Knowledge

Bose–Einstein condensation of quasiparticles

Source 📝

1023:
temperature 354 mK was seen by Yoshioka et al. in 2011. Recent experiments by Stolz et al. using a potential trap have given more evidence at ultralow temperature 37 mK. In a parabolic trap with exciton temperature 200 mK and lifetime broadened to 650ns, the dependence of luminescence on laser intensity has a kink which indicates condensation. The theory of a Bose gas is extended to a mean field interacting gas by a Bogoliubov approach to predict the exciton spectrum; The kink is considered a sign of transition to BEC. Signs were seen for a dense gas BEC in a GaAs quantum well.
1093:, an elementary excitation in superfluid He introduced by Landau, were discussed by Feynman and others. Rotons condense at low temperature. Experiments have been proposed and the expected spectrum has been studied, but roton condensates have not been detected. Phonons were first observed in a condensate in 2004 by ultrashort pulses in a bismuth crystal at 7K. 1034:, electron spin waves, can be controlled by a magnetic field. Densities from the limit of a dilute gas to a strongly interacting Bose liquid are possible. Magnetic ordering is the analog of superfluidity. The condensate appears as the emission of monochromatic microwaves, which are tunable with the applied magnetic field. 486:-point (2.17K); a condensate was proposed by Böer et al. in 1961. Experimental phenomenon were predicted leading to various pulsed laser searches that failed to produce evidence. Signs were first seen by Fuzukawa et al. in 1990, but definite detection was published later in the 2000s. Condensed excitons are a 1022:
started a large number of experimental searches into the 1990s that failed to detect signs. Pulse methods led to overheating, preventing condensate states. Helium cooling allows mili-kelvin setups and continuous wave optics improves on pulsed searches. Relaxation explosion of a condensate at lattice
498:
Excitons results from photons exciting electrons creating holes, which are then attracted and can form bound states. The 1s paraexciton and orthoexciton are possible. The 1s triplet spin state, 12.1meV below the degenerate orthoexciton states(lifetime ~ns), is decoupled and has a long lifetime to an
1077:
in an optical microcavity was first published in Nature in 2006. Semiconductor cavity polariton gases transition to ground state occupation at 19K. Bogoliubov excitations were seen polariton BECs in 2008. The signatures of BEC were observed at room temperature for the first time in 2013, in a large
447:
This can be achieved by cooling and magnetic or optical control of the system. Spectroscopy can detect shifts in peaks indicating thermodynamic phases with condensation. Quasiparticle BEC can be superfluids. Signs of such states include spatial and temporal coherence and polarization changes.
39:
BECs form when low temperatures cause nearly all particles to occupy the lowest quantum state. Condensation of quasiparticles occurs in ultracold gases and materials. The lower masses of material quasiparticles relative to atoms lead to higher BEC temperatures. An ideal Bose gas has a phase
448:
Observation for excitons in solids was seen in 2005 and for magnons in materials and polaritons in microcavities in 2006. Graphene is another important solid state system for studies of condensed matter including quasi particles; It's a 2D electron gas, similar to other thin films.
699: 30:
in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed. The topic continues to be an active field of study.
499:
optical decay. Dilute gas densities (n~10cm) are possible, but paraexciton generation scales poorly, so significant heating occurs in creating high densities(10cm) preventing BECs. Assuming a thermodynamic phase occurs when separation reaches the
2217:
Kasprzak, J; Richard, M; Kundermann, S; Baas, A; Jeambrun, P; Keeling, JM; Marchetti, FM; Szymańska, MH; André, R; Staehli, JL; Savona, V; Littlewood, PB; Deveaud, B; Dang (28 September 2006). "Bose–Einstein condensation of exciton polaritons".
1936:
Alloing, Mathieu; Beian, Mussie; Lewenstein, Maciej; Fuster, David; González, Yolanda; González, Luisa; Combescot, Roland; Combescot, Monique; Dubin, François (July 2014). "Evidence for a Bose–Einstein condensate of excitons".
442: 984: 282: 199: 541: 1440:
Berman, OL; Kezerashvili, RY; Lozovik, YE; Snoke, DW (1 November 2010). "Bose–Einstein condensation and superfluidity of trapped polaritons in graphene and quantum wells embedded in a microcavity".
2065:
Demokritov, S.O.; Demidov, VE; Dzyapko, O; Melkov, GA; Serga, AA; Hillebrands, B; Slavin, AN (2006). "Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping".
1050:, at temperatures as large as 14 K. The high transition temperature (relative to atomic gases) is due to the small mass (near an electron) and greater density. In 2006, condensation in a 902:, preventing a high density paraexciton BEC. A potential well limits diffusion, damps exciton decay, and lowers the critical number, yielding an improved critical temperature versus the 110: 338: 1267:
Bugrij, A. I.; Loktev, V. M. (2007). "On the theory of Bose–Einstein condensation of quasiparticles: On the possibility of condensation of ferromagnons at high temperatures".
758: 1054:
Yttrium-iron-garnet thin film was seen even at room temperature with optical pumping. Condensation was reported in gadolinium in 2011. Magnon BECs have been considered as
900: 531: 1816:
Stolz, H.; Semkat, D. (2010). "Unique signatures for Bose-Einstein condensation in the decay luminescence lineshape of weakly interacting excitons in a potential trap".
1501: 847: 484: 778: 1016: 2398:
Plumhof, JD; Stöferle, T; Mai, L; Scherf, U; Mahrt, RF (8 December 2013). "Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer".
1018:= 10s. For an achievable T = 0.01K, a manageable optical pumping rate of 10/s should produce a condensate. More detailed calculations by J. Keldysh and later by 818: 798: 731: 346: 490:
and will not interact with phonons. While the normal exciton absorption is broadened by phonons, in the superfluid absorption degenerates to a line.
1312:
Butov, L. V.; Lai, C. W.; Ivanov, A. L.; Gossard, A. C.; Chemla, D. S. (2002). "Towards Bose–Einstein condensation of excitons in potential traps".
2269:
Utsunomiya, S; Tian, L; Roumpos, G; Lai, C. W; Kumada, N; Fujisawa, T; Kuwata-Gonokami, M; Löffler, A; Höfling, S; Forchel, A; Yamamoto, Y (2008).
1157:
Dalfovo, Franco; Giorgini, Stefano; Pitaevskii, Lev P.; Stringari, Sandro (1 March 1999). "Theory of Bose-Einstein condensation in trapped gases".
912: 2664:
Galli, D. E; Reatto, L; Rossi, M (2014). "Quantum Monte Carlo study of a vortex in superfluid He4 and search for a vortex state in the solid".
2611:
Blakie, P. B; Baillie, D; Bisset, R. N (15 August 2012). "Roton spectroscopy in a harmonically trapped dipolar Bose–Einstein condensate".
2312:"Polariton Bose–Einstein condensate at room temperature in an Al(Ga)N nanowire–dielectric microcavity with a spatial potential trap" 1781:
Joshioka, K.; Ideguchi, T.; Mysyrovicz, A; Kuwata-Gonokami, M. (2010). "Quantum inelastic collisions between paraexcitons inCu2O".
1107: 1074: 694:{\displaystyle n^{1/3}=\hbar ^{-1}(m_{\text{eff}}kT_{cr})^{1/2}\longrightarrow T_{c}={\frac {n^{2/3}\hbar ^{2}}{km_{\text{eff}}}}} 204: 2128:
Mathew, SP; Kaul, SN (Jul 6, 2011). "Bose–Einstein condensation of magnons in polycrystalline gadolinium with nano-size grains".
2380: 115: 2758: 2717:
Misochko, O. V; Hase, Muneaki; Ishioka, K; Kitajima, M (16 February 2004). "Transient Bose–Einstein condensation of phonons".
2179:
Andrianov, S. N; Moiseev, S. A (2 October 2014). "Magnon qubit and quantum computing on magnon Bose–Einstein condensates".
1612:
Heinrich Stolz; et al. (2012). "Condensation of excitons in Cu2O at ultracold temperatures: Experiment and theory".
1379:
Eisenstein, JP; Macdonald, AH (9 December 2004). "Bose–Einstein condensation of excitons in bilayer electron systems".
2118:
made simple. Website of the "Westfählische Wilhelms Universität Münster" Prof.Demokritov. Retrieved 25 June 2012.
1120:
Ando, Tsuneya; Fowler, Alan B.; Stern, Frank (1 March 1982). "Electronic properties of two-dimensional systems".
43: 2000:
Nikuni, T.; Oshikawa, M.; Oosawa, A.; Tanaka, H. (1999). "Bose–Einstein Condensation of Dilute Magnons in TlCuCl
19: 1212:
Bloch, Immanuel; Dalibard, Jean; Zwerger, Wilhelm (18 July 2008). "Many-body physics with ultracold gases".
1746:
Naka, N.; Nagasawa, N. (2005). "Bosonic stimulation of cold excitons in a harmonic potential trap in CuO".
1102: 1871:"Transition to a Bose–Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures" 290: 2467: 2381:"SCIENTIFIC METHOD / SCIENCE & EXPLORATION Bose–Einstein condensate created at room temperature" 1969: 1703:; Wolfe, J.P.; Mysyrovicz, A. (1990). "Evidence for Bose-Einstein condensation of excitons inCu2O". 736: 852: 506: 2763: 1595:
Blatt, J.M., K.W. Boer, and W. Brandt, (1962) Bose–Einstein Condensation of excitons, Phys. Rev.
1964: 27: 1486: 823: 469: 2454: 500: 763: 2726: 2683: 2630: 2577: 2532: 2497: 2407: 2333: 2282: 2227: 2188: 2137: 2074: 2023: 1956: 1892: 1835: 1790: 1755: 1712: 1631: 1568: 1512: 1449: 1398: 1321: 1276: 1231: 1176: 1129: 1001: 2482: 8: 2149: 1643: 2730: 2687: 2634: 2581: 2536: 2501: 2411: 2337: 2286: 2231: 2192: 2141: 2078: 2027: 1960: 1896: 1839: 1794: 1759: 1716: 1635: 1572: 1516: 1453: 1402: 1325: 1280: 1235: 1180: 1133: 2699: 2673: 2646: 2620: 2593: 2567: 2356: 2323: 2311: 2251: 2161: 2098: 2047: 2013: 1982: 1946: 1918: 1913: 1882: 1870: 1851: 1825: 1647: 1621: 1528: 1422: 1388: 1353: 1300: 1255: 1221: 1200: 1166: 803: 783: 716: 40:
transitions when inter-particle spacing approaches the thermal De-Broglie wavelength:
2703: 2650: 2597: 2423: 2361: 2243: 2153: 2090: 2039: 1986: 1855: 1728: 1675: 1651: 1465: 1414: 1345: 1337: 1304: 1292: 1259: 1247: 1192: 1145: 1059: 284:. The particles obey the Bose–Einstein distribution and all occupy the ground state: 2544: 2165: 1978: 1922: 1204: 2738: 2734: 2691: 2638: 2585: 2540: 2505: 2415: 2351: 2341: 2290: 2235: 2196: 2145: 2102: 2082: 2051: 2031: 1974: 1908: 1900: 1843: 1798: 1763: 1720: 1639: 1576: 1532: 1520: 1457: 1426: 1406: 1357: 1329: 1284: 1239: 1184: 1137: 800:
are the Planck and Boltzmann constants. Density depends on the optical generation
2523:
Iordanskiĭ, S. V; Pitaevskiĭ, Lev P (1980). "Bose condensation of moving rotons".
2255: 1767: 2035: 437:{\displaystyle f(0)={\frac {N_{0}(t)}{N}}=1-\left({\frac {T}{T_{c}}}\right)^{3}} 2695: 2642: 2589: 2200: 1847: 1802: 1051: 23: 1724: 1243: 1188: 1141: 2752: 2115: 1341: 1296: 1251: 1196: 1149: 463: 2346: 849:. Tuned lasers create excitons which efficiently self-annihilate at a rate: 2509: 2427: 2365: 2247: 2157: 2094: 2043: 1469: 1461: 1418: 1349: 979:{\displaystyle N_{c}=\zeta (3)\left({\frac {kT}{\hbar \omega }}\right)^{3}} 2558:
L. A. Melnikovsky (22 July 2011). "Bose–Einstein condensation of rotons".
2310:
Das, A; Bhattacharya, P; Heo, J; Banerjee, A; Guo, W (February 19, 2013).
1732: 2018: 1780: 1700: 1393: 1171: 1019: 340:, with the ground state occupancy fraction as a function of temperature: 2271:"Observation of Bogoliubov excitations in exciton-polariton condensates" 2239: 2086: 1410: 1904: 1869:
Yoshioka, Kosuke; Chae, Eunmi; Kuwata-Gonokami, Makoto (May 31, 2011).
1070: 487: 2295: 2270: 1288: 1073:, caused by light coupling to excitons, occur in optical cavities and 2419: 1581: 1556: 1524: 1333: 1044: 1038: 460: 456: 2678: 2625: 2572: 2328: 1951: 1887: 1830: 1626: 1226: 1156: 1079: 1041: 1031: 733:
is the exciton density, effective mass(of electron mass order)
2064: 1439: 2216: 1503:-Point of Liquid Helium and the Bose–Einstein Condensation". 1090: 1055: 1935: 277:{\displaystyle T_{c}<32\pi ^{3}\hbar ^{6}V^{2}u_{0}P^{2}} 2716: 1868: 1082:
energy semiconductor device and in a polymer microcavity.
1037:
In 1999 condensation was demonstrated in antiferromagnetic
2309: 1999: 194:{\displaystyle N\propto (T/2\pi )^{3}u^{1/2}P/v\hbar ^{3}} 2397: 2268: 1607: 1605: 1489: 1311: 1004: 915: 855: 826: 806: 786: 766: 739: 719: 544: 509: 472: 349: 293: 207: 118: 46: 2522: 1699: 1602: 1211: 2610: 1378: 287:The Bose gas can be considered in a harmonic trap, 1495: 1010: 978: 894: 841: 812: 792: 772: 752: 725: 693: 525: 478: 436: 332: 276: 193: 104: 2557: 1442:Philosophical Transactions of the Royal Society A 2750: 2663: 2178: 1676:"Diagram Technique for Nonequilibrium Processes" 2316:Proceedings of the National Academy of Sciences 1664:Aurora, C.P. (2001) Thermodynamics, McGraw-Hill 1165:(3). American Physical Society (APS): 463–512. 1128:(2). American Physical Society (APS): 437–672. 1119: 26:, particles that are effective descriptions of 1611: 1557:"Viscosity of Liquid Helium below the λ-Point" 1545:Einstein, A. (1920) Proc. Berlin Acad. Science 2212: 2210: 1745: 1266: 1815: 105:{\displaystyle k_{B}T=~\hbar ^{2}n^{2/3}/M} 2207: 2127: 2677: 2624: 2571: 2440: 2355: 2345: 2327: 2294: 2017: 1968: 1950: 1912: 1886: 1829: 1625: 1580: 1392: 1225: 1170: 1113: 1108:Bose-Einstein condensation of polaritons 2480: 2378: 1673: 1085: 2751: 1554: 1482: 112:. The critical concentration is then 459:are electron-hole pairs. Similar to 201:, leading to a critical temperature: 535: 16:Occurrence in collective excitations 2058: 333:{\displaystyle V(r)=M\omega ^{2}/2} 13: 1075:condensation of exciton-polaritons 14: 2775: 2116:Magnon Bose Einstein Condensation 2379:Francis, Matthew (Feb 6, 2013). 1320:(6884). Springer Nature: 47–52. 2710: 2657: 2604: 2551: 2545:10.1070/PU1980v023n06ABEH004937 2516: 2474: 2434: 2391: 2372: 2303: 2262: 2172: 2121: 2109: 1993: 1929: 1862: 1809: 1774: 1739: 1693: 2739:10.1016/j.physleta.2003.11.063 2150:10.1088/0953-8984/23/26/266003 1667: 1658: 1644:10.1088/1367-2630/14/10/105007 1589: 1548: 1539: 1476: 1433: 1372: 989: 938: 932: 753:{\displaystyle m_{\text{eff}}} 626: 609: 579: 384: 378: 359: 353: 303: 297: 143: 125: 1: 1365: 1065: 895:{\displaystyle dn/dt=-an^{2}} 526:{\displaystyle \lambda _{dB}} 34: 1768:10.1016/j.jlumin.2004.09.035 1275:(1). AIP Publishing: 37–50. 7: 2036:10.1103/PhysRevLett.84.5868 1979:10.1209/0295-5075/107/10012 1096: 906:scaling of free particles: 451: 10: 2780: 2696:10.1103/PhysRevB.89.224516 2643:10.1103/PhysRevA.86.021604 2590:10.1103/PhysRevB.84.024525 2201:10.1103/PhysRevA.90.042303 1848:10.1103/physrevb.81.081302 1803:10.1103/physrevb.82.041201 1026: 20:Bose–Einstein condensation 2759:Bose–Einstein condensates 1725:10.1103/physrevb.41.11171 1244:10.1103/revmodphys.80.885 1214:Reviews of Modern Physics 1189:10.1103/revmodphys.71.463 1159:Reviews of Modern Physics 1142:10.1103/revmodphys.54.437 1122:Reviews of Modern Physics 493: 1496:{\displaystyle \lambda } 1103:Bose–Einstein condensate 842:{\displaystyle n=g\tau } 479:{\displaystyle \lambda } 2347:10.1073/pnas.1210842110 2006:Physical Review Letters 1748:Journal of Luminescence 1483:London, F (1938). "The 1269:Low Temperature Physics 2525:Soviet Physics Uspekhi 2510:10.1103/PhysRev.94.262 2481:Feynman, R. P (1954). 1674:Keldysh, L.V. (1965). 1614:New Journal of Physics 1497: 1462:10.1098/rsta.2010.0208 1114:Important publications 1012: 980: 896: 843: 814: 794: 774: 773:{\displaystyle \hbar } 754: 727: 695: 527: 480: 438: 334: 278: 195: 106: 28:collective excitations 2130:J Phys Condens Matter 1875:Nature Communications 1498: 1013: 1011:{\displaystyle \tau } 981: 897: 844: 815: 795: 775: 755: 728: 696: 528: 501:de Broglie wavelength 481: 439: 335: 279: 196: 107: 1487: 1086:Other quasiparticles 1002: 913: 853: 824: 804: 784: 764: 737: 717: 542: 507: 470: 347: 291: 205: 116: 44: 2731:2004PhLA..321..381M 2688:2014PhRvB..89v4516G 2635:2012PhRvA..86b1604B 2582:2011PhRvB..84b4525M 2537:1980SvPhU..23..317I 2502:1954PhRv...94..262F 2412:2014NatMa..13..247P 2338:2013PNAS..110.2735D 2287:2008NatPh...4..673U 2240:10.1038/nature05131 2232:2006Natur.443..409K 2193:2014PhRvA..90d2303A 2142:2011JPCM...23z6003M 2087:10.1038/nature05117 2079:2006Natur.443..430D 2028:2000PhRvL..84.5868N 1961:2014EL....10710012A 1897:2011NatCo...2..328Y 1840:2010PhRvB..81h1302S 1795:2010PhRvB..82d1201Y 1760:2005JLum..112...11N 1717:1990PhRvB..4111171S 1711:(16): 11171–11184. 1636:2012NJPh...14j5007S 1573:1938Natur.141...74K 1517:1938Natur.141..643L 1454:2010RSPTA.368.5459B 1411:10.1038/nature03081 1403:2004Natur.432..691E 1326:2002Natur.417...47B 1281:2007LTP....33...37B 1236:2008RvMP...80..885B 1181:1999RvMP...71..463D 1134:1982RvMP...54..437A 2441:L. Landau (1941). 1905:10.1038/ncomms1335 1555:Kapiza, P (1938). 1493: 1008: 994:In an ultrapure Cu 976: 892: 839: 810: 790: 770: 750: 723: 691: 523: 476: 434: 330: 274: 191: 102: 2719:Physics Letters A 2462:Missing or empty 2296:10.1038/nphys1034 2226:(7110): 409–414. 2073:(7110): 430–433. 1511:(3571): 643–644. 1448:(1932): 5459–82. 1387:(7018): 691–694. 1289:10.1063/1.2409633 1060:quantum computing 964: 820:and lifetime as: 813:{\displaystyle g} 793:{\displaystyle k} 747: 726:{\displaystyle n} 711: 710: 689: 685: 589: 422: 391: 65: 2771: 2743: 2742: 2725:(5–6): 381–387. 2714: 2708: 2707: 2681: 2661: 2655: 2654: 2628: 2608: 2602: 2601: 2575: 2555: 2549: 2548: 2520: 2514: 2513: 2487: 2478: 2472: 2471: 2465: 2460: 2458: 2450: 2438: 2432: 2431: 2420:10.1038/nmat3825 2400:Nature Materials 2395: 2389: 2388: 2376: 2370: 2369: 2359: 2349: 2331: 2322:(8): 2735–2740. 2307: 2301: 2300: 2298: 2266: 2260: 2259: 2214: 2205: 2204: 2176: 2170: 2169: 2125: 2119: 2113: 2107: 2106: 2062: 2056: 2055: 2021: 2019:cond-mat/9908118 1997: 1991: 1990: 1972: 1954: 1933: 1927: 1926: 1916: 1890: 1866: 1860: 1859: 1833: 1813: 1807: 1806: 1778: 1772: 1771: 1743: 1737: 1736: 1697: 1691: 1690: 1680: 1671: 1665: 1662: 1656: 1655: 1629: 1609: 1600: 1593: 1587: 1586: 1584: 1582:10.1038/141074a0 1552: 1546: 1543: 1537: 1536: 1525:10.1038/141643a0 1502: 1500: 1499: 1494: 1480: 1474: 1473: 1437: 1431: 1430: 1396: 1394:cond-mat/0404113 1376: 1361: 1308: 1263: 1229: 1208: 1174: 1172:cond-mat/9806038 1153: 1017: 1015: 1014: 1009: 985: 983: 982: 977: 975: 974: 969: 965: 963: 955: 947: 925: 924: 901: 899: 898: 893: 891: 890: 866: 848: 846: 845: 840: 819: 817: 816: 811: 799: 797: 796: 791: 779: 777: 776: 771: 759: 757: 756: 751: 749: 748: 745: 732: 730: 729: 724: 700: 698: 697: 692: 690: 688: 687: 686: 683: 673: 672: 671: 662: 661: 657: 643: 638: 637: 625: 624: 620: 607: 606: 591: 590: 587: 578: 577: 562: 561: 557: 536: 532: 530: 529: 524: 522: 521: 485: 483: 482: 477: 443: 441: 440: 435: 433: 432: 427: 423: 421: 420: 408: 392: 387: 377: 376: 366: 339: 337: 336: 331: 326: 321: 320: 283: 281: 280: 275: 273: 272: 263: 262: 253: 252: 243: 242: 233: 232: 217: 216: 200: 198: 197: 192: 190: 189: 177: 169: 168: 164: 151: 150: 135: 111: 109: 108: 103: 98: 93: 92: 88: 75: 74: 63: 56: 55: 2779: 2778: 2774: 2773: 2772: 2770: 2769: 2768: 2749: 2748: 2747: 2746: 2715: 2711: 2662: 2658: 2609: 2605: 2556: 2552: 2521: 2517: 2485: 2483:"R. P. Feynman" 2479: 2475: 2463: 2461: 2452: 2451: 2439: 2435: 2396: 2392: 2377: 2373: 2308: 2304: 2267: 2263: 2215: 2208: 2177: 2173: 2126: 2122: 2114: 2110: 2063: 2059: 2012:(25): 5868–71. 2003: 1998: 1994: 1970:10.1.1.771.3531 1934: 1930: 1867: 1863: 1814: 1810: 1779: 1775: 1744: 1740: 1698: 1694: 1683:Sov. Phys. JETP 1678: 1672: 1668: 1663: 1659: 1610: 1603: 1594: 1590: 1553: 1549: 1544: 1540: 1488: 1485: 1484: 1481: 1477: 1438: 1434: 1377: 1373: 1368: 1334:10.1038/417047a 1116: 1099: 1088: 1068: 1049: 1029: 1020:D. Snoke et al. 1003: 1000: 999: 997: 992: 970: 956: 948: 946: 942: 941: 920: 916: 914: 911: 910: 886: 882: 862: 854: 851: 850: 825: 822: 821: 805: 802: 801: 785: 782: 781: 765: 762: 761: 744: 740: 738: 735: 734: 718: 715: 714: 682: 678: 674: 667: 663: 653: 649: 645: 644: 642: 633: 629: 616: 612: 608: 599: 595: 586: 582: 570: 566: 553: 549: 545: 543: 540: 539: 514: 510: 508: 505: 504: 496: 471: 468: 467: 454: 428: 416: 412: 407: 403: 402: 372: 368: 367: 365: 348: 345: 344: 322: 316: 312: 292: 289: 288: 268: 264: 258: 254: 248: 244: 238: 234: 228: 224: 212: 208: 206: 203: 202: 185: 181: 173: 160: 156: 152: 146: 142: 131: 117: 114: 113: 94: 84: 80: 76: 70: 66: 51: 47: 45: 42: 41: 37: 17: 12: 11: 5: 2777: 2767: 2766: 2764:Quasiparticles 2761: 2745: 2744: 2709: 2672:(22): 224516. 2656: 2603: 2550: 2531:(6): 317–318. 2515: 2496:(2): 262–277. 2473: 2433: 2406:(3): 247–252. 2390: 2371: 2302: 2281:(9): 700–705. 2275:Nature Physics 2261: 2206: 2171: 2136:(26): 266003. 2120: 2108: 2057: 2001: 1992: 1928: 1861: 1808: 1773: 1754:(1–4): 11–16. 1738: 1692: 1666: 1657: 1620:(10): 105007. 1601: 1588: 1547: 1538: 1492: 1475: 1432: 1370: 1369: 1367: 1364: 1363: 1362: 1309: 1264: 1220:(3): 885–964. 1209: 1154: 1115: 1112: 1111: 1110: 1105: 1098: 1095: 1087: 1084: 1067: 1064: 1047: 1028: 1025: 1007: 995: 991: 988: 987: 986: 973: 968: 962: 959: 954: 951: 945: 940: 937: 934: 931: 928: 923: 919: 889: 885: 881: 878: 875: 872: 869: 865: 861: 858: 838: 835: 832: 829: 809: 789: 769: 743: 722: 709: 708: 703: 701: 681: 677: 670: 666: 660: 656: 652: 648: 641: 636: 632: 628: 623: 619: 615: 611: 605: 602: 598: 594: 585: 581: 576: 573: 569: 565: 560: 556: 552: 548: 520: 517: 513: 495: 492: 475: 453: 450: 445: 444: 431: 426: 419: 415: 411: 406: 401: 398: 395: 390: 386: 383: 380: 375: 371: 364: 361: 358: 355: 352: 329: 325: 319: 315: 311: 308: 305: 302: 299: 296: 271: 267: 261: 257: 251: 247: 241: 237: 231: 227: 223: 220: 215: 211: 188: 184: 180: 176: 172: 167: 163: 159: 155: 149: 145: 141: 138: 134: 130: 127: 124: 121: 101: 97: 91: 87: 83: 79: 73: 69: 62: 59: 54: 50: 36: 33: 24:quasiparticles 15: 9: 6: 4: 3: 2: 2776: 2765: 2762: 2760: 2757: 2756: 2754: 2740: 2736: 2732: 2728: 2724: 2720: 2713: 2705: 2701: 2697: 2693: 2689: 2685: 2680: 2675: 2671: 2667: 2660: 2652: 2648: 2644: 2640: 2636: 2632: 2627: 2622: 2619:(2): 021604. 2618: 2614: 2607: 2599: 2595: 2591: 2587: 2583: 2579: 2574: 2569: 2566:(2): 024525. 2565: 2561: 2554: 2546: 2542: 2538: 2534: 2530: 2526: 2519: 2511: 2507: 2503: 2499: 2495: 2491: 2484: 2477: 2469: 2456: 2448: 2444: 2443:J. Phys. USSR 2437: 2429: 2425: 2421: 2417: 2413: 2409: 2405: 2401: 2394: 2386: 2382: 2375: 2367: 2363: 2358: 2353: 2348: 2343: 2339: 2335: 2330: 2325: 2321: 2317: 2313: 2306: 2297: 2292: 2288: 2284: 2280: 2276: 2272: 2265: 2257: 2253: 2249: 2245: 2241: 2237: 2233: 2229: 2225: 2221: 2213: 2211: 2202: 2198: 2194: 2190: 2187:(4): 042303. 2186: 2182: 2175: 2167: 2163: 2159: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2124: 2117: 2112: 2104: 2100: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2061: 2053: 2049: 2045: 2041: 2037: 2033: 2029: 2025: 2020: 2015: 2011: 2007: 1996: 1988: 1984: 1980: 1976: 1971: 1966: 1962: 1958: 1953: 1948: 1944: 1940: 1932: 1924: 1920: 1915: 1910: 1906: 1902: 1898: 1894: 1889: 1884: 1881:(328): 328–. 1880: 1876: 1872: 1865: 1857: 1853: 1849: 1845: 1841: 1837: 1832: 1827: 1824:(8): 081302. 1823: 1819: 1812: 1804: 1800: 1796: 1792: 1789:(4): 041201. 1788: 1784: 1777: 1769: 1765: 1761: 1757: 1753: 1749: 1742: 1734: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1696: 1688: 1684: 1677: 1670: 1661: 1653: 1649: 1645: 1641: 1637: 1633: 1628: 1623: 1619: 1615: 1608: 1606: 1598: 1592: 1583: 1578: 1574: 1570: 1566: 1562: 1558: 1551: 1542: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1490: 1479: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1436: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1395: 1390: 1386: 1382: 1375: 1371: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1228: 1223: 1219: 1215: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1178: 1173: 1168: 1164: 1160: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1118: 1117: 1109: 1106: 1104: 1101: 1100: 1094: 1092: 1083: 1081: 1076: 1072: 1063: 1061: 1057: 1053: 1052:ferromagnetic 1046: 1043: 1040: 1035: 1033: 1024: 1021: 1005: 971: 966: 960: 957: 952: 949: 943: 935: 929: 926: 921: 917: 909: 908: 907: 905: 887: 883: 879: 876: 873: 870: 867: 863: 859: 856: 836: 833: 830: 827: 807: 787: 767: 741: 720: 707: 704: 702: 679: 675: 668: 664: 658: 654: 650: 646: 639: 634: 630: 621: 617: 613: 603: 600: 596: 592: 583: 574: 571: 567: 563: 558: 554: 550: 546: 538: 537: 534: 518: 515: 511: 502: 491: 489: 473: 465: 464:superfluidity 462: 458: 449: 429: 424: 417: 413: 409: 404: 399: 396: 393: 388: 381: 373: 369: 362: 356: 350: 343: 342: 341: 327: 323: 317: 313: 309: 306: 300: 294: 285: 269: 265: 259: 255: 249: 245: 239: 235: 229: 225: 221: 218: 213: 209: 186: 182: 178: 174: 170: 165: 161: 157: 153: 147: 139: 136: 132: 128: 122: 119: 99: 95: 89: 85: 81: 77: 71: 67: 60: 57: 52: 48: 32: 29: 25: 22:can occur in 21: 2722: 2718: 2712: 2669: 2666:Phys. Rev. B 2665: 2659: 2616: 2613:Phys. Rev. A 2612: 2606: 2563: 2560:Phys. Rev. B 2559: 2553: 2528: 2524: 2518: 2493: 2489: 2476: 2464:|title= 2455:cite journal 2446: 2442: 2436: 2403: 2399: 2393: 2385:Ars Technica 2384: 2374: 2319: 2315: 2305: 2278: 2274: 2264: 2223: 2219: 2184: 2181:Phys. Rev. A 2180: 2174: 2133: 2129: 2123: 2111: 2070: 2066: 2060: 2009: 2005: 1995: 1945:(1): 10012. 1942: 1938: 1931: 1878: 1874: 1864: 1821: 1818:Phys. Rev. B 1817: 1811: 1786: 1783:Phys. Rev. B 1782: 1776: 1751: 1747: 1741: 1708: 1705:Phys. Rev. B 1704: 1695: 1686: 1682: 1669: 1660: 1617: 1613: 1596: 1591: 1567:(3558): 74. 1564: 1560: 1550: 1541: 1508: 1504: 1478: 1445: 1441: 1435: 1384: 1380: 1374: 1317: 1313: 1272: 1268: 1217: 1213: 1162: 1158: 1125: 1121: 1089: 1069: 1036: 1030: 993: 903: 712: 705: 497: 455: 446: 286: 38: 18: 1701:Snoke, D.W. 998:O crystal: 990:Experiments 2753:Categories 1366:References 1071:Polaritons 1066:Polaritons 488:superfluid 35:Properties 2704:118837214 2679:1405.7589 2651:119285430 2626:1206.2770 2598:119032713 2573:1009.4114 2490:Phys. Rev 2329:1208.2723 1987:119194298 1965:CiteSeerX 1952:1304.4101 1888:1008.2431 1856:119242758 1831:0912.2010 1652:118415141 1627:1206.7029 1491:λ 1342:0028-0836 1305:119340633 1297:1063-777X 1260:119618473 1252:0034-6861 1227:0704.3011 1197:0034-6861 1150:0034-6861 1006:τ 961:ω 958:ℏ 930:ζ 877:− 837:τ 768:ℏ 665:ℏ 627:⟶ 572:− 568:ℏ 533:) gives: 512:λ 474:λ 400:− 314:ω 236:ℏ 226:π 183:ℏ 140:π 123:∝ 68:ℏ 2428:24317189 2366:23382183 2248:17006506 2166:23487383 2158:21673396 2095:17006509 2044:10991075 1923:16493054 1470:21041225 1419:15592403 1350:11986661 1205:55787701 1097:See also 461:helium-4 457:Excitons 452:Excitons 2727:Bibcode 2684:Bibcode 2631:Bibcode 2578:Bibcode 2533:Bibcode 2498:Bibcode 2408:Bibcode 2357:3581885 2334:Bibcode 2283:Bibcode 2228:Bibcode 2189:Bibcode 2138:Bibcode 2103:4421089 2075:Bibcode 2052:1500529 2024:Bibcode 1957:Bibcode 1914:3113234 1893:Bibcode 1836:Bibcode 1791:Bibcode 1756:Bibcode 1733:9993538 1713:Bibcode 1689:: 1018. 1632:Bibcode 1569:Bibcode 1533:4143290 1513:Bibcode 1450:Bibcode 1427:1538354 1399:Bibcode 1358:4373555 1322:Bibcode 1277:Bibcode 1232:Bibcode 1177:Bibcode 1130:Bibcode 1080:exciton 1032:Magnons 1027:Magnons 713:Where, 466:at the 2702:  2649:  2596:  2426:  2364:  2354:  2256:854066 2254:  2246:  2220:Nature 2164:  2156:  2101:  2093:  2067:Nature 2050:  2042:  1985:  1967:  1921:  1911:  1854:  1731:  1650:  1599:, 1691 1561:Nature 1531:  1505:Nature 1468:  1425:  1417:  1381:Nature 1356:  1348:  1340:  1314:Nature 1303:  1295:  1258:  1250:  1203:  1195:  1148:  1091:Rotons 1056:qubits 760:, and 494:Theory 64:  2700:S2CID 2674:arXiv 2647:S2CID 2621:arXiv 2594:S2CID 2568:arXiv 2486:(PDF) 2449:: 71. 2324:arXiv 2252:S2CID 2162:S2CID 2099:S2CID 2048:S2CID 2014:arXiv 1983:S2CID 1947:arXiv 1919:S2CID 1883:arXiv 1852:S2CID 1826:arXiv 1679:(PDF) 1648:S2CID 1622:arXiv 1597:126.5 1529:S2CID 1423:S2CID 1389:arXiv 1354:S2CID 1301:S2CID 1256:S2CID 1222:arXiv 1201:S2CID 1167:arXiv 2468:help 2424:PMID 2362:PMID 2244:PMID 2154:PMID 2091:PMID 2040:PMID 1729:PMID 1466:PMID 1415:PMID 1346:PMID 1338:ISSN 1293:ISSN 1248:ISSN 1193:ISSN 1146:ISSN 1058:for 219:< 2735:doi 2723:321 2692:doi 2639:doi 2586:doi 2541:doi 2506:doi 2416:doi 2352:PMC 2342:doi 2320:110 2291:doi 2236:doi 2224:443 2197:doi 2146:doi 2083:doi 2071:443 2032:doi 2004:". 1975:doi 1943:107 1939:EPL 1909:PMC 1901:doi 1844:doi 1799:doi 1764:doi 1752:112 1721:doi 1640:doi 1577:doi 1565:141 1521:doi 1509:141 1458:doi 1446:368 1407:doi 1385:432 1330:doi 1318:417 1285:doi 1240:doi 1185:doi 1138:doi 746:eff 684:eff 588:eff 2755:: 2733:. 2721:. 2698:. 2690:. 2682:. 2670:89 2668:. 2645:. 2637:. 2629:. 2617:86 2615:. 2592:. 2584:. 2576:. 2564:84 2562:. 2539:. 2529:23 2527:. 2504:. 2494:94 2492:. 2488:. 2459:: 2457:}} 2453:{{ 2445:. 2422:. 2414:. 2404:13 2402:. 2383:. 2360:. 2350:. 2340:. 2332:. 2318:. 2314:. 2289:. 2277:. 2273:. 2250:. 2242:. 2234:. 2222:. 2209:^ 2195:. 2185:90 2183:. 2160:. 2152:. 2144:. 2134:23 2132:. 2097:. 2089:. 2081:. 2069:. 2046:. 2038:. 2030:. 2022:. 2010:84 2008:. 1981:. 1973:. 1963:. 1955:. 1941:. 1917:. 1907:. 1899:. 1891:. 1877:. 1873:. 1850:. 1842:. 1834:. 1822:81 1820:. 1797:. 1787:82 1785:. 1762:. 1750:. 1727:. 1719:. 1709:41 1707:. 1687:20 1685:. 1681:. 1646:. 1638:. 1630:. 1618:14 1616:. 1604:^ 1575:. 1563:. 1559:. 1527:. 1519:. 1507:. 1464:. 1456:. 1444:. 1421:. 1413:. 1405:. 1397:. 1383:. 1352:. 1344:. 1336:. 1328:. 1316:. 1299:. 1291:. 1283:. 1273:33 1271:. 1254:. 1246:. 1238:. 1230:. 1218:80 1216:. 1199:. 1191:. 1183:. 1175:. 1163:71 1161:. 1144:. 1136:. 1126:54 1124:. 1062:. 1045:Cl 1042:Cu 1039:Tl 706:() 222:32 2741:. 2737:: 2729:: 2706:. 2694:: 2686:: 2676:: 2653:. 2641:: 2633:: 2623:: 2600:. 2588:: 2580:: 2570:: 2547:. 2543:: 2535:: 2512:. 2508:: 2500:: 2470:) 2466:( 2447:5 2430:. 2418:: 2410:: 2387:. 2368:. 2344:: 2336:: 2326:: 2299:. 2293:: 2285:: 2279:4 2258:. 2238:: 2230:: 2203:. 2199:: 2191:: 2168:. 2148:: 2140:: 2105:. 2085:: 2077:: 2054:. 2034:: 2026:: 2016:: 2002:3 1989:. 1977:: 1959:: 1949:: 1925:. 1903:: 1895:: 1885:: 1879:2 1858:. 1846:: 1838:: 1828:: 1805:. 1801:: 1793:: 1770:. 1766:: 1758:: 1735:. 1723:: 1715:: 1654:. 1642:: 1634:: 1624:: 1585:. 1579:: 1571:: 1535:. 1523:: 1515:: 1472:. 1460:: 1452:: 1429:. 1409:: 1401:: 1391:: 1360:. 1332:: 1324:: 1307:. 1287:: 1279:: 1262:. 1242:: 1234:: 1224:: 1207:. 1187:: 1179:: 1169:: 1152:. 1140:: 1132:: 1048:3 996:2 972:3 967:) 953:T 950:k 944:( 939:) 936:3 933:( 927:= 922:c 918:N 904:T 888:2 884:n 880:a 874:= 871:t 868:d 864:/ 860:n 857:d 834:g 831:= 828:n 808:g 788:k 780:, 742:m 721:n 680:m 676:k 669:2 659:3 655:/ 651:2 647:n 640:= 635:c 631:T 622:2 618:/ 614:1 610:) 604:r 601:c 597:T 593:k 584:m 580:( 575:1 564:= 559:3 555:/ 551:1 547:n 519:B 516:d 503:( 430:3 425:) 418:c 414:T 410:T 405:( 397:1 394:= 389:N 385:) 382:t 379:( 374:0 370:N 363:= 360:) 357:0 354:( 351:f 328:2 324:/ 318:2 310:M 307:= 304:) 301:r 298:( 295:V 270:2 266:P 260:0 256:u 250:2 246:V 240:6 230:3 214:c 210:T 187:3 179:v 175:/ 171:P 166:2 162:/ 158:1 154:u 148:3 144:) 137:2 133:/ 129:T 126:( 120:N 100:M 96:/ 90:3 86:/ 82:2 78:n 72:2 61:= 58:T 53:B 49:k

Index

Bose–Einstein condensation
quasiparticles
collective excitations
Excitons
helium-4
superfluidity
superfluid
de Broglie wavelength
D. Snoke et al.
Magnons
Tl
Cu
Cl
ferromagnetic
qubits
quantum computing
Polaritons
condensation of exciton-polaritons
exciton
Rotons
Bose–Einstein condensate
Bose-Einstein condensation of polaritons
Bibcode
1982RvMP...54..437A
doi
10.1103/revmodphys.54.437
ISSN
0034-6861
arXiv
cond-mat/9806038

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.