-area Bernal stacked bilayer graphene using chemical vapor deposition".
1588: 534:
Min, Lola; Hovden, Robert; Huang, Pinshane; Wojcik, Michal; Muller, David A.; Park, Jiwoong (2012). "Twinning and Twisting of Tri- and Bilayer Graphene".
2097:
Li, Q.-Q.; Zhang, X.; Han, W.-P.; Lu, Y.; Shi, W.; Wu, J.-B.; Tan, P.-H. (27 December 2014). "Raman spectroscopy at the edges of multilayer graphene".
2212:
Forestier, Alexis; Balima, Félix; Bousige, Colin; de Sousa Pinheiro, Gardênia; Fulcrand, Rémy; Kalbác, Martin; San-Miguel, Alfonso (April 28, 2020).
365:
It has been shown that the two graphene layers can withstand important strain or doping mismatch which ultimately should lead to their exfoliation.
1423: 230:
operation of tunnel field effect transistors, which according to theory from a paper in 2009 can operate with an operating voltage of only 100 mV.
1584: 2050:
Gaufrès, E.; Tang, N. Y.-Wa; Lapointe, F.; Cabana, J.; Nadon, M.-A.; Cottenye, N.; Raymond, F.; Szkopek, T.; Martel, R. (24 November 2013).
250:
and electronic conductivity within the same single-phase solid material. This has important implications for energy storage devices such as
267: 448:
K Yan; H Peng; Y Zhou; H Li; Z Liu (2011). "Formation of bilayer Bernal graphene: layer-by-layer epitaxy via chemical vapor deposition".
1996: 832:
Min, Hongki; Sahu, Bhagawan; Banerjee, Sanjay; MacDonald, A. (2007). "Ab initio theory of gate induced gaps in graphene bilayers".
577:
E. Mostaani, N. D. Drummond and V. I. Fal'ko (2015). "Quantum Monte Carlo Calculation of the Binding Energy of Bilayer Graphene".
129:, allowing Bose-Einstein condensation to occur. Exciton condensates in bilayer systems have been shown theoretically to carry a 145: 1001:
A Kou; et al. (2014). "Electron-hole asymmetric integer and fractional quantum Hall effect in bilayer graphene".
1611:"Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle" 93:
In 2014 researchers described the emergence of complex electronic states in bilayer graphene, notably the fractional
2386: 1245:
Barlas, Y.; Côté, R.; Lambert, J.; MacDonald, A. H. (2010). "Anomalous Exciton Condensation in Graphene Bilayers".
209:
was observed with such specimens in the original paper (with newer papers reporting slightly higher temperatures).
263: 1609:
Carr, Stephen; Massatt, Daniel; Fang, Shiang; Cazeaux, Paul; Luskin, Mitchell; Kaxiras, Efthimios (2017-02-17).
234: 1671:
Fiori, Gianluca; Iannaccone, Giuseppe (March 2009). "On the Possibility of Tunable-Gap Bilayer Graphene FET".
2381: 94: 106: 2213: 36:
and colleagues, in which they described devices "which contained just one, two, or three atomic layers"
732: 1778:
Fiori, Gianluca; Iannaccone, Giuseppe (October 2009). "Ultralow-Voltage Bilayer Graphene Tunnel FET".
160:
in bilayer graphene with a twist angle of 1.1° between the two layers. The discovery was announced in
1840: 1062:
K Lee; et al. (2014). "Chemical potential and quantum Hall ferromagnetism in bilayer graphene".
64: 355: 2052:"Giant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging" 284: 271: 226: 176: 319: 2313: 1417: 789:
VL Nguyen; et al. (2016). "Wafer-Scale Single-Crystalline AB-Stacked Bilayer Graphene".
251: 141: 2273: 2170: 2116: 2063: 2008: 1944: 1883: 1797: 1741: 1690: 1632: 1534: 1460: 1381: 1325: 1264: 1203: 1142: 1123:
P Maher; et al. (2014). "Tunable fractional quantum Hall phases in bilayer graphene".
1081: 1020: 949: 894: 885:
L Ju; et al. (2015). "Topological valley transport at bilayer graphene domain walls".
851: 747: 654: 596: 543: 500: 457: 406: 369: 324: 238: 233:
In 2016 researchers proposed the use of bilayer graphene to increase the output voltage of
970: 491:
Z Liu; K Suenaga PJF Harris; S Iijima (2009). "Open and closed edges of graphene layers".
8: 733:"Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene" 641:
Y Zhang; T Tang; C Girit; Z Hao; MC Martin; A Zettl; MF Crommie; YR Shen; F Wang (2009).
51: 2277: 2174: 2120: 2067: 2012: 1948: 1887: 1801: 1745: 1694: 1636: 1538: 1464: 1385: 1329: 1268: 1207: 1184:
Li J I A (2017). "Even denominator fractional quantum Hall states in bilayer graphene".
1146: 1085: 1024: 953: 898: 855: 751: 658: 600: 547: 504: 461: 410: 217:" and was inspired by earlier theoretical treatments of layered assemblies of graphene. 2358: 2345: 2322: 2308: 2289: 2263: 2236: 2194: 2160: 2132: 2106: 2079: 1968: 1934: 1907: 1873: 1821: 1787: 1714: 1680: 1622: 1566: 1524: 1491: 1450: 1438: 1405: 1371: 1341: 1315: 1288: 1254: 1227: 1193: 1166: 1132: 1105: 1071: 1044: 1010: 983: 918: 867: 841: 814: 771: 686: 620: 586: 430: 396: 359: 347: 165: 149: 2285: 2391: 2362: 2350: 2293: 2240: 2198: 2186: 2083: 2026: 1960: 1911: 1899: 1813: 1757: 1706: 1650: 1570: 1558: 1550: 1496: 1478: 1397: 1345: 1306:
Su, J. J.; MacDonald, A. H. (2008). "How to make a bilayer exciton condensate flow".
1280: 1231: 1219: 1170: 1158: 1109: 1097: 1036: 975: 910: 871: 818: 806: 763: 690: 678: 670: 612: 559: 516: 473: 422: 157: 28: 2136: 1972: 1292: 1048: 775: 624: 2340: 2332: 2281: 2228: 2178: 2124: 2071: 2016: 1952: 1891: 1825: 1805: 1749: 1718: 1698: 1640: 1542: 1486: 1468: 1409: 1389: 1333: 1276: 1272: 1211: 1150: 1089: 1028: 965: 957: 922: 902: 859: 798: 755: 713: 662: 608: 604: 551: 512: 508: 465: 434: 414: 161: 987: 386: 2128: 169: 68: 2309:"Torsional periodic lattice distortions and diffraction of twisted 2D materials" 576: 2336: 2307:
Sung, Suk Hyun; Goh, Yin Min; Kim, Phillip; Hovden, Robert (19 December 2022).
1645: 1610: 863: 1956: 1546: 2375: 2232: 2075: 1841:"Ultra-low power graphene-based transistor could enable 100 GHz clock speeds" 1817: 1809: 1710: 1702: 1654: 1554: 1482: 351: 343: 118: 1473: 1215: 1154: 1093: 1032: 961: 418: 2354: 2190: 2030: 1995:
Zhao, MQ; Zhang, Q; Huang, JQ; Tian, GL; Nie, JQ; Peng, HJ; Wei, F (2014).
1964: 1903: 1895: 1761: 1562: 1500: 1401: 1284: 1223: 1162: 1101: 1040: 979: 914: 810: 802: 767: 759: 682: 616: 563: 520: 477: 426: 130: 45: 1925:
Gao, Y (2018). "Ultrahard carbon film from epitaxial two-layer graphene".
1753: 846: 401: 332: 214: 1393: 906: 666: 331:
sulfur and graphene and prevents the diffusion of polysulfides into the
2211: 2182: 2021: 288: 33: 26:. One of the first reports of bilayer graphene was in the seminal 2004 1585:"Graphene superlattices could be used for superconducting transistors" 1337: 717: 555: 469: 270:
temporarily become harder than diamond upon impact with the tip of an
674: 642: 311:, a pore size ranging from 2 to 7 nm and a total pore volume of 1864:
KĂĽhne, M (2017). "Ultrafast lithium diffusion in bilayer graphene".
643:"Direct observation of a widely tunable bandgap in bilayer graphene" 2327: 2268: 2051: 1997:"Researchers develop intrinsically unstacked double-layer graphene" 1939: 1878: 1627: 1529: 1376: 1359: 1198: 591: 257: 122: 114: 82: 23: 2165: 2111: 1792: 1685: 1455: 1320: 1259: 1137: 1076: 1015: 164:
in March 2018. The findings confirmed predictions made in 2011 by
490: 110: 63:
Bilayer graphene can be made by exfoliation from graphite or by
136: 126: 937: 2214:"Strain and Piezo-Doping Mismatch between Graphene Layers" 1244: 938:"Controlling the Electronic Structure of Bilayer Graphene" 2049: 640: 831: 154:
National Institute for Materials Science, Tsukuba, Japan
2253: 1608: 447: 303:. Graphene is deposited on both sides of the flakes. 179: 533: 1436: 105:Bilayer graphene showed the potential to realize a 1994: 201: 1725: 1513: 318:Using bilayer graphene as cathode material for a 2373: 2306: 258:Ultrahard carbon from epitaxial bilayer graphene 1777: 1670: 1443:Proceedings of the National Academy of Sciences 1437:Bistritzer, R.; MacDonald, A. H. (2011-07-26). 2149: 1507: 1439:"Moire bands in twisted double-layer graphene" 244: 1732:Schwierz, F. (2010). "Graphene transistors". 1238: 137:Superconductivity in twisted bilayer graphene 125:, but when they form an exciton, they become 16:Material consisting of two layers of graphene 2096: 1422:: CS1 maint: multiple names: authors list ( 825: 2300: 1305: 220: 2247: 225:Bilayer graphene can be used to construct 88: 22:is a material consisting of two layers of 2344: 2326: 2267: 2164: 2110: 2020: 1990: 1988: 1986: 1984: 1982: 1938: 1877: 1791: 1684: 1644: 1626: 1528: 1490: 1472: 1454: 1375: 1319: 1299: 1258: 1197: 1136: 1075: 1014: 969: 845: 788: 590: 400: 100: 44:Bilayer graphene can exist in the AB, or 1863: 1731: 1183: 527: 1122: 327:constants at 96 and 98%, respectively. 2374: 1979: 1924: 1838: 935: 1773: 1771: 1666: 1664: 1061: 1000: 730: 703: 884: 636: 634: 277: 338: 268:bilayer graphene on silicon carbide 13: 1768: 1661: 75: 14: 2403: 2286:10.1103/PhysRevMaterials.3.064003 697: 631: 156:, have reported the discovery of 1839:Irving, Michael (May 24, 2016). 2205: 2143: 2090: 2043: 1918: 1857: 1832: 1602: 1577: 1430: 1352: 1177: 1116: 1055: 994: 929: 878: 264:the City University of New York 1277:10.1103/PhysRevLett.104.096802 971:11858/00-001M-0000-0011-03BF-3 782: 724: 609:10.1103/PhysRevLett.115.115501 570: 513:10.1103/physrevlett.102.015501 484: 441: 380: 1: 374: 2129:10.1016/j.carbon.2014.12.096 1780:IEEE Electron Device Letters 1673:IEEE Electron Device Letters 58: 39: 7: 731:Y Hao; et al. (2016). 245:Ultrafast lithium diffusion 10: 2408: 2337:10.1038/s41467-022-35477-x 1646:10.1103/PhysRevB.95.075420 864:10.1103/PhysRevB.75.155115 266:have shown that sheets of 202:{\displaystyle T_{c}=1.7K} 2256:Physical Review Materials 1957:10.1038/s41565-017-0023-9 1547:10.1038/s41586-019-1695-0 65:chemical vapor deposition 2233:10.1021/acs.jpcc.0c01898 2076:10.1038/NPHOTON.2013.309 1810:10.1109/led.2009.2028248 1703:10.1109/led.2008.2010629 227:field effect transistors 221:Field effect transistors 173:critical temperature of 107:Bose–Einstein condensate 2387:Group IV semiconductors 1474:10.1073/pnas.1108174108 1247:Physical Review Letters 1216:10.1126/science.aao2521 1155:10.1126/science.1252875 1094:10.1126/science.1251003 1033:10.1126/science.1250270 962:10.1126/science.1130681 419:10.1126/science.1102896 285:electrically conductive 272:atomic force microscope 89:Emergent complex states 1896:10.1038/nnano.2017.108 803:10.1002/adma.201601760 760:10.1038/nnano.2015.322 320:lithium sulfur battery 203: 101:Excitonic Condensation 2314:Nature Communications 2153:Nature Communications 1927:Nature Nanotechnology 1866:Nature Nanotechnology 1754:10.1038/nnano.2010.89 1734:Nature Nanotechnology 740:Nature Nanotechnology 252:lithium ion batteries 204: 142:Pablo Jarillo-Herrero 2382:Allotropes of carbon 370:electron diffraction 325:coulombic efficiency 239:van Hove singularity 177: 148:and colleagues from 2278:2019PhRvM...3f4003S 2175:2014NatCo...5.5309W 2121:2014arXiv1412.8049L 2068:2014NaPho...8...72G 2013:2014NatCo...5.3410Z 2007:. Rdmag.com: 3410. 1949:2018NatNa..13..133G 1888:2017NatNa..12..895K 1802:2009IEDL...30.1096F 1746:2010NatNa...5..487S 1695:2009IEDL...30..261F 1637:2017PhRvB..95g5420C 1589:The Next Big Future 1539:2019Natur.574..653L 1465:2011PNAS..10812233B 1449:(30): 12233–12237. 1394:10.1038/nature26154 1386:2018Natur.556...80C 1330:2008NatPh...4..799S 1269:2010PhRvL.104i6802B 1208:2017Sci...358..648L 1147:2014Sci...345...61M 1086:2014Sci...345...58L 1025:2014Sci...345...55K 954:2006Sci...313..951O 907:10.1038/nature14364 899:2015Natur.520..650J 856:2007PhRvB..75o5115M 752:2016NatNa..11..426H 667:10.1038/nature08105 659:2009Natur.459..820Z 601:2015PhRvL.115k5501M 548:2012NanoL..12.1609B 505:2009PhRvL.102a5501L 462:2011NanoL..11.1106Y 411:2004Sci...306..666N 95:quantum Hall effect 52:Quantum Monte Carlo 2183:10.1038/ncomms6309 2022:10.1038/ncomms4410 235:tunnel transistors 199: 1786:(10): 1096–1098. 1615:Physical Review B 1523:(7780): 653–657. 1338:10.1038/nphys1055 1192:(6363): 648–652. 948:(5789): 951–954. 834:Physical Review B 797:(37): 8177–8183. 718:10.1021/cm4021854 556:10.1021/nl204547v 470:10.1021/nl104000b 395:(5696): 666–669. 278:Porous nanoflakes 262:Researchers from 158:superconductivity 2399: 2367: 2366: 2348: 2330: 2304: 2298: 2297: 2271: 2251: 2245: 2244: 2221:J. Phys. Chem. C 2218: 2209: 2203: 2202: 2168: 2147: 2141: 2140: 2114: 2094: 2088: 2087: 2056:Nature Photonics 2047: 2041: 2040: 2038: 2037: 2024: 1992: 1977: 1976: 1942: 1922: 1916: 1915: 1881: 1861: 1855: 1854: 1852: 1851: 1836: 1830: 1829: 1795: 1775: 1766: 1765: 1729: 1723: 1722: 1688: 1668: 1659: 1658: 1648: 1630: 1606: 1600: 1599: 1597: 1595: 1581: 1575: 1574: 1532: 1511: 1505: 1504: 1494: 1476: 1458: 1434: 1428: 1427: 1421: 1413: 1379: 1356: 1350: 1349: 1323: 1303: 1297: 1296: 1262: 1242: 1236: 1235: 1201: 1181: 1175: 1174: 1140: 1120: 1114: 1113: 1079: 1059: 1053: 1052: 1018: 998: 992: 991: 973: 933: 927: 926: 893:(7549): 650–55. 882: 876: 875: 849: 847:cond-mat/0612236 829: 823: 822: 786: 780: 779: 737: 728: 722: 721: 701: 695: 694: 653:(7248): 820–23. 638: 629: 628: 594: 574: 568: 567: 542:(3): 1609–1615. 531: 525: 524: 488: 482: 481: 445: 439: 438: 404: 402:cond-mat/0410550 384: 339:Characterization 314: 310: 307:surface area of 302: 300: 208: 206: 205: 200: 189: 188: 67:(CVD). In 2016, 20:Bilayer graphene 2407: 2406: 2402: 2401: 2400: 2398: 2397: 2396: 2372: 2371: 2370: 2305: 2301: 2252: 2248: 2216: 2210: 2206: 2148: 2144: 2095: 2091: 2048: 2044: 2035: 2033: 1993: 1980: 1923: 1919: 1862: 1858: 1849: 1847: 1837: 1833: 1776: 1769: 1730: 1726: 1669: 1662: 1607: 1603: 1593: 1591: 1583: 1582: 1578: 1512: 1508: 1435: 1431: 1415: 1414: 1370:(7699): 80–84. 1357: 1353: 1314:(10): 799–802. 1304: 1300: 1243: 1239: 1182: 1178: 1131:(6192): 61–64. 1121: 1117: 1070:(6192): 58–61. 1060: 1056: 1009:(6192): 55–57. 999: 995: 936:T Ohta (2006). 934: 930: 883: 879: 830: 826: 787: 783: 735: 729: 725: 702: 698: 639: 632: 579:Phys. Rev. Lett 575: 571: 532: 528: 493:Phys. Rev. Lett 489: 485: 446: 442: 385: 381: 377: 354:, composition, 341: 312: 308: 298: 296: 280: 260: 247: 223: 184: 180: 178: 175: 174: 170:Rafi Bistritzer 166:Allan MacDonald 139: 103: 91: 78: 76:Tunable bandgap 69:Rodney S. Ruoff 61: 42: 17: 12: 11: 5: 2405: 2395: 2394: 2389: 2384: 2369: 2368: 2299: 2246: 2204: 2142: 2089: 2042: 1978: 1933:(2): 133–138. 1917: 1872:(9): 895–900. 1856: 1831: 1767: 1740:(7): 487–496. 1724: 1679:(3): 261–264. 1660: 1601: 1576: 1506: 1429: 1351: 1308:Nature Physics 1298: 1237: 1176: 1115: 1054: 993: 928: 877: 840:(15): 155115. 824: 781: 723: 696: 630: 585:(11): 115501. 569: 526: 483: 456:(3): 1106–10. 440: 378: 376: 373: 340: 337: 279: 276: 259: 256: 246: 243: 222: 219: 198: 195: 192: 187: 183: 138: 135: 102: 99: 90: 87: 77: 74: 60: 57: 41: 38: 15: 9: 6: 4: 3: 2: 2404: 2393: 2390: 2388: 2385: 2383: 2380: 2379: 2377: 2364: 2360: 2356: 2352: 2347: 2342: 2338: 2334: 2329: 2324: 2320: 2316: 2315: 2310: 2303: 2295: 2291: 2287: 2283: 2279: 2275: 2270: 2265: 2262:(6): 064003. 2261: 2257: 2250: 2242: 2238: 2234: 2230: 2227:(20): 11193. 2226: 2222: 2215: 2208: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2167: 2162: 2158: 2154: 2146: 2138: 2134: 2130: 2126: 2122: 2118: 2113: 2108: 2104: 2100: 2093: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2053: 2046: 2032: 2028: 2023: 2018: 2014: 2010: 2006: 2002: 1998: 1991: 1989: 1987: 1985: 1983: 1974: 1970: 1966: 1962: 1958: 1954: 1950: 1946: 1941: 1936: 1932: 1928: 1921: 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1880: 1875: 1871: 1867: 1860: 1846: 1842: 1835: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1794: 1789: 1785: 1781: 1774: 1772: 1763: 1759: 1755: 1751: 1747: 1743: 1739: 1735: 1728: 1720: 1716: 1712: 1708: 1704: 1700: 1696: 1692: 1687: 1682: 1678: 1674: 1667: 1665: 1656: 1652: 1647: 1642: 1638: 1634: 1629: 1624: 1621:(7): 075420. 1620: 1616: 1612: 1605: 1590: 1586: 1580: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1531: 1526: 1522: 1518: 1510: 1502: 1498: 1493: 1488: 1484: 1480: 1475: 1470: 1466: 1462: 1457: 1452: 1448: 1444: 1440: 1433: 1425: 1419: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1383: 1378: 1373: 1369: 1365: 1361: 1355: 1347: 1343: 1339: 1335: 1331: 1327: 1322: 1317: 1313: 1309: 1302: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1261: 1256: 1253:(9): 096802. 1252: 1248: 1241: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1200: 1195: 1191: 1187: 1180: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1139: 1134: 1130: 1126: 1119: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1078: 1073: 1069: 1065: 1058: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1017: 1012: 1008: 1004: 997: 989: 985: 981: 977: 972: 967: 963: 959: 955: 951: 947: 943: 939: 932: 924: 920: 916: 912: 908: 904: 900: 896: 892: 888: 881: 873: 869: 865: 861: 857: 853: 848: 843: 839: 835: 828: 820: 816: 812: 808: 804: 800: 796: 792: 785: 777: 773: 769: 765: 761: 757: 753: 749: 746:(5): 820–23. 745: 741: 734: 727: 719: 715: 712:(2): 907–15. 711: 707: 700: 692: 688: 684: 680: 676: 672: 668: 664: 660: 656: 652: 648: 644: 637: 635: 626: 622: 618: 614: 610: 606: 602: 598: 593: 588: 584: 580: 573: 565: 561: 557: 553: 549: 545: 541: 537: 530: 522: 518: 514: 510: 506: 502: 499:(1): 015501. 498: 494: 487: 479: 475: 471: 467: 463: 459: 455: 451: 444: 436: 432: 428: 424: 420: 416: 412: 408: 403: 398: 394: 390: 383: 379: 372: 371: 366: 363: 361: 357: 353: 352:stoichiometry 349: 345: 344:Hyperspectral 336: 334: 328: 326: 321: 316: 313:2.0 cm/g 309:1628 m/g 304: 292: 290: 286: 275: 273: 269: 265: 255: 253: 242: 240: 236: 231: 228: 218: 216: 210: 196: 193: 190: 185: 181: 171: 167: 163: 159: 155: 151: 147: 143: 134: 132: 128: 124: 120: 116: 112: 108: 98: 96: 86: 84: 73: 70: 66: 56: 53: 49: 47: 37: 35: 31: 30: 25: 21: 2318: 2312: 2302: 2259: 2255: 2249: 2224: 2220: 2207: 2156: 2152: 2145: 2102: 2098: 2092: 2062:(1): 72–78. 2059: 2055: 2045: 2034:. Retrieved 2004: 2000: 1930: 1926: 1920: 1869: 1865: 1859: 1848:. Retrieved 1845:newatlas.com 1844: 1834: 1783: 1779: 1737: 1733: 1727: 1676: 1672: 1618: 1614: 1604: 1592:. Retrieved 1579: 1520: 1516: 1509: 1446: 1442: 1432: 1418:cite journal 1367: 1363: 1354: 1311: 1307: 1301: 1250: 1246: 1240: 1189: 1185: 1179: 1128: 1124: 1118: 1067: 1063: 1057: 1006: 1002: 996: 945: 941: 931: 890: 886: 880: 837: 833: 827: 794: 790: 784: 743: 739: 726: 709: 705: 699: 650: 646: 582: 578: 572: 539: 536:Nano Letters 535: 529: 496: 492: 486: 453: 449: 443: 392: 388: 382: 367: 364: 342: 329: 317: 305: 293: 281: 261: 248: 232: 224: 211: 140: 131:supercurrent 104: 92: 79: 62: 50: 43: 27: 19: 18: 2321:(1): 7826. 2105:: 221–224. 1515:graphene". 706:Chem. Mater 333:electrolyte 291:structure. 215:twistronics 2376:Categories 2328:2203.06510 2269:1905.11354 2036:2014-04-05 2001:Nat Commun 1940:1801.00520 1879:1701.02399 1850:2017-04-30 1628:1611.00649 1530:1903.06513 1377:1802.00553 1199:1705.07846 791:Adv. Mater 592:1506.08920 375:References 356:morphology 289:mesoporous 287:and has a 2363:247447730 2294:166228311 2241:219011027 2199:118661918 2166:1408.6017 2112:1412.8049 2084:120426939 1912:205456201 1818:0741-3106 1793:0906.1254 1711:0741-3106 1686:0810.0128 1655:2469-9950 1571:117904421 1555:0028-0836 1483:0027-8424 1456:1009.4203 1346:118573989 1321:0801.3694 1260:0909.1502 1232:206662733 1171:206556477 1138:1403.2112 1110:206555219 1077:1401.0659 1016:1312.7033 872:119443126 819:205270193 691:205217165 450:Nano Lett 301:10 m 115:Electrons 59:Synthesis 40:Structure 32:paper by 2392:Graphene 2355:36535920 2191:25382099 2159:: 5309. 2137:96786498 2031:24583928 1973:24691099 1965:29255290 1904:28581509 1762:20512128 1594:10 April 1563:31666722 1501:21730173 1402:29512654 1293:33249360 1285:20367001 1224:28982799 1163:24994646 1102:24994645 1049:14223087 1041:24994644 980:16917057 915:25901686 811:27414480 776:27131160 768:26828845 683:19516337 625:33986700 617:26406840 564:22329410 521:19257205 478:21322597 427:15499015 152:and the 123:fermions 111:excitons 83:band gap 24:graphene 2346:9763474 2274:Bibcode 2171:Bibcode 2117:Bibcode 2064:Bibcode 2009:Bibcode 1945:Bibcode 1884:Bibcode 1826:2733091 1798:Bibcode 1742:Bibcode 1719:9836577 1691:Bibcode 1633:Bibcode 1535:Bibcode 1492:3145708 1461:Bibcode 1410:4601086 1382:Bibcode 1326:Bibcode 1265:Bibcode 1204:Bibcode 1186:Science 1143:Bibcode 1125:Science 1082:Bibcode 1064:Science 1021:Bibcode 1003:Science 950:Bibcode 942:Science 923:4448055 895:Bibcode 852:Bibcode 748:Bibcode 655:Bibcode 597:Bibcode 544:Bibcode 501:Bibcode 458:Bibcode 435:5729649 407:Bibcode 389:Science 346:global 150:Harvard 29:Science 2361:  2353:  2343:  2292:  2239:  2197:  2189:  2135:  2099:Carbon 2082:  2029:  1971:  1963:  1910:  1902:  1824:  1816:  1760:  1717:  1709:  1653:  1569:  1561:  1553:  1517:Nature 1499:  1489:  1481:  1408:  1400:  1364:Nature 1344:  1291:  1283:  1230:  1222:  1169:  1161:  1108:  1100:  1047:  1039:  988:192332 986:  978:  921:  913:  887:Nature 870:  817:  809:  774:  766:  689:  681:  675:974550 673:  647:Nature 623:  615:  562:  519:  476:  433:  425:  360:stress 162:Nature 127:bosons 46:Bernal 2359:S2CID 2323:arXiv 2290:S2CID 2264:arXiv 2237:S2CID 2217:(PDF) 2195:S2CID 2161:arXiv 2133:S2CID 2107:arXiv 2080:S2CID 1969:S2CID 1935:arXiv 1908:S2CID 1874:arXiv 1822:S2CID 1788:arXiv 1715:S2CID 1681:arXiv 1623:arXiv 1567:S2CID 1525:arXiv 1451:arXiv 1406:S2CID 1372:arXiv 1360:Y Cao 1342:S2CID 1316:arXiv 1289:S2CID 1255:arXiv 1228:S2CID 1194:arXiv 1167:S2CID 1133:arXiv 1106:S2CID 1072:arXiv 1045:S2CID 1011:arXiv 984:S2CID 919:S2CID 868:S2CID 842:arXiv 815:S2CID 772:S2CID 736:(PDF) 687:S2CID 621:S2CID 587:arXiv 431:S2CID 397:arXiv 348:Raman 119:holes 2351:PMID 2319:7826 2187:PMID 2027:PMID 1961:PMID 1900:PMID 1814:ISSN 1758:PMID 1707:ISSN 1651:ISSN 1596:2018 1559:PMID 1551:ISSN 1497:PMID 1479:ISSN 1424:link 1398:PMID 1281:PMID 1220:PMID 1159:PMID 1098:PMID 1037:PMID 976:PMID 911:PMID 807:PMID 764:PMID 679:PMID 671:OSTI 613:PMID 560:PMID 517:PMID 474:PMID 423:PMID 168:and 121:are 117:and 34:Geim 2341:PMC 2333:doi 2282:doi 2229:doi 2225:124 2179:doi 2125:doi 2072:doi 2017:doi 1953:doi 1892:doi 1806:doi 1750:doi 1699:doi 1641:doi 1543:doi 1521:574 1487:PMC 1469:doi 1447:108 1390:doi 1368:556 1334:doi 1273:doi 1251:104 1212:doi 1190:358 1151:doi 1129:345 1090:doi 1068:345 1029:doi 1007:345 966:hdl 958:doi 946:313 903:doi 891:520 860:doi 799:doi 756:doi 714:doi 663:doi 651:459 605:doi 583:115 552:doi 509:doi 497:102 466:doi 415:doi 393:306 297:5.8 194:1.7 146:MIT 144:of 109:of 2378:: 2357:. 2349:. 2339:. 2331:. 2317:. 2311:. 2288:. 2280:. 2272:. 2258:. 2235:. 2223:. 2219:. 2193:. 2185:. 2177:. 2169:. 2155:. 2131:. 2123:. 2115:. 2103:85 2101:. 2078:. 2070:. 2058:. 2054:. 2025:. 2015:. 2003:. 1999:. 1981:^ 1967:. 1959:. 1951:. 1943:. 1931:13 1929:. 1906:. 1898:. 1890:. 1882:. 1870:12 1868:. 1843:. 1820:. 1812:. 1804:. 1796:. 1784:30 1782:. 1770:^ 1756:. 1748:. 1736:. 1713:. 1705:. 1697:. 1689:. 1677:30 1675:. 1663:^ 1649:. 1639:. 1631:. 1619:95 1617:. 1613:. 1587:. 1565:. 1557:. 1549:. 1541:. 1533:. 1519:. 1495:. 1485:. 1477:. 1467:. 1459:. 1445:. 1441:. 1420:}} 1416:{{ 1404:. 1396:. 1388:. 1380:. 1366:. 1340:. 1332:. 1324:. 1310:. 1287:. 1279:. 1271:. 1263:. 1249:. 1226:. 1218:. 1210:. 1202:. 1188:. 1165:. 1157:. 1149:. 1141:. 1127:. 1104:. 1096:. 1088:. 1080:. 1066:. 1043:. 1035:. 1027:. 1019:. 1005:. 982:. 974:. 964:. 956:. 944:. 940:. 917:. 909:. 901:. 889:. 866:. 858:. 850:. 838:75 836:. 813:. 805:. 795:28 793:. 770:. 762:. 754:. 744:11 742:. 738:. 710:26 708:. 685:. 677:. 669:. 661:. 649:. 645:. 633:^ 619:. 611:. 603:. 595:. 581:. 558:. 550:. 540:12 538:. 515:. 507:. 495:. 472:. 464:. 454:11 452:. 429:. 421:. 413:. 405:. 391:. 358:, 335:. 315:. 254:. 133:. 113:. 2365:. 2335:: 2325:: 2296:. 2284:: 2276:: 2266:: 2260:3 2243:. 2231:: 2201:. 2181:: 2173:: 2163:: 2157:5 2139:. 2127:: 2119:: 2109:: 2086:. 2074:: 2066:: 2060:8 2039:. 2019:: 2011:: 2005:5 1975:. 1955:: 1947:: 1937:: 1914:. 1894:: 1886:: 1876:: 1853:. 1828:. 1808:: 1800:: 1790:: 1764:. 1752:: 1744:: 1738:5 1721:. 1701:: 1693:: 1683:: 1657:. 1643:: 1635:: 1625:: 1598:. 1573:. 1545:: 1537:: 1527:: 1503:. 1471:: 1463:: 1453:: 1426:) 1412:. 1392:: 1384:: 1374:: 1348:. 1336:: 1328:: 1318:: 1312:4 1295:. 1275:: 1267:: 1257:: 1234:. 1214:: 1206:: 1196:: 1173:. 1153:: 1145:: 1135:: 1112:. 1092:: 1084:: 1074:: 1051:. 1031:: 1023:: 1013:: 990:. 968:: 960:: 952:: 925:. 905:: 897:: 874:. 862:: 854:: 844:: 821:. 801:: 778:. 758:: 750:: 720:. 716:: 693:. 665:: 657:: 627:. 607:: 599:: 589:: 566:. 554:: 546:: 523:. 511:: 503:: 480:. 468:: 460:: 437:. 417:: 409:: 399:: 299:Ă— 213:" 197:K 191:= 186:c 182:T

Index

graphene
Science
Geim
Bernal
Quantum Monte Carlo
chemical vapor deposition
Rodney S. Ruoff
band gap
quantum Hall effect
Bose–Einstein condensate
excitons
Electrons
holes
fermions
bosons
supercurrent
Pablo Jarillo-Herrero
MIT
Harvard
National Institute for Materials Science, Tsukuba, Japan
superconductivity
Nature
Allan MacDonald
Rafi Bistritzer
twistronics
field effect transistors
tunnel transistors
van Hove singularity
lithium ion batteries
the City University of New York

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑