Knowledge

Biot number

Source đź“ť

293:
and composition of the sphere), and the second for convection at the surface of the sphere. If the thermal resistance of the fluid/sphere interface exceeds that thermal resistance offered by the interior of the metal sphere, the Biot number will be less than one. For systems where it is much less than one, the interior of the sphere may be presumed to be a uniform temperature, although this temperature may be changing with time as heat passes into the sphere from the surface. The equation to describe this change in (relatively uniform) temperature inside the object, is a simple exponential one described by
584:
The study of heat transfer in micro-encapsulated phase-change slurries is an application where the Biot number is useful. For the dispersed phase of the micro-encapsulated phase-change slurry, the micro-encapsulated phase-change material itself, the Biot number is calculated to be below 0.1 and so it
309:
The value of the Biot number can indicate the applicability (or inapplicability) of certain methods of solving transient heat transfer problems. For example, a Biot number smaller than about 0.1 implies that heat conduction inside the body offers much lower thermal resistance than the heat convection
292:
The physical significance of Biot number can be understood by imagining the heat flow from a small hot metal sphere suddenly immersed in a pool, to the surrounding fluid. The heat flow experiences two resistances: the first for conduction within the solid metal (which is influenced by both the size
300:
In contrast, the metal sphere may be large, so that the characteristic length is large and the Biot number is greater than one. Now, thermal gradients within the sphere become important, even though the sphere material is a good conductor. Equivalently, if the sphere is made of a poorly conducting
318:
may be used to evaluate a body's transient temperature variation. The opposite is also true: a Biot number greater than about 0.1 indicates that thermal resistance within the body is not negligible, and more complex methods are need in analyzing heat transfer to or from the body (such bodies are
62:
In general, problems involving small Biot numbers (much smaller than 1) are analytically simple, as a result of nearly uniform temperature fields inside the body. Biot numbers of order one or greater indicate more difficult problems with nonuniform temperature fields inside the body.
363:
of the body is directly proportional to the temperature of the body, and the difference between the body temperature and the fluid temperature is linearly proportional to rate of heat transfer into or out of the body. Combining these relationships with the
301:(thermally insulating) material, such as wood or styrofoam, the interior resistance to heat flow will exceed that of convection at the fluid/sphere boundary, even for a much smaller sphere. In this case, again, the Biot number will be greater than one. 916:
Delgado, Mónica; Lázaro, Ana; Mazo, Javier; Zalba, Belén (January 2012). "Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications".
331:
must be solved to determine the time-varying and spatially-nonuniform temperature field within the body. Analytic methods for handling these problems, which may exist for simple geometric shapes and uniform material
457: 340:. Examples of verified analytic solutions along with precise numerical values are available. Often such problems are too difficult to be done except numerically, with the use of a computer model of heat transfer. 681: 520: 359:
The simplest type of lumped capacity solution, for a step change in fluid temperature, shows that a body's temperature decays exponentially in time ("Newtonian" cooling or heating) because the
277: 128: 978: 237:
The characteristic length in most relevant problems becomes the heat characteristic length, i.e. the ratio between the body volume and the heated (or cooled) surface of the body:
623: 348:
As noted, a Biot number smaller than about 0.1 shows that the conduction resistance inside a body is much smaller than heat convection at the surface, so that temperature
716: 356:
of transient heat transfer can be used. (A Biot number less than 0.1 generally indicates less than 3% error will be present when using the lumped-capacitance model.)
575: 544: 778: 211: 184: 156: 746: 971: 1323: 964: 1328: 374: 846:
Cole, Kevin D.; Beck, James V.; Woodbury, Keith A.; de Monte, Filippo (2014). "Intrinsic verification and a heat conduction database".
240: 987: 289:, is used to denote that the surface to be considered is only the portion of the total surface through which the heat passes. 631: 43:
for conduction inside a body to the resistance for convection at the surface of the body. This ratio indicates whether the
465: 368:
leads to a simple first-order linear differential equation. The corresponding lumped capacity solution can be written
314:
are negligible inside of the body (such bodies are sometimes labeled "thermally thin"). In this situation, the simple
92: 889:
Ostorgorsky, Aleks G. (January 2009). "Simple Explicit Equations for Transient Heat Conduction in Finite Solids".
1133: 365: 596: 294: 719: 187: 1333: 1210: 1193: 523: 353: 315: 1188: 1088: 578: 75: 28: 692: 214: 593:
An analogous version of the Biot number (usually called the "mass transfer Biot number", or
1043: 956: 926: 855: 553: 529: 333: 226: 159: 1048: 8: 761: 194: 167: 139: 1113: 930: 859: 1297: 1083: 1023: 867: 731: 40: 36: 1252: 1217: 998: 942: 871: 1302: 1173: 1158: 1123: 1033: 934: 898: 863: 749: 1178: 1267: 1247: 1205: 1200: 1028: 800: 585:
can be assumed that thermal gradients within the dispersed phase are negligible.
360: 71: 1277: 1257: 1242: 1237: 1183: 1168: 1143: 1138: 1128: 1108: 1098: 1063: 1008: 938: 795: 222: 1317: 1287: 1282: 1272: 1262: 1227: 1222: 1163: 1103: 1093: 1073: 1068: 1038: 1003: 946: 875: 337: 328: 67: 32: 1292: 1232: 1148: 1118: 1078: 1053: 1013: 547: 1153: 1058: 44: 790: 452:{\displaystyle {\frac {T-T_{\infty }}{T_{0}-T_{\infty }}}=e^{-t/\tau }} 902: 56: 16:
Ratio of the thermal resistances of a body's interior to its surface
349: 311: 52: 35:
calculations, named for the eighteenth-century French physicist
230: 47:
inside a body varies significantly in space when the body is
986: 285: 48: 322: 845: 820: 915: 764: 734: 695: 676:{\displaystyle \mathrm {Bi} _{m}={\frac {k_{c}}{D}}L} 634: 599: 556: 532: 468: 377: 352:
are negligible inside of the body. In this case, the
243: 197: 170: 142: 95: 327:
When the Biot number is greater than 0.1 or so, the
515:{\displaystyle \tau ={\frac {\rho c_{p}V}{hA_{Q}}}} 772: 740: 710: 675: 617: 569: 538: 514: 451: 271: 205: 178: 150: 122: 221:(The Biot number should not be confused with the 39:(1774–1862). The Biot number is the ratio of the 1315: 272:{\displaystyle L={\frac {V}{A_{\mathrm {Q} }}}} 972: 343: 123:{\displaystyle \mathrm {Bi} ={\frac {h}{k}}L} 625:) is also used in mass diffusion processes: 888: 839: 979: 965: 848:International Journal of Thermal Sciences 588: 1324:Dimensionless numbers of fluid mechanics 988:Dimensionless numbers in fluid mechanics 919:Renewable and Sustainable Energy Reviews 1329:Dimensionless numbers of thermodynamics 66:The Biot number appears in a number of 1316: 827:. University of Nebraska. January 2013 336:, are described in the article on the 323:Heat conduction for finite Biot number 319:sometimes called "thermally thick"). 960: 310:at the surface, so that temperature 825:Exact Analytical Conduction Toolbox 13: 868:10.1016/j.ijthermalsci.2013.11.002 640: 637: 605: 602: 417: 392: 261: 100: 97: 14: 1345: 618:{\displaystyle \mathrm {Bi} _{m}} 304: 233:rather than that of the body.) 86:The Biot number is defined as: 909: 882: 813: 70:problems, including transient 1: 806: 780: : characteristic length 726:of the heat transfer problem) 81: 78:heat transfer calculations. 7: 784: 366:First law of thermodynamics 217:of the geometry considered. 10: 1350: 939:10.1016/j.rser.2011.07.152 344:Heat conduction for Bi ≪ 1 994: 756:of heat transfer problem) 720:mass transfer coefficient 188:heat transfer coefficient 891:Journal of Heat Transfer 354:lumped-capacitance model 316:lumped-capacitance model 711:{\displaystyle {k_{c}}} 295:Newton's law of cooling 774: 742: 712: 677: 619: 589:Mass transfer analogue 579:specific heat capacity 571: 540: 516: 453: 273: 207: 180: 152: 124: 29:dimensionless quantity 775: 743: 713: 678: 620: 572: 570:{\displaystyle c_{p}} 541: 539:{\displaystyle \rho } 524:thermal time constant 517: 454: 274: 215:characteristic length 208: 181: 153: 125: 762: 732: 693: 632: 597: 554: 530: 466: 375: 334:thermal conductivity 279:Here, the subscript 241: 227:thermal conductivity 225:, which employs the 195: 168: 160:thermal conductivity 140: 93: 931:2012RSERv..16..253D 860:2014IJTS...78...36C 773:{\displaystyle {L}} 718: : convective 206:{\displaystyle {L}} 179:{\displaystyle {h}} 151:{\displaystyle {k}} 1134:Keulegan–Carpenter 770: 752:(analogous to the 738: 722:(analogous to the 708: 673: 615: 567: 536: 512: 449: 269: 203: 176: 148: 120: 41:thermal resistance 37:Jean-Baptiste Biot 1311: 1310: 903:10.1115/1.2977540 741:{\displaystyle D} 668: 510: 423: 267: 115: 1341: 981: 974: 967: 958: 957: 951: 950: 913: 907: 906: 886: 880: 879: 843: 837: 836: 834: 832: 817: 779: 777: 776: 771: 769: 750:mass diffusivity 747: 745: 744: 739: 717: 715: 714: 709: 707: 706: 705: 682: 680: 679: 674: 669: 664: 663: 654: 649: 648: 643: 624: 622: 621: 616: 614: 613: 608: 576: 574: 573: 568: 566: 565: 545: 543: 542: 537: 521: 519: 518: 513: 511: 509: 508: 507: 494: 490: 489: 476: 458: 456: 455: 450: 448: 447: 443: 424: 422: 421: 420: 408: 407: 397: 396: 395: 379: 278: 276: 275: 270: 268: 266: 265: 264: 251: 212: 210: 209: 204: 202: 186:is a convective 185: 183: 182: 177: 175: 157: 155: 154: 149: 147: 129: 127: 126: 121: 116: 108: 103: 59:at its surface. 1349: 1348: 1344: 1343: 1342: 1340: 1339: 1338: 1334:Heat conduction 1314: 1313: 1312: 1307: 990: 985: 955: 954: 914: 910: 887: 883: 844: 840: 830: 828: 819: 818: 814: 809: 801:Heat conduction 787: 765: 763: 760: 759: 733: 730: 729: 701: 697: 696: 694: 691: 690: 659: 655: 653: 644: 636: 635: 633: 630: 629: 609: 601: 600: 598: 595: 594: 591: 561: 557: 555: 552: 551: 531: 528: 527: 503: 499: 495: 485: 481: 477: 475: 467: 464: 463: 439: 432: 428: 416: 412: 403: 399: 398: 391: 387: 380: 378: 376: 373: 372: 361:internal energy 346: 325: 307: 260: 259: 255: 250: 242: 239: 238: 236: 198: 196: 193: 192: 171: 169: 166: 165: 143: 141: 138: 137: 107: 96: 94: 91: 90: 84: 72:heat conduction 55:over time by a 17: 12: 11: 5: 1347: 1337: 1336: 1331: 1326: 1309: 1308: 1306: 1305: 1300: 1295: 1290: 1285: 1280: 1275: 1270: 1265: 1260: 1255: 1250: 1245: 1240: 1235: 1230: 1225: 1220: 1215: 1214: 1213: 1203: 1198: 1197: 1196: 1191: 1181: 1176: 1171: 1166: 1161: 1156: 1151: 1146: 1141: 1136: 1131: 1126: 1121: 1116: 1111: 1106: 1101: 1096: 1091: 1086: 1081: 1076: 1071: 1066: 1061: 1056: 1051: 1046: 1041: 1036: 1031: 1026: 1021: 1016: 1011: 1006: 1001: 995: 992: 991: 984: 983: 976: 969: 961: 953: 952: 925:(1): 253–273. 908: 881: 838: 811: 810: 808: 805: 804: 803: 798: 796:Fourier number 793: 786: 783: 782: 781: 768: 757: 737: 727: 704: 700: 684: 683: 672: 667: 662: 658: 652: 647: 642: 639: 612: 607: 604: 590: 587: 564: 560: 535: 506: 502: 498: 493: 488: 484: 480: 474: 471: 460: 459: 446: 442: 438: 435: 431: 427: 419: 415: 411: 406: 402: 394: 390: 386: 383: 345: 342: 324: 321: 306: 303: 263: 258: 254: 249: 246: 223:Nusselt number 219: 218: 201: 190: 174: 163: 146: 131: 130: 119: 114: 111: 106: 102: 99: 83: 80: 15: 9: 6: 4: 3: 2: 1346: 1335: 1332: 1330: 1327: 1325: 1322: 1321: 1319: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1279: 1276: 1274: 1271: 1269: 1266: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1212: 1209: 1208: 1207: 1204: 1202: 1199: 1195: 1192: 1190: 1187: 1186: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1122: 1120: 1117: 1115: 1112: 1110: 1107: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1045: 1044:Chandrasekhar 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 996: 993: 989: 982: 977: 975: 970: 968: 963: 962: 959: 948: 944: 940: 936: 932: 928: 924: 920: 912: 904: 900: 897:(1): 011303. 896: 892: 885: 877: 873: 869: 865: 861: 857: 853: 849: 842: 826: 822: 816: 812: 802: 799: 797: 794: 792: 789: 788: 766: 758: 755: 751: 735: 728: 725: 721: 702: 698: 689: 688: 687: 670: 665: 660: 656: 650: 645: 628: 627: 626: 610: 586: 582: 580: 562: 558: 549: 533: 526:of the body, 525: 504: 500: 496: 491: 486: 482: 478: 472: 469: 444: 440: 436: 433: 429: 425: 413: 409: 404: 400: 388: 384: 381: 371: 370: 369: 367: 362: 357: 355: 351: 341: 339: 338:heat equation 335: 330: 329:heat equation 320: 317: 313: 302: 298: 296: 290: 288: 287: 282: 256: 252: 247: 244: 234: 232: 228: 224: 216: 199: 191: 189: 172: 164: 161: 144: 136: 135: 134: 117: 112: 109: 104: 89: 88: 87: 79: 77: 73: 69: 68:heat transfer 64: 60: 58: 54: 50: 46: 42: 38: 34: 33:heat transfer 30: 26: 22: 1018: 922: 918: 911: 894: 890: 884: 851: 847: 841: 829:. Retrieved 824: 815: 753: 723: 685: 592: 583: 550:(kg/m), and 548:mass density 461: 358: 347: 326: 308: 305:Applications 299: 291: 284: 280: 235: 220: 162:of the body 132: 85: 65: 61: 24: 20: 18: 1298:Weissenberg 45:temperature 21:Biot number 1318:Categories 1218:Richardson 999:Archimedes 831:24 January 807:References 791:Convection 581:(J/kg-K). 82:Definition 1303:Womersley 1194:turbulent 1174:Ohnesorge 1159:Marangoni 1124:Iribarren 1049:Damköhler 1034:Capillary 947:1364-0321 876:1290-0729 854:: 36–47. 534:ρ 479:ρ 470:τ 462:in which 445:τ 434:− 418:∞ 410:− 393:∞ 385:− 350:gradients 312:gradients 57:heat flux 1278:Suratman 1268:Strouhal 1248:Sherwood 1211:magnetic 1206:Reynolds 1201:Rayleigh 1189:magnetic 1029:Brinkman 785:See also 748: : 158:is the 31:used in 1258:Stanton 1253:Shields 1243:Scruton 1238:Schmidt 1184:Prandtl 1169:Nusselt 1144:Laplace 1139:Knudsen 1129:Kapitza 1114:Görtler 1109:Grashof 1099:Galilei 1064:Deborah 1009:Bagnold 927:Bibcode 856:Bibcode 821:"EXACT" 686:where: 546:is the 522:is the 229:of the 133:where: 27:) is a 1288:Ursell 1283:Taylor 1273:Stuart 1263:Stokes 1228:Rossby 1223:Roshko 1179:PĂ©clet 1164:Morton 1104:Graetz 1094:Froude 1084:Eötvös 1074:Eckert 1069:Dukhin 1039:Cauchy 1004:Atwood 945:  874:  283:, for 53:cooled 49:heated 1293:Weber 1233:Rouse 1149:Lewis 1119:Hagen 1089:Euler 1079:Ekman 1054:Darcy 1014:Bejan 231:fluid 213:is a 1154:Mach 1059:Dean 1024:Bond 1019:Biot 943:ISSN 872:ISSN 833:2015 286:heat 74:and 19:The 935:doi 899:doi 895:131 864:doi 577:is 76:fin 51:or 1320:: 941:. 933:. 923:16 921:. 893:. 870:. 862:. 852:78 850:. 823:. 297:. 25:Bi 980:e 973:t 966:v 949:. 937:: 929:: 905:. 901:: 878:. 866:: 858:: 835:. 767:L 754:k 736:D 724:h 703:c 699:k 671:L 666:D 661:c 657:k 651:= 646:m 641:i 638:B 611:m 606:i 603:B 563:p 559:c 505:Q 501:A 497:h 492:V 487:p 483:c 473:= 441:/ 437:t 430:e 426:= 414:T 405:0 401:T 389:T 382:T 281:Q 262:Q 257:A 253:V 248:= 245:L 200:L 173:h 145:k 118:L 113:k 110:h 105:= 101:i 98:B 23:(

Index

dimensionless quantity
heat transfer
Jean-Baptiste Biot
thermal resistance
temperature
heated
cooled
heat flux
heat transfer
heat conduction
fin
thermal conductivity
heat transfer coefficient
characteristic length
Nusselt number
thermal conductivity
fluid
heat
Newton's law of cooling
gradients
lumped-capacitance model
heat equation
thermal conductivity
heat equation
gradients
lumped-capacitance model
internal energy
First law of thermodynamics
thermal time constant
mass density

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑