Knowledge

Borsuk's conjecture

Source 📝

20: 319:. However, as pointed out by Bernulf Weißbach, the first part of this claim is in fact false. But after improving a suboptimal conclusion within the corresponding derivation, one can indeed verify one of the constructed point sets as a counterexample for 1060:) so "it came as a surprise when Kahn and Kalai constructed finite sets showing the contrary". It's worth noting, however, that Karol Borsuk has formulated the problem just as a question, not suggesting the expected answer would be positive. 1020: 520: 669: 1800: 796: 438: 917: 852: 727: 698: 191: 140: 878: 943: 823: 1056:
As Hinrichs and Richter say in the introduction to their work, the "Borsuk's conjecture believed by many to be true for some decades" (hence commonly called a
602: 582: 945:, that is if the gap between the volumes of the smallest and largest constant-width bodies grows exponentially. In 2024 a preprint by Arman, Bondarenko, 1825: 1952: 952: 1398: 455: 1031: 607: 353:. Shortly after, Thomas Jenrich derived a 64-dimensional counterexample from Bondarenko's construction, giving the best bound up to now. 1801:"Andrii Arman, Andriy Bondarenko, Fedor Nazarov, Andriy Prymak, and Danylo Radchenko Constructed Small Volume Bodies of Constant Width" 1188: 241:— shown by Julian Perkal (1947), and independently, 8 years later, by H. G. Eggleston (1955). A simple proof was found later by 1887: 1874:
Raigorodskii, Andreii M. (2008). "Three lectures on the Borsuk partition problem". In Young, Nicholas; Choi, Yemon (eds.).
1502: 1988: 1945: 1854: 1586: 1317: 1274: 1227: 732: 949:, Prymak, Radchenko reported to have answered this question in the affirmative giving a construction that satisfies 393: 2089: 1938: 1333: 1090: 883: 2063: 1272:(1946), "Mitteilung betreffend meine Note: Überdeckung einer Menge durch Mengen kleineren Durchmessers", 2094: 1998: 1879: 1863: 828: 703: 674: 167: 116: 2043: 1389: 1037: 287: 857: 1983: 1769:
Arman, Andrii; Bondarenko, Andriy; Nazarov, Fedor; Prymak, Andriy; Radchenko, Danylo (2024-05-28),
1139: 99: 2058: 2018: 2013: 2068: 922: 1451: 1167:
Perkal, Julian (1947), "Sur la subdivision des ensembles en parties de diamètre inférieur",
2053: 1683: 1648: 1609: 1563: 1535: 1429: 1368: 1295: 1248: 1209: 1186:
Eggleston, H. G. (1955), "Covering a three-dimensional set with sets of smaller diameter",
801: 329:
Their result was improved in 2003 by Hinrichs and Richter, who constructed finite sets for
1897: 8: 2038: 2028: 279: 2033: 1687: 1567: 2048: 2023: 1978: 1916: 1673: 1553: 1511: 1481: 1433: 1407: 1372: 1299: 1252: 1130: 587: 567: 194: 63: 1108: 1085: 242: 2008: 1913: 1883: 1721: 1437: 1376: 1303: 1256: 88: 43: 1421: 1993: 1893: 1776: 1746: 1713: 1636: 1595: 1521: 1417: 1356: 1283: 1236: 1197: 1148: 1103: 268: 1861:
Andrei M. Raigorodskii, The Borsuk partition problem: the seventieth anniversary,
346:
In 2013, Andriy V. Bondarenko had shown that Borsuk's conjecture is false for all
1644: 1605: 1581: 1531: 1425: 1364: 1291: 1244: 1205: 253: 67: 375:, mathematicians are interested in finding the general behavior of the function 2003: 1347:
Dekster, Boris (1995), "The Borsuk conjecture holds for fields of revolution",
16:
Can every bounded subset of Rn be partitioned into (n+1) smaller diameter sets?
1780: 1750: 1742:
Some old and new problems in combinatorial geometry I: Around Borsuk's problem
1701: 1640: 1526: 1201: 2083: 1725: 1320:[Borsuk's problem in three-dimensional spaces of constant curvature] 1269: 1222: 946: 257: 85: 1500:
Bondarenko, Andriy (2014) , "On Borsuk's Conjecture for Two-Distance Sets",
1153: 1622: 1126: 1015:{\displaystyle {\text{Vol}}(K)\leq (0.9)^{n}{\text{Vol}}(\mathbb {B} ^{n})} 441: 59: 47: 1826:"Mathematicians Discover New Shapes to Solve Decades-Old Geometry Problem" 1627: 157: 1930: 1962: 1717: 1360: 1287: 1240: 1225:(1945), "Überdeckung einer Menge durch Mengen kleineren Durchmessers", 515:{\textstyle \alpha (n)\leq \left({\sqrt {3/2}}+\varepsilon \right)^{n}} 109:
Die folgende Frage bleibt offen: Lässt sich jede beschränkte Teilmenge
38: 533:
is still unknown. However, it is conjectured that there is a constant
1921: 1678: 1661: 1486: 1412: 1393: 291: 1666:
Proceedings of the International Congress of Mathematicians, Beijing
91:
of diameters smaller than the ball. At the same time he proved that
1770: 1740: 1550:
A 64-dimensional two-distance counterexample to Borsuk's conjecture
1099: 664:{\displaystyle {\text{Vol}}(K)=r^{n}{\text{Vol}}(\mathbb {B} ^{n})} 71: 70:
can be easily dissected into 4 solids, each of which has a smaller
1878:. London Mathematical Society Lecture Note Series. Vol. 347. 1600: 1584:(2014), "A 64-Dimensional Counterexample to Borsuk's Conjecture", 1558: 1516: 1133:[Three theorems about the n-dimensional Euclidean sphere] 825:
is the smallest effective radius of a body of constant width 2 in
222:
The question was answered in the positive in the following cases:
146:) Mengen zerlegen, von denen jede einen kleineren Durchmesser als 1318:"Проблема Борсука в трехмерных пространствах постоянной кривизны" 24: 19: 1911: 1478:
On the counterexamples to Borsuk's conjecture by Kahn and Kalai
95: 294:, who showed that the general answer to Borsuk's question is 1768: 1034:
on covering convex fields with smaller copies of themselves
1664:(2002), "Discrete mathematics: methods and challenges", 1131:"Drei Sätze über die n-dimensionale euklidische Sphäre" 564:
Oded Schramm also worked in a related question, a body
1084:
Hinrichs, Aicke; Richter, Christian (28 August 2003).
458: 396: 232:— which is the original result by Karol Borsuk (1932). 955: 925: 886: 860: 831: 804: 735: 706: 677: 610: 590: 570: 215:
Drei Sätze über die n-dimensionale euklidische Sphäre
170: 119: 98:
are not enough in general. The proof is based on the
386:. Kahn and Kalai show that in general (that is, for 1396:(1993), "A counterexample to Borsuk's conjecture", 584:of constant width is said to have effective radius 1014: 937: 911: 872: 846: 817: 790: 721: 692: 663: 596: 576: 514: 432: 204:) sets, each of which has a smaller diameter than 185: 134: 2081: 440:many pieces. They also quote the upper bound by 298:. They claim that their construction shows that 1625:(1988), "Illuminating sets of constant width", 1083: 791:{\displaystyle {\sqrt {3+2/(n+1)}}-1\leq r_{n}} 326:(as well as all higher dimensions up to 1560). 156:The following question remains open: Can every 1579: 1946: 1702:"On the volume of sets having constant width" 1399:Bulletin of the American Mathematical Society 433:{\textstyle \alpha (n)\geq (1.2)^{\sqrt {n}}} 360:of dimensions such that the number of pieces 1873: 1050: 213: 107: 35:, for historical reasons incorrectly called 1079: 1077: 27:cut into three pieces of smaller diameter. 1953: 1939: 1499: 1189:Journal of the London Mathematical Society 1121: 1119: 286:The problem was finally solved in 1993 by 1960: 1677: 1599: 1557: 1525: 1515: 1485: 1411: 1388: 1185: 1152: 1107: 999: 834: 709: 680: 648: 173: 122: 102:. That led Borsuk to a general question: 1449: 1315: 1268: 1221: 1074: 18: 1699: 1621: 1547: 1475: 1346: 1116: 271:fields — shown by A.S. Riesling (1971). 2082: 1823: 1166: 1125: 356:Apart from finding the minimum number 78:-dimensional ball can be covered with 62:showed that an ordinary 3-dimensional 1934: 1912: 1798: 1772:Small volume bodies of constant width 1738: 1503:Discrete & Computational Geometry 912:{\displaystyle r_{n}\leq 1-\epsilon } 1660: 1086:"New sets with large Borsuk numbers" 522:. The correct order of magnitude of 1876:Surveys in contemporary mathematics 1587:Electronic Journal of Combinatorics 336:, which cannot be partitioned into 13: 1855:Algebraic Methods in Combinatorics 1846: 1459:Beiträge zur Algebra und Geometrie 14: 2106: 1905: 1275:Commentarii Mathematici Helvetici 1228:Commentarii Mathematici Helvetici 1332:, Kharkov State University (now 847:{\displaystyle \mathbb {R} ^{n}} 722:{\displaystyle \mathbb {R} ^{n}} 693:{\displaystyle \mathbb {B} ^{n}} 282:— shown by Boris Dekster (1995). 186:{\displaystyle \mathbb {R} ^{n}} 135:{\displaystyle \mathbb {R} ^{n}} 1817: 1792: 1762: 1732: 1693: 1654: 1615: 1573: 1541: 1493: 1469: 1452:"Sets with Large Borsuk Number" 1443: 1422:10.1090/S0273-0979-1993-00398-7 1382: 390:sufficiently large), one needs 1824:Barber, Gregory (2024-09-20). 1340: 1334:National University of Kharkiv 1309: 1262: 1215: 1179: 1160: 1009: 994: 980: 973: 967: 961: 873:{\displaystyle \epsilon >0} 764: 752: 658: 643: 622: 616: 468: 462: 419: 412: 406: 400: 1: 1706:Israel Journal of Mathematics 1109:10.1016/S0012-365X(02)00833-6 1067: 74:than the ball, and generally 729:, he proved the lower bound 444:, who showed that for every 7: 1700:Schramm, Oded (June 1988). 1025: 343:parts of smaller diameter. 10: 2111: 1880:Cambridge University Press 1870:(2004), no. 3, 4–12. 1864:Mathematical Intelligencer 1450:Weißbach, Bernulf (2000), 854:and asked if there exists 305:pieces do not suffice for 53: 33:Borsuk problem in geometry 1969: 1799:Kalai, Gil (2024-05-31). 1781:10.48550/arXiv.2405.18501 1751:10.48550/arXiv.1505.04952 1739:Kalai, Gil (2015-05-19), 1641:10.1112/S0025579300015175 1527:10.1007/s00454-014-9579-4 256:convex fields — shown by 108: 1548:Jenrich, Thomas (2013), 1476:Jenrich, Thomas (2018), 1316:Riesling, A. S. (1971), 1202:10.1112/jlms/s1-30.1.11 1169:Colloquium Mathematicum 1154:10.4064/fm-20-1-177-190 1140:Fundamenta Mathematicae 1043: 938:{\displaystyle n\geq 2} 452:is sufficiently large, 1805:Combinatorics and more 1016: 939: 913: 874: 848: 819: 792: 723: 694: 665: 598: 578: 516: 434: 220: 214: 187: 136: 28: 2090:Disproved conjectures 1989:Euler's sum of powers 1917:"Borsuk's Conjecture" 1038:Kahn–Kalai conjecture 1032:Hadwiger's conjecture 1017: 940: 914: 875: 849: 820: 818:{\displaystyle r_{n}} 793: 724: 695: 666: 599: 579: 517: 435: 188: 137: 104: 22: 1882:. pp. 202–247. 1091:Discrete Mathematics 953: 923: 884: 858: 829: 802: 733: 704: 700:is the unit ball in 675: 608: 588: 568: 456: 394: 280:fields of revolution 168: 117: 46:. It is named after 1688:2002math.....12390A 1582:Brouwer, Andries E. 1568:2013arXiv1308.0206J 1349:Journal of Geometry 269:centrally-symmetric 100:Borsuk–Ulam theorem 42:, is a question in 1979:Chinese hypothesis 1914:Weisstein, Eric W. 1718:10.1007/BF02765037 1361:10.1007/BF01406827 1326:Ukr. Geom. Sbornik 1288:10.1007/BF02565947 1241:10.1007/BF02568103 1012: 935: 909: 870: 844: 815: 788: 719: 690: 661: 594: 574: 512: 430: 245:and Aladár Heppes. 183: 132: 29: 2095:Discrete geometry 2077: 2076: 1889:978-0-521-70564-6 1580:Jenrich, Thomas; 992: 959: 767: 641: 614: 597:{\displaystyle r} 577:{\displaystyle K} 493: 427: 44:discrete geometry 2102: 2029:Ono's inequality 1955: 1948: 1941: 1932: 1931: 1927: 1926: 1901: 1840: 1839: 1837: 1836: 1821: 1815: 1814: 1812: 1811: 1796: 1790: 1789: 1788: 1787: 1766: 1760: 1759: 1758: 1757: 1736: 1730: 1729: 1697: 1691: 1690: 1681: 1658: 1652: 1651: 1619: 1613: 1612: 1603: 1577: 1571: 1570: 1561: 1545: 1539: 1538: 1529: 1519: 1497: 1491: 1490: 1489: 1473: 1467: 1466: 1456: 1447: 1441: 1440: 1415: 1386: 1380: 1379: 1344: 1338: 1337: 1323: 1313: 1307: 1306: 1266: 1260: 1259: 1219: 1213: 1212: 1183: 1177: 1176: 1164: 1158: 1157: 1156: 1136: 1123: 1114: 1113: 1111: 1081: 1061: 1054: 1021: 1019: 1018: 1013: 1008: 1007: 1002: 993: 990: 988: 987: 960: 957: 944: 942: 941: 936: 918: 916: 915: 910: 896: 895: 879: 877: 876: 871: 853: 851: 850: 845: 843: 842: 837: 824: 822: 821: 816: 814: 813: 797: 795: 794: 789: 787: 786: 768: 751: 737: 728: 726: 725: 720: 718: 717: 712: 699: 697: 696: 691: 689: 688: 683: 670: 668: 667: 662: 657: 656: 651: 642: 639: 637: 636: 615: 612: 603: 601: 600: 595: 583: 581: 580: 575: 560: 553: 539: 532: 521: 519: 518: 513: 511: 510: 505: 501: 494: 489: 481: 451: 447: 439: 437: 436: 431: 429: 428: 423: 389: 385: 374: 359: 352: 342: 335: 325: 318: 311: 304: 277: 266: 251: 240: 231: 218: 217: 207: 203: 192: 190: 189: 184: 182: 181: 176: 163: 152: 151: 149: 145: 141: 139: 138: 133: 131: 130: 125: 112: 94: 84: 77: 23:An example of a 2110: 2109: 2105: 2104: 2103: 2101: 2100: 2099: 2080: 2079: 2078: 2073: 1965: 1959: 1908: 1890: 1858:, course notes. 1852:Oleg Pikhurko, 1849: 1847:Further reading 1844: 1843: 1834: 1832: 1830:Quanta Magazine 1822: 1818: 1809: 1807: 1797: 1793: 1785: 1783: 1767: 1763: 1755: 1753: 1737: 1733: 1698: 1694: 1659: 1655: 1620: 1616: 1578: 1574: 1546: 1542: 1498: 1494: 1474: 1470: 1454: 1448: 1444: 1387: 1383: 1345: 1341: 1321: 1314: 1310: 1267: 1263: 1220: 1216: 1184: 1180: 1165: 1161: 1134: 1124: 1117: 1082: 1075: 1070: 1065: 1064: 1055: 1051: 1046: 1028: 1003: 998: 997: 989: 983: 979: 956: 954: 951: 950: 924: 921: 920: 891: 887: 885: 882: 881: 859: 856: 855: 838: 833: 832: 830: 827: 826: 809: 805: 803: 800: 799: 782: 778: 747: 736: 734: 731: 730: 713: 708: 707: 705: 702: 701: 684: 679: 678: 676: 673: 672: 652: 647: 646: 638: 632: 628: 611: 609: 606: 605: 589: 586: 585: 569: 566: 565: 555: 541: 534: 523: 506: 485: 480: 479: 475: 474: 457: 454: 453: 449: 445: 422: 418: 395: 392: 391: 387: 376: 361: 357: 347: 337: 330: 320: 313: 306: 299: 275: 264: 249: 243:Branko Grünbaum 235: 226: 219: 212: 205: 198: 177: 172: 171: 169: 166: 165: 161: 147: 143: 126: 121: 120: 118: 115: 114: 110: 92: 79: 75: 68:Euclidean space 56: 17: 12: 11: 5: 2108: 2098: 2097: 2092: 2075: 2074: 2072: 2071: 2066: 2061: 2056: 2051: 2046: 2041: 2036: 2031: 2026: 2021: 2016: 2011: 2006: 2004:Hauptvermutung 2001: 1996: 1991: 1986: 1981: 1976: 1970: 1967: 1966: 1958: 1957: 1950: 1943: 1935: 1929: 1928: 1907: 1906:External links 1904: 1903: 1902: 1888: 1871: 1859: 1848: 1845: 1842: 1841: 1816: 1791: 1761: 1731: 1712:(2): 178–182. 1692: 1653: 1635:(2): 180–189, 1614: 1572: 1540: 1510:(3): 509–515, 1492: 1468: 1442: 1381: 1355:(1–2): 64–73, 1339: 1328:(in Russian), 1308: 1270:Hadwiger, Hugo 1261: 1223:Hadwiger, Hugo 1214: 1178: 1159: 1115: 1072: 1071: 1069: 1066: 1063: 1062: 1048: 1047: 1045: 1042: 1041: 1040: 1035: 1027: 1024: 1011: 1006: 1001: 996: 986: 982: 978: 975: 972: 969: 966: 963: 934: 931: 928: 908: 905: 902: 899: 894: 890: 869: 866: 863: 841: 836: 812: 808: 785: 781: 777: 774: 771: 766: 763: 760: 757: 754: 750: 746: 743: 740: 716: 711: 687: 682: 660: 655: 650: 645: 635: 631: 627: 624: 621: 618: 593: 573: 509: 504: 500: 497: 492: 488: 484: 478: 473: 470: 467: 464: 461: 426: 421: 417: 414: 411: 408: 405: 402: 399: 297: 284: 283: 272: 261: 246: 233: 210: 180: 175: 129: 124: 55: 52: 15: 9: 6: 4: 3: 2: 2107: 2096: 2093: 2091: 2088: 2087: 2085: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2047: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2005: 2002: 2000: 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1980: 1977: 1975: 1972: 1971: 1968: 1964: 1956: 1951: 1949: 1944: 1942: 1937: 1936: 1933: 1924: 1923: 1918: 1915: 1910: 1909: 1899: 1895: 1891: 1885: 1881: 1877: 1872: 1869: 1866: 1865: 1860: 1857: 1856: 1851: 1850: 1831: 1827: 1820: 1806: 1802: 1795: 1782: 1778: 1774: 1773: 1765: 1752: 1748: 1744: 1743: 1735: 1727: 1723: 1719: 1715: 1711: 1707: 1703: 1696: 1689: 1685: 1680: 1675: 1671: 1667: 1663: 1657: 1650: 1646: 1642: 1638: 1634: 1630: 1629: 1624: 1623:Schramm, Oded 1618: 1611: 1607: 1602: 1601:10.37236/4069 1597: 1594:(4): #P4.29, 1593: 1589: 1588: 1583: 1576: 1569: 1565: 1560: 1555: 1551: 1544: 1537: 1533: 1528: 1523: 1518: 1513: 1509: 1505: 1504: 1496: 1488: 1483: 1479: 1472: 1464: 1461:(in German), 1460: 1453: 1446: 1439: 1435: 1431: 1427: 1423: 1419: 1414: 1409: 1405: 1401: 1400: 1395: 1391: 1385: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1343: 1335: 1331: 1327: 1319: 1312: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1278:(in German), 1277: 1276: 1271: 1265: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1231:(in German), 1230: 1229: 1224: 1218: 1211: 1207: 1203: 1199: 1195: 1191: 1190: 1182: 1174: 1171:(in French), 1170: 1163: 1155: 1150: 1146: 1143:(in German), 1142: 1141: 1132: 1128: 1127:Borsuk, Karol 1122: 1120: 1110: 1105: 1101: 1097: 1093: 1092: 1087: 1080: 1078: 1073: 1059: 1053: 1049: 1039: 1036: 1033: 1030: 1029: 1023: 1004: 984: 976: 970: 964: 948: 932: 929: 926: 906: 903: 900: 897: 892: 888: 867: 864: 861: 839: 810: 806: 783: 779: 775: 772: 769: 761: 758: 755: 748: 744: 741: 738: 714: 685: 653: 633: 629: 625: 619: 591: 571: 562: 558: 552: 548: 544: 537: 530: 526: 507: 502: 498: 495: 490: 486: 482: 476: 471: 465: 459: 443: 424: 415: 409: 403: 397: 383: 379: 372: 368: 364: 354: 350: 344: 340: 333: 327: 323: 316: 312:and for each 309: 302: 295: 293: 289: 281: 273: 270: 262: 259: 258:Hugo Hadwiger 255: 247: 244: 238: 234: 229: 225: 224: 223: 216: 209: 201: 196: 178: 164:of the space 159: 154: 153: 127: 103: 101: 97: 90: 87: 82: 73: 69: 65: 61: 51: 49: 45: 41: 40: 34: 26: 21: 1999:Hedetniemi's 1973: 1920: 1875: 1867: 1862: 1853: 1833:. Retrieved 1829: 1819: 1808:. Retrieved 1804: 1794: 1784:, retrieved 1771: 1764: 1754:, retrieved 1741: 1734: 1709: 1705: 1695: 1679:math/0212390 1669: 1665: 1656: 1632: 1626: 1617: 1591: 1585: 1575: 1549: 1543: 1507: 1501: 1495: 1487:1809.09612v4 1477: 1471: 1465:(2): 417–423 1462: 1458: 1445: 1413:math/9307229 1406:(1): 60–62, 1403: 1397: 1384: 1352: 1348: 1342: 1329: 1325: 1311: 1282:(1): 72–73, 1279: 1273: 1264: 1235:(1): 73–75, 1232: 1226: 1217: 1193: 1187: 1181: 1172: 1168: 1162: 1144: 1138: 1095: 1089: 1057: 1052: 563: 556: 550: 546: 542: 535: 528: 524: 442:Oded Schramm 381: 377: 370: 366: 362: 355: 348: 345: 338: 331: 328: 321: 314: 307: 300: 285: 236: 227: 221: 199: 155: 106: 105: 80: 60:Karol Borsuk 57: 48:Karol Borsuk 36: 32: 30: 2059:Von Neumann 1963:conjectures 1672:: 119–135, 1628:Mathematika 1147:: 177–190, 1102:: 137–147. 195:partitioned 113:des Raumes 2084:Categories 2069:Williamson 2064:Weyl–Berry 2044:Schoen–Yau 1961:Disproved 1898:1144.52005 1835:2024-09-28 1810:2024-09-28 1786:2024-09-28 1756:2024-09-28 1662:Alon, Noga 1394:Kalai, Gil 1390:Kahn, Jeff 1068:References 1058:conjecture 880:such that 540:such that 39:conjecture 1922:MathWorld 1726:0021-2172 1559:1308.0206 1517:1305.2584 1438:119647518 1377:121586146 1304:121053805 1257:122199549 1196:: 11–24, 971:≤ 930:≥ 907:ϵ 904:− 898:≤ 862:ϵ 776:≤ 770:− 499:ε 472:≤ 460:α 410:≥ 398:α 317:> 2014 292:Gil Kalai 288:Jeff Kahn 58:In 1932, 37:Borsuk's 2039:Ragsdale 2019:Keller's 2014:Kalman's 1974:Borsuk's 1336:): 78–83 1129:(1933), 1100:Elsevier 1026:See also 919:for all 798:, where 671:, where 554:for all 274:For all 263:For all 248:For all 211:—  72:diameter 2049:Seifert 2024:Mertens 1684:Bibcode 1649:0986627 1610:3292266 1564:Bibcode 1536:3201240 1430:1193538 1369:1317256 1296:0017515 1249:0013901 1210:0067473 1098:(1–3). 947:Nazarov 549:) > 369:) > 260:(1946). 160:subset 158:bounded 96:subsets 86:compact 54:Problem 25:hexagon 2054:Tait's 2009:Hirsch 1984:Connes 1896:  1886:  1724:  1647:  1608:  1534:  1436:  1428:  1375:  1367:  1302:  1294:  1255:  1247:  1208:  538:> 1 324:= 1325 310:= 1325 254:smooth 197:into ( 2034:Pólya 1994:Ganea 1674:arXiv 1554:arXiv 1512:arXiv 1482:arXiv 1455:(PDF) 1434:S2CID 1408:arXiv 1373:S2CID 1322:(PDF) 1300:S2CID 1253:S2CID 1135:(PDF) 448:, if 334:≥ 298 144:n + 1 1884:ISBN 1722:ISSN 1175:: 45 1044:Note 865:> 351:≥ 65 341:+ 11 290:and 278:for 267:for 252:for 150:hat? 142:in ( 89:sets 64:ball 31:The 1894:Zbl 1777:doi 1747:doi 1714:doi 1637:doi 1596:doi 1522:doi 1418:doi 1357:doi 1284:doi 1237:doi 1198:doi 1149:doi 1104:doi 1096:270 991:Vol 977:0.9 958:Vol 640:Vol 613:Vol 604:if 559:≥ 1 416:1.2 373:+ 1 303:+ 1 239:= 3 230:= 2 202:+ 1 193:be 83:+ 1 66:in 2086:: 1919:. 1892:. 1868:26 1828:. 1803:. 1775:, 1745:, 1720:. 1710:63 1708:. 1704:. 1682:, 1668:, 1645:MR 1643:, 1633:35 1631:, 1606:MR 1604:, 1592:21 1590:, 1562:, 1552:, 1532:MR 1530:, 1520:, 1508:51 1506:, 1480:, 1463:41 1457:, 1432:, 1426:MR 1424:, 1416:, 1404:29 1402:, 1392:; 1371:, 1365:MR 1363:, 1353:52 1351:, 1330:11 1324:, 1298:, 1292:MR 1290:, 1280:19 1251:, 1245:MR 1243:, 1233:18 1206:MR 1204:, 1194:30 1192:, 1145:20 1137:, 1118:^ 1094:. 1088:. 1076:^ 1022:. 561:. 296:no 208:? 50:. 1954:e 1947:t 1940:v 1925:. 1900:. 1838:. 1813:. 1779:: 1749:: 1728:. 1716:: 1686:: 1676:: 1670:1 1639:: 1598:: 1566:: 1556:: 1524:: 1514:: 1484:: 1420:: 1410:: 1359:: 1286:: 1239:: 1200:: 1173:2 1151:: 1112:. 1106:: 1010:) 1005:n 1000:B 995:( 985:n 981:) 974:( 968:) 965:K 962:( 933:2 927:n 901:1 893:n 889:r 868:0 840:n 835:R 811:n 807:r 784:n 780:r 773:1 765:) 762:1 759:+ 756:n 753:( 749:/ 745:2 742:+ 739:3 715:n 710:R 686:n 681:B 659:) 654:n 649:B 644:( 634:n 630:r 626:= 623:) 620:K 617:( 592:r 572:K 557:n 551:c 547:n 545:( 543:α 536:c 531:) 529:n 527:( 525:α 508:n 503:) 496:+ 491:2 487:/ 483:3 477:( 469:) 466:n 463:( 450:n 446:ε 425:n 420:) 413:( 407:) 404:n 401:( 388:n 384:) 382:n 380:( 378:α 371:n 367:n 365:( 363:α 358:n 349:n 339:n 332:n 322:n 315:n 308:n 301:n 276:n 265:n 250:n 237:n 228:n 206:E 200:n 179:n 174:R 162:E 148:E 128:n 123:R 111:E 93:n 81:n 76:n

Index


hexagon
conjecture
discrete geometry
Karol Borsuk
Karol Borsuk
ball
Euclidean space
diameter
compact
sets
subsets
Borsuk–Ulam theorem
bounded
partitioned
Branko Grünbaum
smooth
Hugo Hadwiger
centrally-symmetric
fields of revolution
Jeff Kahn
Gil Kalai
Oded Schramm
Nazarov
Hadwiger's conjecture
Kahn–Kalai conjecture


"New sets with large Borsuk numbers"
Discrete Mathematics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.