Knowledge

Bose gas

Source šŸ“

656: 2650:: if a Bose gas with a fixed number of particles is lowered down below the critical temperature, what happens? The problem here is that the Thomasā€“Fermi approximation has set the degeneracy of the ground state to zero, which is wrong. There is no ground state to accept the condensate and so particles simply 'disappear' from the continuum of states. It turns out, however, that the macroscopic equation gives an accurate estimate of the number of particles in the excited states, and it is not a bad approximation to simply "tack on" a ground state term to accept the particles that fall out of the continuum: 1296: 33: 669: 3056: 2994: 3551:
This approach to modelling small systems may in fact be unrealistic, however, since the variance in the number of particles in the ground state is very large, equal to the number of particles. In contrast, the variance of particle number in a normal gas is only the square-root of the particle number,
3046:
Practically however, the aforementioned theoretical flaw is a minor issue, as the most unrealistic assumption is that of non-interaction between bosons. Experimental realizations of boson gases always have significant interactions, i.e., they are non-ideal gases. The interactions significantly change
1957:
The problem with this continuum approximation for a Bose gas is that the ground state has been effectively ignored, giving a degeneracy of zero for zero energy. This inaccuracy becomes serious when dealing with the Boseā€“Einstein condensate and will be dealt with in the next sections. As will be seen,
3004:
The above standard treatment of a macroscopic Bose gas is straightforward, but the inclusion of the ground state is somewhat inelegant. Another approach is to include the ground state explicitly (contributing a term in the grand potential, as in the section below), this gives rise to an unrealistic
4632:
It is seen that all quantities approach the values for a classical ideal gas in the limit of large temperature. The above values can be used to calculate other thermodynamic quantities. For example, the relationship between internal energy and the product of pressure and volume is the same as that
3690:
All thermodynamic properties can be computed from this potential. The following table lists various thermodynamic quantities calculated in the limit of low temperature and high temperature, and in the limit of infinite particle number. An equal sign (=) indicates an exact result, while an
4625: 3047:
the physics of how a condensate of bosons behaves: the ground state spreads out, the chemical potential saturates to a positive value even at zero temperature, and the fluctuation problem disappears (the compressibility becomes finite). See the article Boseā€“Einstein condensate.
2099: 3923: 2842: 3685: 1935: 2424: 3500: 5010:
Tarasov, S. V.; Kocharovsky, Vl. V.; Kocharovsky, V. V. (2015-09-07). "Grand Canonical Versus Canonical Ensemble: Universal Structure of Statistics and Thermodynamics in a Critical Region of Boseā€“Einstein Condensation of an Ideal Gas in Arbitrary Trap".
2774: 2598: 1467: 1087: 1572: 4266: 1801: 4925: 1303:, Bose gas) in three dimensions. The Bose gas pressure is lower than an equivalent classical gas, especially below the critical temperature (marked with ā˜…) where particles begin moving en masse into the zero-pressure condensed phase. 2240: 4069: 1286:
is from negative infinity to +1, as any value beyond this would give an infinite number of particles to states with an energy level of 0 (it is assumed that the energy levels have been offset so that the lowest energy level is 0).
4782: 4413: 1683: 4338: 2319:, below which the Thomasā€“Fermi approximation breaks down (the continuum of states simply can no longer support this many particles, at lower temperatures). The above equation can be solved for the critical temperature: 1315:, which assumes that the average energy is large compared to the energy difference between levels so that the above sum may be replaced by an integral. This replacement gives the macroscopic grand potential function 4689: 4525: 1976: 4183: 3191: 2989:{\displaystyle {\frac {N_{0}}{N}}={\begin{cases}1-\left({\frac {T}{T_{\rm {c}}}}\right)^{\alpha }&{\mbox{if }}\alpha >1{\mbox{ and }}T<T_{\rm {c}},\\0&{\mbox{otherwise}}.\end{cases}}} 3827: 1239: 3566: 3364: 1837: 1182: 2325: 3386: 3994: 2656: 4101: 2476: 1368: 3716: 3552:
which is why it can normally be ignored. This high variance is due to the choice of using the grand canonical ensemble for the entire system, including the condensate state.
973: 3796: 3761: 1482: 4833: 2461: 1340: 4457: 4494: 3377:
in the limit of high temperature. As the number of particles increases, the condensed and excited fractions tend towards a discontinuity at the critical temperature.
1360: 3117:, systems (for example, with only thousands of particles), the ground state term can be more explicitly approximated by adding in an actual discrete level at energy 1263:. All thermodynamic quantities may be derived from the grand potential and we will consider all thermodynamic quantities to be functions of only the three variables 4189: 4519: 4126: 3948: 1720: 4844: 3819: 2150: 4000: 3522: 4700: 745:, who realized that an ideal gas of bosons would form a condensate at a low enough temperature, unlike a classical ideal gas. This condensate is known as a 4344: 1609: 4272: 700: 1958:
even at low temperatures the above result is still useful for accurately describing the thermodynamics of just the uncondensed portion of the gas.
4639: 3087:. Black lines are the fraction of excited particles, blue are the fraction of condensed particles. The negative of the chemical potential 4620:{\displaystyle \approx \ln \left({\frac {\zeta (\alpha )}{\tau ^{\alpha }}}\right)-{\frac {\zeta (\alpha )}{2^{\alpha }\tau ^{\alpha }}}} 3022:
and most particles are in one state, there is a huge uncertainty in the total number of particles. This is related to the fact that the
2094:{\displaystyle N_{\rm {m}}=-z{\frac {\partial \Omega _{m}}{\partial z}}={\frac {{\textrm {Li}}_{\alpha }(z)}{(\beta E_{c})^{\alpha }}}.} 5123:
Mullin, W. J.; FernĆ”ndez, J. P. (2003). "Boseā€“Einstein condensation, fluctuations, and recurrence relations in statistical mechanics".
4136: 917: 693: 5306: 4994: 3918:{\displaystyle \approx {\frac {\zeta (\alpha )}{\tau ^{\alpha }}}-{\frac {\zeta ^{2}(\alpha )}{2^{\alpha }\tau ^{2\alpha }}}} 3239:
This can now be solved down to absolute zero in temperature. Figure 1 shows the results of the solution to this equation for
3127: 5185: 4950:. In one dimensional case correlation functions also were evaluated. In one dimension Bose gas is equivalent to quantum 1279:. All partial derivatives are taken with respect to one of these three variables while the other two are held constant. 3680:{\displaystyle \Omega =g_{0}\ln(1-z)-{\frac {{\textrm {Li}}_{\alpha +1}(z)}{\left(\beta E_{\rm {c}}\right)^{\alpha }}}} 4951: 1930:{\displaystyle \Omega _{\rm {m}}=-{\frac {{\textrm {Li}}_{\alpha +1}(z)}{\left(\beta E_{\text{c}}\right)^{\alpha }}},} 1197: 5195: 686: 673: 3327: 2419:{\displaystyle T_{\rm {c}}=\left({\frac {N}{\zeta (\alpha )}}\right)^{1/\alpha }{\frac {E_{\rm {c}}}{k_{\rm {B}}}}} 1136: 3495:{\displaystyle N={\frac {g_{0}\,z}{1-z}}+N~{\frac {{\textrm {Li}}_{\alpha }(z)}{\zeta (\alpha )}}~\tau ^{\alpha }} 655: 4984: 438: 2769:{\displaystyle N=N_{0}+N_{\rm {m}}=N_{0}+{\frac {{\textrm {Li}}_{\alpha }(z)}{(\beta E_{\rm {c}})^{\alpha }}}} 3958: 5326: 2593:{\displaystyle T_{\rm {c}}=\left({\frac {N}{Vf\zeta (3/2)}}\right)^{2/3}{\frac {h^{2}}{2\pi mk_{\rm {B}}}}} 890: 765: 746: 730: 613: 93: 4935: 1462:{\displaystyle \Omega _{\rm {m}}=\int _{0}^{\infty }\ln \left(1-ze^{-\beta E}\right)\,dg\approx \Omega .} 4075: 2120:(i.e., dependent on whether the gas is 1D, 2D, 3D, whether it is in a flat or harmonic potential well). 1082:{\displaystyle \Omega =-\ln({\mathcal {Z}})=\sum _{i}g_{i}\ln \left(1-ze^{-\beta \epsilon _{i}}\right).} 839:. The photon gas can be easily expanded to any kind of ensemble of massless non-interacting bosons. The 5316: 5062:
Yukalov, V I (2005-03-01). "Number-of-particle fluctuations in systems with Bose-Einstein condensate".
932: 618: 243: 4939: 3694: 1567:{\displaystyle dg={\frac {1}{\Gamma (\alpha )}}\,{\frac {E^{\,\alpha -1}}{E_{\rm {c}}^{\alpha }}}~dE} 508: 183: 2871: 3380:
The equation for the number of particles can be written in terms of the normalized temperature as:
960: 503: 498: 24: 3767: 3732: 588: 5321: 4963: 4793: 2432: 1318: 193: 4423: 598: 4463: 3006: 1704: 583: 523: 493: 443: 163: 53: 5253: 4261:{\displaystyle ={\frac {{\textrm {Li}}_{\alpha \!+\!1}(z)}{\zeta (\alpha )}}\,\tau ^{\alpha }} 2254: 1345: 854:
of vibration of the crystal lattice of a metal, can be treated as effective massless bosons.
623: 238: 223: 5268: 5142: 5081: 5020: 1796:{\displaystyle {\frac {1}{(\beta E_{c})^{\alpha }}}={\frac {f}{(\hbar \omega \beta )^{3}}}} 836: 213: 103: 4920:{\displaystyle TS=(\alpha +1)+\ln \left({\frac {\tau ^{\alpha }}{\zeta (\alpha )}}\right)} 4500: 4107: 3929: 1961: 8: 2235:{\displaystyle N_{\rm {m,max}}={\frac {\zeta (\alpha )}{(\beta E_{\rm {c}})^{\alpha }}},} 904:
The theory of Bose-Einstein condensates and Bose gases can also explain some features of
878: 828: 734: 453: 263: 113: 5272: 5146: 5085: 5024: 4064:{\displaystyle ={\frac {{\textrm {Li}}_{\alpha }(z)}{\zeta (\alpha )}}\,\tau ^{\alpha }} 5311: 5284: 5166: 5132: 5105: 5071: 5044: 3804: 3114: 3040: 1689: 1252: 1124: 817: 633: 593: 568: 316: 307: 4777:{\displaystyle C_{V}={\frac {\partial U}{\partial T}}=k_{\rm {B}}(\alpha +1)\,U\beta } 1123:
is the absolute activity (or "fugacity"), which may also be expressed in terms of the
5288: 5280: 5191: 5158: 5109: 5097: 5048: 5036: 4990: 4408:{\displaystyle \approx 1-{\frac {\zeta (\alpha )}{2^{\alpha \!+\!1}\tau ^{\alpha }}}} 1678:{\displaystyle {\frac {1}{(\beta E_{\rm {c}})^{\alpha }}}={\frac {Vf}{\Lambda ^{3}}}} 905: 898: 761: 563: 408: 298: 218: 3373:
in the limit of low temperature and, except for the chemical potential, linear in 1/
2836:. This approach gives the fraction of condensed particles in the macroscopic limit: 1092:
where each term in the sum corresponds to a particular single-particle energy level
5276: 5150: 5089: 5028: 3043:, which fixes the total particle number, however the calculations are not as easy. 886: 268: 233: 228: 188: 158: 128: 88: 48: 5170: 4333:{\displaystyle ={\frac {\zeta (\alpha \!+\!1)}{\zeta (\alpha )}}\,\tau ^{\alpha }} 947:
and high temperature, both the Fermi gas and the Bose gas behave like a classical
3023: 1967: 964: 832: 742: 718: 578: 528: 398: 153: 65: 2621:
approaches 1), and thus for example for a gas in a one- or two-dimensional box (
1295: 4947: 4938:. In one dimension bosons with delta interaction behave as fermions, they obey 1593: 944: 909: 785: 769: 660: 628: 608: 603: 558: 478: 413: 311: 198: 43: 5032: 3059:
Figure 1: Various Bose gas parameters as a function of normalized temperature
5300: 5162: 5101: 5040: 3005:
fluctuation catastrophe: the number of particles in any given state follow a
2130:, the number of particles only increases up to a finite maximum value, i.e., 1951: 916:) and behave like bosons. As a result, superconductors behave like having no 870: 859: 809: 339: 320: 302: 203: 123: 4942:. In one dimension Bose gas with delta interaction can be solved exactly by 3691:
approximation symbol indicates that only the first few terms of a series in
533: 5093: 4943: 3548:
approaches infinity, which can be easily determined from these expansions.
3261: 3232:. Now, the behaviour is smooth when crossing the critical temperature, and 1312: 1308: 894: 553: 543: 513: 473: 468: 448: 293: 273: 133: 3720: 5137: 5076: 1260: 913: 855: 851: 847: 773: 638: 573: 548: 518: 463: 458: 390: 32: 885:. The Bose gas is the most simple quantitative model that explains this 4946:. The bulk free energy and thermodynamic potentials were calculated by 4684:{\displaystyle U={\frac {\partial \Omega }{\partial \beta }}=\alpha PV} 1962:
Limit on number of particles in uncondensed phase, critical temperature
1476:
may be expressed for many different situations by the general formula:
893:, a state where a large number of bosons occupy the lowest energy, the 824: 738: 483: 325: 118: 5154: 3544:
approaches infinity. In particular, we are interested in the limit as
3309:. The red lines plot values of the negative of the chemical potential 3055: 1300: 1299:
Pressure vs temperature curves of classical and quantum ideal gases (
1290: 959:
The thermodynamics of an ideal Bose gas is best calculated using the
948: 936: 882: 801: 722: 538: 488: 361: 208: 108: 869:
atoms. When a system of He atoms is cooled down to temperature near
4694:
A similar situation holds for the specific heat at constant volume
928: 924: 866: 793: 789: 3533:. From these expansions, we can find the behavior of the gas near 940: 813: 772:. These particles can be classified as elementary: these are the 418: 403: 366: 357: 352: 5184:
Korepin, V. E.; Bogoliubov, N. M.; Izergin, A. G. (1997-03-06).
2999: 823:
The first model that treated a gas with several bosons, was the
1831:
This integral expression for the grand potential evaluates to:
874: 873:, many quantum mechanical effects are present. Below 2.17  841: 812:
in more complex systems can also be considered bosons like the
797: 777: 726: 371: 347: 78: 3369:
It can be seen that each of these parameters become linear in
5009: 4178:{\displaystyle {\frac {PV\beta }{N}}=-{\frac {\Omega }{N}}\,} 805: 781: 757: 376: 73: 5187:
Quantum Inverse Scattering Method and Correlation Functions
2982: 2786:
is the number of particles in the ground state condensate.
2429:
For example, for the three-dimensional Bose gas in a box (
3298:. The blue lines are the fraction of condensed particles 3264:. The solid black line is the fraction of excited states 889:. Mainly when a gas of bosons is cooled down, it forms a 83: 5183: 733:. The statistical mechanics of bosons were developed by 5019:(4). Springer Science and Business Media LLC: 942ā€“964. 3186:{\displaystyle \Omega =g_{0}\ln(1-z)+\Omega _{\rm {m}}} 3050: 897:, and quantum effects are macroscopically visible like 865:
An interesting example of a Bose gas is an ensemble of
2970: 2933: 2917: 2610:, there is no upper limit on the number of particles ( 923:
The equivalent model for half-integer particles (like
858:
used the phonon gas model to explain the behaviour of
4847: 4796: 4703: 4642: 4528: 4503: 4466: 4426: 4347: 4275: 4192: 4139: 4110: 4078: 4003: 3961: 3932: 3830: 3807: 3770: 3735: 3697: 3569: 3389: 3330: 3313:
and the green lines plot the corresponding values of
3130: 2845: 2659: 2479: 2435: 2328: 2153: 1979: 1840: 1723: 1612: 1485: 1371: 1348: 1321: 1200: 1139: 976: 5233: 4838:
Note that in the limit of high temperature, we have
3317:. The horizontal axis is the normalized temperature 3529:or as an asymptotic expansion in inverse powers of 3091:is shown in red, and green lines are the values of 2116:= 1 is however crucially dependent on the value of 729:, which have an integer value of spin and abide by 5116: 5055: 4919: 4827: 4776: 4683: 4619: 4513: 4488: 4451: 4407: 4332: 4260: 4177: 4120: 4095: 4063: 3988: 3942: 3917: 3813: 3790: 3755: 3710: 3679: 3494: 3358: 3185: 2988: 2768: 2592: 2455: 2418: 2234: 2093: 1929: 1795: 1677: 1566: 1461: 1354: 1334: 1291:Macroscopic limit, result for uncondensed fraction 1233: 1176: 1081: 5254:"General Thermal Wavelength and its Applications" 4633:for a classical ideal gas over all temperatures: 4386: 4382: 4295: 4291: 4215: 4211: 3236:approaches 1 very closely but does not reach it. 5298: 2638: 2635:respectively) there is no critical temperature. 1703:for simple spinless bosons). For a massive Bose 1596:. For example, for a massive Bose gas in a box, 1234:{\displaystyle \beta ={\frac {1}{k_{\rm {B}}T}}} 831:. This model leads to a better understanding of 5242: 5122: 3039:. Calculations can instead be performed in the 3359:{\displaystyle \tau ={\frac {T}{T_{\rm {c}}}}} 3291:and the dotted black line is the solution for 1821:/2 is the harmonic potential. It is seen that 3000:Limitations of the macroscopic Bose gas model 2297:. This corresponds to a critical temperature 1177:{\displaystyle z(\beta ,\mu )=e^{\beta \mu }} 694: 3009:, meaning that when condensation happens at 752: 5245:Boseā€“Einstein Condensation in Dilute Gases 5003: 2643:The above problem raises the question for 701: 687: 31: 5136: 5075: 4989:. Springer Science & Business Media. 4824: 4767: 4510: 4485: 4448: 4319: 4247: 4174: 4117: 4092: 4050: 3985: 3939: 3787: 3752: 3409: 2813:takes up the remainder of particles. For 2279:). Thus, for a fixed number of particles 1524: 1516: 1443: 1307:Following the procedure described in the 5247:. Cambridge: Cambridge University Press. 3054: 1294: 768:, or equivalently, that possess integer 5236:Statistical Physics, 3rd Edition Part 1 5224: 5061: 4982: 5299: 5234:Landau, L. D.; E. M. Lifshitz (1996). 3989:{\displaystyle 1-{\frac {N_{0}}{N}}\,} 3560:Expanded out, the grand potential is: 2112:= +1). The behaviour when approaching 5215: 5208: 4934:= 3/2 is simply a restatement of the 1970:is found from the grand potential by 1714:and the critical energy is given by: 1603:and the critical energy is given by: 877:, the ensemble starts to behave as a 741:and extended to massive particles by 3051:Approximate behaviour in small gases 2826:there is the normal behaviour, with 2789:Thus in the macroscopic limit, when 1110:is the number of states with energy 954: 5251: 2463:and using the above noted value of 13: 4746: 4728: 4720: 4660: 4655: 4652: 4166: 4096:{\displaystyle =\tau ^{\alpha }\,} 3658: 3570: 3513:, this equation can be solved for 3348: 3177: 3172: 3131: 2951: 2896: 2747: 2685: 2581: 2486: 2408: 2396: 2335: 2286:, the largest possible value that 2210: 2172: 2169: 2166: 2160: 2104:This increases monotonically with 2019: 2008: 2004: 1986: 1847: 1842: 1664: 1631: 1542: 1501: 1453: 1397: 1378: 1373: 1349: 1323: 1219: 997: 977: 14: 5338: 5243:Pethick, C. J.; H. Smith (2004). 3555: 1771: 827:, a gas of photons, developed by 5238:. Oxford: Butterworth-Heinemann. 5220:. New York: John Wiley and Sons. 3540:and in the Maxwellā€“Boltzmann as 939:(an ensemble of non-interacting 792:; or composite like the atom of 668: 667: 654: 4952:non-linear Schrƶdinger equation 3711:{\displaystyle \tau ^{\alpha }} 3517:and then a series solution for 5190:. Cambridge University Press. 5177: 5013:Journal of Statistical Physics 4976: 4907: 4901: 4869: 4857: 4764: 4752: 4589: 4583: 4554: 4548: 4482: 4476: 4445: 4439: 4369: 4363: 4313: 4307: 4299: 4285: 4241: 4235: 4227: 4221: 4044: 4038: 4030: 4024: 3884: 3878: 3846: 3840: 3639: 3633: 3604: 3592: 3521:can be found by the method of 3473: 3467: 3459: 3453: 3165: 3153: 2754: 2735: 2730: 2724: 2529: 2515: 2364: 2358: 2217: 2198: 2193: 2187: 2076: 2059: 2054: 2048: 1888: 1882: 1828:is a function of volume only. 1781: 1768: 1747: 1730: 1638: 1619: 1510: 1504: 1155: 1143: 1002: 992: 862:of metals at low temperature. 16:State of matter of many bosons 1: 4983:Schwabl, Franz (2013-03-09). 4969: 2639:Inclusion of the ground state 2290:can have is a critical value 4522: 4497: 4460: 4418: 4341: 4269: 4186: 4131: 4104: 4072: 3997: 3953: 3926: 3824: 3822: 3801: 3791:{\displaystyle T\gg T_{c}\,} 3764: 3756:{\displaystyle T\ll T_{c}\,} 3729: 3726: 3723: 3067:is 3/2. Solid lines are for 967:for a Bose gas is given by: 7: 5229:. New York: Academic Press. 5125:American Journal of Physics 4957: 4828:{\displaystyle TS=U+PV-G\,} 3121:=0 in the grand potential: 3095:. It has been assumed that 2456:{\displaystyle \alpha =3/2} 1335:{\displaystyle \Omega _{m}} 881:, a fluid with almost zero 721:, analogous to a classical 10: 5343: 5281:10.1088/0143-0807/21/6/314 4452:{\displaystyle G=\ln(z)\,} 1313:Thomasā€“Fermi approximation 1311:article, we can apply the 943:). At low enough particle 850:, is an example where the 244:Spin gapless semiconductor 5033:10.1007/s10955-015-1361-3 4940:Pauli exclusion principle 4787:The entropy is given by: 4489:{\displaystyle =\ln(z)\,} 3260:, which corresponds to a 1282:The permissible range of 753:Introduction and examples 184:Electronic band structure 5307:Boseā€“Einstein statistics 1696:is a degeneracy factor ( 961:grand canonical ensemble 891:Boseā€“Einstein condensate 808:etc. Additionally, some 766:Boseā€“Einstein statistics 747:Boseā€“Einstein condensate 731:Boseā€“Einstein statistics 717:is a quantum-mechanical 94:Boseā€“Einstein condensate 25:Condensed matter physics 4936:Sackurā€“Tetrode equation 3080:, dotted lines are for 1355:{\displaystyle \Omega } 5216:Huang, Kerson (1967). 5094:10.1002/lapl.200410157 4921: 4829: 4778: 4685: 4621: 4515: 4490: 4453: 4409: 4334: 4262: 4179: 4122: 4097: 4065: 3990: 3944: 3919: 3815: 3792: 3757: 3712: 3681: 3525:, either in powers of 3496: 3360: 3262:gas of bosons in a box 3187: 3110: 3026:becomes unbounded for 3007:geometric distribution 2990: 2770: 2594: 2457: 2420: 2236: 2095: 1931: 1797: 1705:gas in a harmonic trap 1679: 1568: 1463: 1356: 1336: 1304: 1235: 1178: 1083: 933:Fermiā€“Dirac statistics 918:electrical resistivity 764:particles that follow 5218:Statistical Mechanics 5064:Laser Physics Letters 4986:Statistical Mechanics 4922: 4830: 4779: 4686: 4622: 4516: 4491: 4454: 4410: 4335: 4263: 4180: 4123: 4098: 4066: 3991: 3945: 3920: 3816: 3793: 3758: 3713: 3682: 3497: 3361: 3188: 3058: 2991: 2771: 2595: 2458: 2421: 2255:Riemann zeta function 2237: 2096: 1932: 1798: 1680: 1592:energy, and Ī“ is the 1569: 1464: 1357: 1337: 1298: 1236: 1179: 1084: 920:at low temperatures. 788:and the hypothetical 239:Topological insulator 5225:Isihara, A. (1971). 4845: 4794: 4701: 4640: 4526: 4514:{\displaystyle =0\,} 4501: 4464: 4424: 4345: 4273: 4190: 4137: 4121:{\displaystyle =1\,} 4108: 4076: 4001: 3959: 3943:{\displaystyle =1\,} 3930: 3828: 3805: 3768: 3733: 3695: 3567: 3387: 3328: 3196:which gives instead 3128: 2843: 2657: 2477: 2433: 2326: 2151: 1977: 1838: 1721: 1610: 1483: 1369: 1346: 1342:, which is close to 1319: 1198: 1137: 974: 931:atoms), that follow 837:black-body radiation 818:charge density waves 725:. It is composed of 257:Electronic phenomena 104:Fermionic condensate 5327:Satyendra Nath Bose 5273:2000EJPh...21..625Y 5252:Yan, Zijun (2000). 5227:Statistical Physics 5147:2003AmJPh..71..661M 5086:2005LaPhL...2..156Y 5025:2015JSP...161..942T 4964:Tonksā€“Girardeau gas 3523:inversion of series 2806:is pinned to 1 and 2108:(up to the maximum 1968:number of particles 1552: 1401: 735:Satyendra Nath Bose 264:Quantum Hall effect 5209:General references 4917: 4825: 4774: 4681: 4617: 4511: 4486: 4449: 4405: 4330: 4258: 4175: 4118: 4093: 4061: 3986: 3940: 3915: 3811: 3788: 3753: 3708: 3677: 3492: 3356: 3183: 3111: 3041:canonical ensemble 2986: 2981: 2974: 2937: 2921: 2766: 2590: 2453: 2416: 2232: 2091: 1927: 1793: 1690:thermal wavelength 1675: 1564: 1536: 1459: 1387: 1352: 1332: 1305: 1253:Boltzmann constant 1231: 1174: 1125:chemical potential 1079: 1017: 762:quantum mechanical 661:Physics portal 5317:Quantum mechanics 5155:10.1119/1.1544520 4996:978-3-662-04702-6 4911: 4735: 4667: 4630: 4629: 4615: 4568: 4419:Gibbs Free Energy 4403: 4317: 4245: 4204: 4172: 4156: 4132:Equation of state 4048: 4015: 3983: 3913: 3860: 3814:{\displaystyle z} 3675: 3618: 3481: 3477: 3444: 3435: 3425: 3354: 2973: 2936: 2920: 2902: 2861: 2764: 2715: 2588: 2533: 2414: 2368: 2227: 2086: 2039: 2026: 1922: 1908: 1867: 1791: 1757: 1673: 1648: 1557: 1553: 1514: 1229: 1008: 955:Macroscopic limit 912:couple in pairs ( 906:superconductivity 899:wave interference 800:, the nucleus of 711: 710: 409:Granular material 177:Electronic phases 5334: 5292: 5258: 5248: 5239: 5230: 5221: 5202: 5201: 5181: 5175: 5174: 5140: 5138:cond-mat/0211115 5120: 5114: 5113: 5079: 5077:cond-mat/0504473 5059: 5053: 5052: 5007: 5001: 5000: 4980: 4926: 4924: 4923: 4918: 4916: 4912: 4910: 4896: 4895: 4886: 4834: 4832: 4831: 4826: 4783: 4781: 4780: 4775: 4751: 4750: 4749: 4736: 4734: 4726: 4718: 4713: 4712: 4690: 4688: 4687: 4682: 4668: 4666: 4658: 4650: 4626: 4624: 4623: 4618: 4616: 4614: 4613: 4612: 4603: 4602: 4592: 4578: 4573: 4569: 4567: 4566: 4557: 4543: 4520: 4518: 4517: 4512: 4495: 4493: 4492: 4487: 4458: 4456: 4455: 4450: 4414: 4412: 4411: 4406: 4404: 4402: 4401: 4400: 4391: 4390: 4372: 4358: 4339: 4337: 4336: 4331: 4329: 4328: 4318: 4316: 4302: 4280: 4267: 4265: 4264: 4259: 4257: 4256: 4246: 4244: 4230: 4220: 4219: 4206: 4205: 4202: 4197: 4184: 4182: 4181: 4176: 4173: 4165: 4157: 4152: 4141: 4127: 4125: 4124: 4119: 4102: 4100: 4099: 4094: 4091: 4090: 4070: 4068: 4067: 4062: 4060: 4059: 4049: 4047: 4033: 4023: 4022: 4017: 4016: 4013: 4008: 3995: 3993: 3992: 3987: 3984: 3979: 3978: 3969: 3949: 3947: 3946: 3941: 3924: 3922: 3921: 3916: 3914: 3912: 3911: 3910: 3898: 3897: 3887: 3877: 3876: 3866: 3861: 3859: 3858: 3849: 3835: 3820: 3818: 3817: 3812: 3797: 3795: 3794: 3789: 3786: 3785: 3762: 3760: 3759: 3754: 3751: 3750: 3721: 3717: 3715: 3714: 3709: 3707: 3706: 3686: 3684: 3683: 3678: 3676: 3674: 3673: 3668: 3664: 3663: 3662: 3661: 3642: 3632: 3631: 3620: 3619: 3616: 3611: 3585: 3584: 3539: 3501: 3499: 3498: 3493: 3491: 3490: 3479: 3478: 3476: 3462: 3452: 3451: 3446: 3445: 3442: 3437: 3433: 3426: 3424: 3413: 3408: 3407: 3397: 3365: 3363: 3362: 3357: 3355: 3353: 3352: 3351: 3338: 3297: 3290: 3289: 3288: 3277: 3259: 3245: 3231: 3230: 3228: 3227: 3221: 3218: 3192: 3190: 3189: 3184: 3182: 3181: 3180: 3146: 3145: 3108: 3086: 3079: 3078: 3077: 3038: 3021: 2995: 2993: 2992: 2987: 2985: 2984: 2975: 2971: 2956: 2955: 2954: 2938: 2934: 2922: 2918: 2913: 2912: 2907: 2903: 2901: 2900: 2899: 2886: 2862: 2857: 2856: 2847: 2835: 2825: 2801: 2775: 2773: 2772: 2767: 2765: 2763: 2762: 2761: 2752: 2751: 2750: 2733: 2723: 2722: 2717: 2716: 2713: 2708: 2703: 2702: 2690: 2689: 2688: 2675: 2674: 2649: 2634: 2627: 2609: 2599: 2597: 2596: 2591: 2589: 2587: 2586: 2585: 2584: 2564: 2563: 2554: 2552: 2551: 2547: 2538: 2534: 2532: 2525: 2501: 2491: 2490: 2489: 2462: 2460: 2459: 2454: 2449: 2425: 2423: 2422: 2417: 2415: 2413: 2412: 2411: 2401: 2400: 2399: 2389: 2387: 2386: 2382: 2373: 2369: 2367: 2350: 2340: 2339: 2338: 2318: 2278: 2241: 2239: 2238: 2233: 2228: 2226: 2225: 2224: 2215: 2214: 2213: 2196: 2182: 2177: 2176: 2175: 2143: 2129: 2100: 2098: 2097: 2092: 2087: 2085: 2084: 2083: 2074: 2073: 2057: 2047: 2046: 2041: 2040: 2037: 2032: 2027: 2025: 2017: 2016: 2015: 2002: 1991: 1990: 1989: 1936: 1934: 1933: 1928: 1923: 1921: 1920: 1915: 1911: 1910: 1909: 1906: 1891: 1881: 1880: 1869: 1868: 1865: 1860: 1852: 1851: 1850: 1802: 1800: 1799: 1794: 1792: 1790: 1789: 1788: 1763: 1758: 1756: 1755: 1754: 1745: 1744: 1725: 1713: 1702: 1684: 1682: 1681: 1676: 1674: 1672: 1671: 1662: 1654: 1649: 1647: 1646: 1645: 1636: 1635: 1634: 1614: 1602: 1573: 1571: 1570: 1565: 1555: 1554: 1551: 1546: 1545: 1535: 1534: 1518: 1515: 1513: 1496: 1468: 1466: 1465: 1460: 1442: 1438: 1437: 1436: 1400: 1395: 1383: 1382: 1381: 1361: 1359: 1358: 1353: 1341: 1339: 1338: 1333: 1331: 1330: 1240: 1238: 1237: 1232: 1230: 1228: 1224: 1223: 1222: 1208: 1183: 1181: 1180: 1175: 1173: 1172: 1088: 1086: 1085: 1080: 1075: 1071: 1070: 1069: 1068: 1067: 1027: 1026: 1016: 1001: 1000: 935:, is called the 887:phase transition 846:, also known as 703: 696: 689: 676: 671: 670: 663: 659: 658: 269:Spin Hall effect 159:Phase transition 129:Luttinger liquid 66:States of matter 49:Phase transition 35: 21: 20: 5342: 5341: 5337: 5336: 5335: 5333: 5332: 5331: 5297: 5296: 5295: 5256: 5211: 5206: 5205: 5198: 5182: 5178: 5121: 5117: 5060: 5056: 5008: 5004: 4997: 4981: 4977: 4972: 4960: 4897: 4891: 4887: 4885: 4881: 4846: 4843: 4842: 4795: 4792: 4791: 4745: 4744: 4740: 4727: 4719: 4717: 4708: 4704: 4702: 4699: 4698: 4659: 4651: 4649: 4641: 4638: 4637: 4608: 4604: 4598: 4594: 4593: 4579: 4577: 4562: 4558: 4544: 4542: 4538: 4527: 4524: 4523: 4502: 4499: 4498: 4465: 4462: 4461: 4425: 4422: 4421: 4420: 4396: 4392: 4378: 4374: 4373: 4359: 4357: 4346: 4343: 4342: 4324: 4320: 4303: 4281: 4279: 4274: 4271: 4270: 4252: 4248: 4231: 4207: 4201: 4200: 4199: 4198: 4196: 4191: 4188: 4187: 4164: 4142: 4140: 4138: 4135: 4134: 4133: 4109: 4106: 4105: 4086: 4082: 4077: 4074: 4073: 4055: 4051: 4034: 4018: 4012: 4011: 4010: 4009: 4007: 4002: 3999: 3998: 3974: 3970: 3968: 3960: 3957: 3956: 3955: 3931: 3928: 3927: 3903: 3899: 3893: 3889: 3888: 3872: 3868: 3867: 3865: 3854: 3850: 3836: 3834: 3829: 3826: 3825: 3806: 3803: 3802: 3781: 3777: 3769: 3766: 3765: 3746: 3742: 3734: 3731: 3730: 3702: 3698: 3696: 3693: 3692: 3669: 3657: 3656: 3652: 3648: 3644: 3643: 3621: 3615: 3614: 3613: 3612: 3610: 3580: 3576: 3568: 3565: 3564: 3558: 3534: 3486: 3482: 3463: 3447: 3441: 3440: 3439: 3438: 3436: 3414: 3403: 3399: 3398: 3396: 3388: 3385: 3384: 3347: 3346: 3342: 3337: 3329: 3326: 3325: 3304: 3292: 3286: 3284: 3279: 3272: 3265: 3257: 3247: 3240: 3222: 3219: 3214: 3208: 3207: 3205: 3203: 3197: 3176: 3175: 3171: 3141: 3137: 3129: 3126: 3125: 3106: 3096: 3081: 3075: 3073: 3068: 3063:. The value of 3053: 3037: 3027: 3024:compressibility 3020: 3010: 3002: 2980: 2979: 2969: 2967: 2961: 2960: 2950: 2949: 2945: 2935: and  2932: 2916: 2914: 2908: 2895: 2894: 2890: 2885: 2881: 2880: 2867: 2866: 2852: 2848: 2846: 2844: 2841: 2840: 2833: 2827: 2824: 2814: 2812: 2802:, the value of 2800: 2790: 2785: 2757: 2753: 2746: 2745: 2741: 2734: 2718: 2712: 2711: 2710: 2709: 2707: 2698: 2694: 2684: 2683: 2679: 2670: 2666: 2658: 2655: 2654: 2644: 2641: 2629: 2622: 2616: 2604: 2580: 2579: 2575: 2565: 2559: 2555: 2553: 2543: 2539: 2521: 2505: 2500: 2496: 2495: 2485: 2484: 2480: 2478: 2475: 2474: 2469: 2445: 2434: 2431: 2430: 2407: 2406: 2402: 2395: 2394: 2390: 2388: 2378: 2374: 2354: 2349: 2345: 2344: 2334: 2333: 2329: 2327: 2324: 2323: 2317: 2311: 2304: 2298: 2296: 2285: 2264: 2258: 2220: 2216: 2209: 2208: 2204: 2197: 2183: 2181: 2159: 2158: 2154: 2152: 2149: 2148: 2138: 2136: 2124: 2079: 2075: 2069: 2065: 2058: 2042: 2036: 2035: 2034: 2033: 2031: 2018: 2011: 2007: 2003: 2001: 1985: 1984: 1980: 1978: 1975: 1974: 1964: 1945: 1916: 1905: 1901: 1897: 1893: 1892: 1870: 1864: 1863: 1862: 1861: 1859: 1846: 1845: 1841: 1839: 1836: 1835: 1827: 1784: 1780: 1767: 1762: 1750: 1746: 1740: 1736: 1729: 1724: 1722: 1719: 1718: 1708: 1697: 1688:where Ī› is the 1667: 1663: 1655: 1653: 1641: 1637: 1630: 1629: 1625: 1618: 1613: 1611: 1608: 1607: 1597: 1587: 1581:is a constant, 1547: 1541: 1540: 1523: 1519: 1517: 1500: 1495: 1484: 1481: 1480: 1472:The degeneracy 1426: 1422: 1412: 1408: 1396: 1391: 1377: 1376: 1372: 1370: 1367: 1366: 1347: 1344: 1343: 1326: 1322: 1320: 1317: 1316: 1293: 1250: 1218: 1217: 1213: 1212: 1207: 1199: 1196: 1195: 1165: 1161: 1138: 1135: 1134: 1118: 1109: 1100: 1063: 1059: 1052: 1048: 1038: 1034: 1022: 1018: 1012: 996: 995: 975: 972: 971: 965:grand potential 957: 910:charge carriers 755: 743:Albert Einstein 719:phase of matter 707: 666: 653: 652: 645: 644: 643: 433: 425: 424: 423: 399:Amorphous solid 393: 383: 382: 381: 360: 342: 332: 331: 330: 319: 317:Antiferromagnet 310: 308:Superparamagnet 301: 288: 287:Magnetic phases 280: 279: 278: 258: 250: 249: 248: 178: 170: 169: 168: 154:Order parameter 148: 147:Phase phenomena 140: 139: 138: 68: 58: 17: 12: 11: 5: 5340: 5330: 5329: 5324: 5322:Thermodynamics 5319: 5314: 5309: 5294: 5293: 5267:(6): 625ā€“631. 5249: 5240: 5231: 5222: 5212: 5210: 5207: 5204: 5203: 5196: 5176: 5131:(7): 661ā€“669. 5115: 5070:(3): 156ā€“161. 5054: 5002: 4995: 4974: 4973: 4971: 4968: 4967: 4966: 4959: 4956: 4948:Chen-Ning Yang 4928: 4927: 4915: 4909: 4906: 4903: 4900: 4894: 4890: 4884: 4880: 4877: 4874: 4871: 4868: 4865: 4862: 4859: 4856: 4853: 4850: 4836: 4835: 4823: 4820: 4817: 4814: 4811: 4808: 4805: 4802: 4799: 4785: 4784: 4773: 4770: 4766: 4763: 4760: 4757: 4754: 4748: 4743: 4739: 4733: 4730: 4725: 4722: 4716: 4711: 4707: 4692: 4691: 4680: 4677: 4674: 4671: 4665: 4662: 4657: 4654: 4648: 4645: 4628: 4627: 4611: 4607: 4601: 4597: 4591: 4588: 4585: 4582: 4576: 4572: 4565: 4561: 4556: 4553: 4550: 4547: 4541: 4537: 4534: 4531: 4521: 4509: 4506: 4496: 4484: 4481: 4478: 4475: 4472: 4469: 4459: 4447: 4444: 4441: 4438: 4435: 4432: 4429: 4416: 4415: 4399: 4395: 4389: 4385: 4381: 4377: 4371: 4368: 4365: 4362: 4356: 4353: 4350: 4340: 4327: 4323: 4315: 4312: 4309: 4306: 4301: 4298: 4294: 4290: 4287: 4284: 4278: 4268: 4255: 4251: 4243: 4240: 4237: 4234: 4229: 4226: 4223: 4218: 4214: 4210: 4195: 4185: 4171: 4168: 4163: 4160: 4155: 4151: 4148: 4145: 4129: 4128: 4116: 4113: 4103: 4089: 4085: 4081: 4071: 4058: 4054: 4046: 4043: 4040: 4037: 4032: 4029: 4026: 4021: 4006: 3996: 3982: 3977: 3973: 3967: 3964: 3954:Vapor fraction 3951: 3950: 3938: 3935: 3925: 3909: 3906: 3902: 3896: 3892: 3886: 3883: 3880: 3875: 3871: 3864: 3857: 3853: 3848: 3845: 3842: 3839: 3833: 3823: 3821: 3810: 3799: 3798: 3784: 3780: 3776: 3773: 3763: 3749: 3745: 3741: 3738: 3728: 3725: 3705: 3701: 3688: 3687: 3672: 3667: 3660: 3655: 3651: 3647: 3641: 3638: 3635: 3630: 3627: 3624: 3609: 3606: 3603: 3600: 3597: 3594: 3591: 3588: 3583: 3579: 3575: 3572: 3557: 3556:Thermodynamics 3554: 3503: 3502: 3489: 3485: 3475: 3472: 3469: 3466: 3461: 3458: 3455: 3450: 3432: 3429: 3423: 3420: 3417: 3412: 3406: 3402: 3395: 3392: 3367: 3366: 3350: 3345: 3341: 3336: 3333: 3302: 3270: 3255: 3212: 3201: 3194: 3193: 3179: 3174: 3170: 3167: 3164: 3161: 3158: 3155: 3152: 3149: 3144: 3140: 3136: 3133: 3104: 3052: 3049: 3035: 3018: 3001: 2998: 2997: 2996: 2983: 2978: 2968: 2966: 2963: 2962: 2959: 2953: 2948: 2944: 2941: 2931: 2928: 2925: 2915: 2911: 2906: 2898: 2893: 2889: 2884: 2879: 2876: 2873: 2872: 2870: 2865: 2860: 2855: 2851: 2831: 2822: 2810: 2798: 2783: 2777: 2776: 2760: 2756: 2749: 2744: 2740: 2737: 2732: 2729: 2726: 2721: 2706: 2701: 2697: 2693: 2687: 2682: 2678: 2673: 2669: 2665: 2662: 2640: 2637: 2614: 2601: 2600: 2583: 2578: 2574: 2571: 2568: 2562: 2558: 2550: 2546: 2542: 2537: 2531: 2528: 2524: 2520: 2517: 2514: 2511: 2508: 2504: 2499: 2494: 2488: 2483: 2467: 2452: 2448: 2444: 2441: 2438: 2427: 2426: 2410: 2405: 2398: 2393: 2385: 2381: 2377: 2372: 2366: 2363: 2360: 2357: 2353: 2348: 2343: 2337: 2332: 2315: 2309: 2302: 2294: 2283: 2260: 2243: 2242: 2231: 2223: 2219: 2212: 2207: 2203: 2200: 2195: 2192: 2189: 2186: 2180: 2174: 2171: 2168: 2165: 2162: 2157: 2134: 2102: 2101: 2090: 2082: 2078: 2072: 2068: 2064: 2061: 2056: 2053: 2050: 2045: 2030: 2024: 2021: 2014: 2010: 2006: 2000: 1997: 1994: 1988: 1983: 1963: 1960: 1941: 1938: 1937: 1926: 1919: 1914: 1904: 1900: 1896: 1890: 1887: 1884: 1879: 1876: 1873: 1858: 1855: 1849: 1844: 1825: 1804: 1803: 1787: 1783: 1779: 1776: 1773: 1770: 1766: 1761: 1753: 1749: 1743: 1739: 1735: 1732: 1728: 1686: 1685: 1670: 1666: 1661: 1658: 1652: 1644: 1640: 1633: 1628: 1624: 1621: 1617: 1594:gamma function 1585: 1575: 1574: 1563: 1560: 1550: 1544: 1539: 1533: 1530: 1527: 1522: 1512: 1509: 1506: 1503: 1499: 1494: 1491: 1488: 1470: 1469: 1458: 1455: 1452: 1449: 1446: 1441: 1435: 1432: 1429: 1425: 1421: 1418: 1415: 1411: 1407: 1404: 1399: 1394: 1390: 1386: 1380: 1375: 1351: 1329: 1325: 1292: 1289: 1248: 1242: 1241: 1227: 1221: 1216: 1211: 1206: 1203: 1185: 1184: 1171: 1168: 1164: 1160: 1157: 1154: 1151: 1148: 1145: 1142: 1114: 1105: 1096: 1090: 1089: 1078: 1074: 1066: 1062: 1058: 1055: 1051: 1047: 1044: 1041: 1037: 1033: 1030: 1025: 1021: 1015: 1011: 1007: 1004: 999: 994: 991: 988: 985: 982: 979: 956: 953: 945:number density 810:quasiparticles 796:, the atom of 754: 751: 709: 708: 706: 705: 698: 691: 683: 680: 679: 678: 677: 664: 647: 646: 642: 641: 636: 631: 626: 621: 616: 611: 606: 601: 596: 591: 586: 581: 576: 571: 566: 561: 556: 551: 546: 541: 536: 531: 526: 521: 516: 511: 506: 501: 496: 491: 486: 481: 476: 471: 466: 461: 456: 451: 446: 441: 435: 434: 431: 430: 427: 426: 422: 421: 416: 414:Liquid crystal 411: 406: 401: 395: 394: 389: 388: 385: 384: 380: 379: 374: 369: 364: 355: 350: 344: 343: 340:Quasiparticles 338: 337: 334: 333: 329: 328: 323: 314: 305: 299:Superdiamagnet 296: 290: 289: 286: 285: 282: 281: 277: 276: 271: 266: 260: 259: 256: 255: 252: 251: 247: 246: 241: 236: 231: 226: 224:Thermoelectric 221: 219:Superconductor 216: 211: 206: 201: 199:Mott insulator 196: 191: 186: 180: 179: 176: 175: 172: 171: 167: 166: 161: 156: 150: 149: 146: 145: 142: 141: 137: 136: 131: 126: 121: 116: 111: 106: 101: 96: 91: 86: 81: 76: 70: 69: 64: 63: 60: 59: 57: 56: 51: 46: 40: 37: 36: 28: 27: 15: 9: 6: 4: 3: 2: 5339: 5328: 5325: 5323: 5320: 5318: 5315: 5313: 5310: 5308: 5305: 5304: 5302: 5290: 5286: 5282: 5278: 5274: 5270: 5266: 5262: 5255: 5250: 5246: 5241: 5237: 5232: 5228: 5223: 5219: 5214: 5213: 5199: 5197:9780521586467 5193: 5189: 5188: 5180: 5172: 5168: 5164: 5160: 5156: 5152: 5148: 5144: 5139: 5134: 5130: 5126: 5119: 5111: 5107: 5103: 5099: 5095: 5091: 5087: 5083: 5078: 5073: 5069: 5065: 5058: 5050: 5046: 5042: 5038: 5034: 5030: 5026: 5022: 5018: 5014: 5006: 4998: 4992: 4988: 4987: 4979: 4975: 4965: 4962: 4961: 4955: 4953: 4949: 4945: 4941: 4937: 4933: 4913: 4904: 4898: 4892: 4888: 4882: 4878: 4875: 4872: 4866: 4863: 4860: 4854: 4851: 4848: 4841: 4840: 4839: 4821: 4818: 4815: 4812: 4809: 4806: 4803: 4800: 4797: 4790: 4789: 4788: 4771: 4768: 4761: 4758: 4755: 4741: 4737: 4731: 4723: 4714: 4709: 4705: 4697: 4696: 4695: 4678: 4675: 4672: 4669: 4663: 4646: 4643: 4636: 4635: 4634: 4609: 4605: 4599: 4595: 4586: 4580: 4574: 4570: 4563: 4559: 4551: 4545: 4539: 4535: 4532: 4529: 4507: 4504: 4479: 4473: 4470: 4467: 4442: 4436: 4433: 4430: 4427: 4417: 4397: 4393: 4387: 4383: 4379: 4375: 4366: 4360: 4354: 4351: 4348: 4325: 4321: 4310: 4304: 4296: 4292: 4288: 4282: 4276: 4253: 4249: 4238: 4232: 4224: 4216: 4212: 4208: 4193: 4169: 4161: 4158: 4153: 4149: 4146: 4143: 4130: 4114: 4111: 4087: 4083: 4079: 4056: 4052: 4041: 4035: 4027: 4019: 4004: 3980: 3975: 3971: 3965: 3962: 3952: 3936: 3933: 3907: 3904: 3900: 3894: 3890: 3881: 3873: 3869: 3862: 3855: 3851: 3843: 3837: 3831: 3808: 3800: 3782: 3778: 3774: 3771: 3747: 3743: 3739: 3736: 3722: 3719: 3703: 3699: 3670: 3665: 3653: 3649: 3645: 3636: 3628: 3625: 3622: 3607: 3601: 3598: 3595: 3589: 3586: 3581: 3577: 3573: 3563: 3562: 3561: 3553: 3549: 3547: 3543: 3537: 3532: 3528: 3524: 3520: 3516: 3512: 3508: 3487: 3483: 3470: 3464: 3456: 3448: 3430: 3427: 3421: 3418: 3415: 3410: 3404: 3400: 3393: 3390: 3383: 3382: 3381: 3378: 3376: 3372: 3343: 3339: 3334: 3331: 3324: 3323: 3322: 3320: 3316: 3312: 3308: 3301: 3295: 3282: 3276: 3269: 3263: 3254: 3250: 3243: 3237: 3235: 3226: 3217: 3211: 3200: 3168: 3162: 3159: 3156: 3150: 3147: 3142: 3138: 3134: 3124: 3123: 3122: 3120: 3116: 3113:For smaller, 3103: 3099: 3094: 3090: 3084: 3071: 3066: 3062: 3057: 3048: 3044: 3042: 3034: 3030: 3025: 3017: 3013: 3008: 2976: 2964: 2957: 2946: 2942: 2939: 2929: 2926: 2923: 2909: 2904: 2891: 2887: 2882: 2877: 2874: 2868: 2863: 2858: 2853: 2849: 2839: 2838: 2837: 2830: 2821: 2817: 2809: 2805: 2797: 2793: 2787: 2782: 2758: 2742: 2738: 2727: 2719: 2704: 2699: 2695: 2691: 2680: 2676: 2671: 2667: 2663: 2660: 2653: 2652: 2651: 2647: 2636: 2632: 2625: 2620: 2613: 2607: 2576: 2572: 2569: 2566: 2560: 2556: 2548: 2544: 2540: 2535: 2526: 2522: 2518: 2512: 2509: 2506: 2502: 2497: 2492: 2481: 2473: 2472: 2471: 2466: 2450: 2446: 2442: 2439: 2436: 2403: 2391: 2383: 2379: 2375: 2370: 2361: 2355: 2351: 2346: 2341: 2330: 2322: 2321: 2320: 2314: 2308: 2301: 2293: 2289: 2282: 2276: 2272: 2268: 2263: 2256: 2252: 2248: 2229: 2221: 2205: 2201: 2190: 2184: 2178: 2163: 2155: 2147: 2146: 2145: 2141: 2137:is finite at 2133: 2127: 2121: 2119: 2115: 2111: 2107: 2088: 2080: 2070: 2066: 2062: 2051: 2043: 2028: 2022: 2012: 1998: 1995: 1992: 1981: 1973: 1972: 1971: 1969: 1959: 1955: 1953: 1952:polylogarithm 1949: 1944: 1924: 1917: 1912: 1902: 1898: 1894: 1885: 1877: 1874: 1871: 1856: 1853: 1834: 1833: 1832: 1829: 1824: 1820: 1817: 1813: 1809: 1785: 1777: 1774: 1764: 1759: 1751: 1741: 1737: 1733: 1726: 1717: 1716: 1715: 1711: 1707:we will have 1706: 1700: 1695: 1691: 1668: 1659: 1656: 1650: 1642: 1626: 1622: 1615: 1606: 1605: 1604: 1600: 1595: 1591: 1584: 1580: 1561: 1558: 1548: 1537: 1531: 1528: 1525: 1520: 1507: 1497: 1492: 1489: 1486: 1479: 1478: 1477: 1475: 1456: 1450: 1447: 1444: 1439: 1433: 1430: 1427: 1423: 1419: 1416: 1413: 1409: 1405: 1402: 1392: 1388: 1384: 1365: 1364: 1363: 1327: 1314: 1310: 1302: 1297: 1288: 1285: 1280: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1247: 1225: 1214: 1209: 1204: 1201: 1194: 1193: 1192: 1190: 1169: 1166: 1162: 1158: 1152: 1149: 1146: 1140: 1133: 1132: 1131: 1130:by defining: 1129: 1126: 1122: 1117: 1113: 1108: 1104: 1099: 1095: 1076: 1072: 1064: 1060: 1056: 1053: 1049: 1045: 1042: 1039: 1035: 1031: 1028: 1023: 1019: 1013: 1009: 1005: 989: 986: 983: 980: 970: 969: 968: 966: 962: 952: 950: 946: 942: 938: 934: 930: 926: 921: 919: 915: 911: 907: 902: 900: 896: 892: 888: 884: 880: 876: 872: 871:absolute zero 868: 863: 861: 860:heat capacity 857: 853: 849: 845: 843: 838: 834: 830: 826: 821: 819: 815: 811: 807: 803: 799: 795: 791: 787: 783: 779: 775: 771: 767: 763: 759: 750: 748: 744: 740: 736: 732: 728: 724: 720: 716: 704: 699: 697: 692: 690: 685: 684: 682: 681: 675: 665: 662: 657: 651: 650: 649: 648: 640: 637: 635: 632: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 605: 602: 600: 597: 595: 592: 590: 587: 585: 582: 580: 577: 575: 572: 570: 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 542: 540: 537: 535: 532: 530: 527: 525: 522: 520: 517: 515: 512: 510: 507: 505: 502: 500: 497: 495: 492: 490: 487: 485: 482: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 445: 442: 440: 439:Van der Waals 437: 436: 429: 428: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 396: 392: 387: 386: 378: 375: 373: 370: 368: 365: 363: 359: 356: 354: 351: 349: 346: 345: 341: 336: 335: 327: 324: 322: 318: 315: 313: 309: 306: 304: 300: 297: 295: 292: 291: 284: 283: 275: 272: 270: 267: 265: 262: 261: 254: 253: 245: 242: 240: 237: 235: 234:Ferroelectric 232: 230: 229:Piezoelectric 227: 225: 222: 220: 217: 215: 212: 210: 207: 205: 204:Semiconductor 202: 200: 197: 195: 192: 190: 187: 185: 182: 181: 174: 173: 165: 162: 160: 157: 155: 152: 151: 144: 143: 135: 132: 130: 127: 125: 124:Superfluidity 122: 120: 117: 115: 112: 110: 107: 105: 102: 100: 97: 95: 92: 90: 87: 85: 82: 80: 77: 75: 72: 71: 67: 62: 61: 55: 52: 50: 47: 45: 42: 41: 39: 38: 34: 30: 29: 26: 23: 22: 19: 5264: 5261:Eur. J. Phys 5260: 5244: 5235: 5226: 5217: 5186: 5179: 5128: 5124: 5118: 5067: 5063: 5057: 5016: 5012: 5005: 4985: 4978: 4944:Bethe ansatz 4931: 4929: 4837: 4786: 4693: 4631: 3689: 3559: 3550: 3545: 3541: 3535: 3530: 3526: 3518: 3514: 3510: 3506: 3505:For a given 3504: 3379: 3374: 3370: 3368: 3318: 3314: 3310: 3306: 3299: 3293: 3280: 3274: 3267: 3252: 3248: 3241: 3238: 3233: 3224: 3215: 3209: 3198: 3195: 3118: 3112: 3101: 3097: 3092: 3088: 3082: 3069: 3064: 3060: 3045: 3032: 3028: 3015: 3011: 3003: 2828: 2819: 2815: 2807: 2803: 2795: 2791: 2788: 2780: 2778: 2645: 2642: 2630: 2623: 2618: 2617:diverges as 2611: 2605: 2602: 2464: 2428: 2312: 2306: 2299: 2291: 2287: 2280: 2274: 2270: 2266: 2261: 2250: 2246: 2244: 2139: 2131: 2125: 2122: 2117: 2113: 2109: 2105: 2103: 1965: 1956: 1947: 1942: 1939: 1830: 1822: 1818: 1815: 1811: 1807: 1805: 1709: 1698: 1693: 1687: 1598: 1589: 1582: 1578: 1576: 1473: 1471: 1309:gas in a box 1306: 1283: 1281: 1276: 1272: 1268: 1264: 1256: 1245: 1243: 1191:defined as: 1188: 1186: 1127: 1120: 1115: 1111: 1106: 1102: 1097: 1093: 1091: 958: 922: 914:Cooper pairs 903: 895:ground state 864: 852:normal modes 840: 833:Planck's law 822: 756: 714: 712: 569:von Klitzing 274:Kondo effect 134:Time crystal 114:Fermi liquid 98: 18: 4930:which, for 3321:defined by 1261:temperature 856:Peter Debye 848:Debye model 816:(quanta of 774:Higgs boson 391:Soft matter 312:Ferromagnet 5301:Categories 4970:References 3718:is shown. 3115:mesoscopic 2470:) we get: 1966:The total 1954:function. 879:superfluid 825:photon gas 739:photon gas 534:Louis NĆ©el 524:Schrieffer 432:Scientists 326:Spin glass 321:Metamagnet 303:Paramagnet 119:Supersolid 5312:Ideal gas 5289:250870934 5163:0002-9505 5110:119073938 5102:1612-2011 5049:118614846 5041:0022-4715 4905:α 4899:ζ 4893:α 4889:τ 4879:⁡ 4861:α 4819:− 4772:β 4756:α 4729:∂ 4721:∂ 4673:α 4664:β 4661:∂ 4656:Ω 4653:∂ 4610:α 4606:τ 4600:α 4587:α 4581:ζ 4575:− 4564:α 4560:τ 4552:α 4546:ζ 4536:⁡ 4530:≈ 4474:⁡ 4437:⁡ 4398:α 4394:τ 4380:α 4367:α 4361:ζ 4355:− 4349:≈ 4326:α 4322:τ 4311:α 4305:ζ 4289:α 4283:ζ 4254:α 4250:τ 4239:α 4233:ζ 4209:α 4167:Ω 4162:− 4150:β 4088:α 4084:τ 4057:α 4053:τ 4042:α 4036:ζ 4020:α 3966:− 3908:α 3901:τ 3895:α 3882:α 3870:ζ 3863:− 3856:α 3852:τ 3844:α 3838:ζ 3832:≈ 3775:≫ 3740:≪ 3724:Quantity 3704:α 3700:τ 3671:α 3650:β 3623:α 3608:− 3599:− 3590:⁡ 3571:Ω 3488:α 3484:τ 3471:α 3465:ζ 3449:α 3419:− 3332:τ 3173:Ω 3160:− 3151:⁡ 3132:Ω 2972:otherwise 2924:α 2910:α 2878:− 2759:α 2739:β 2720:α 2570:π 2513:ζ 2437:α 2384:α 2362:α 2356:ζ 2253:) is the 2222:α 2202:β 2191:α 2185:ζ 2081:α 2063:β 2044:α 2020:∂ 2009:Ω 2005:∂ 1996:− 1950:) is the 1918:α 1899:β 1872:α 1857:− 1843:Ω 1778:β 1775:ω 1772:ℏ 1752:α 1734:β 1665:Λ 1643:α 1623:β 1549:α 1529:− 1526:α 1508:α 1502:Γ 1454:Ω 1451:≈ 1431:β 1428:− 1417:− 1406:⁡ 1398:∞ 1389:∫ 1374:Ω 1350:Ω 1324:Ω 1301:Fermi gas 1202:β 1170:μ 1167:β 1153:μ 1147:β 1061:ϵ 1057:β 1054:− 1043:− 1032:⁡ 1010:∑ 990:⁡ 984:− 978:Ω 949:ideal gas 937:Fermi gas 925:electrons 883:viscosity 802:deuterium 723:ideal gas 713:An ideal 634:Wetterich 614:Abrikosov 529:Josephson 499:Van Vleck 489:Luttinger 362:Polariton 294:Diamagnet 214:Conductor 209:Semimetal 194:Insulator 109:Fermi gas 4958:See also 3727:General 2919:if  1940:where Li 1590:critical 941:fermions 929:helium-3 867:helium-4 835:and the 814:plasmons 794:hydrogen 790:graviton 715:Bose gas 674:Category 619:Ginzburg 594:Laughlin 554:Kadanoff 509:Shockley 494:Anderson 449:von Laue 99:Bose gas 5269:Bibcode 5143:Bibcode 5082:Bibcode 5021:Bibcode 3246:, with 3229:⁠ 3206:⁠ 2257:(using 1275:), and 1259:is the 1251:is the 624:Leggett 599:Stƶrmer 584:Bednorz 544:Giaever 514:Bardeen 504:Hubbard 479:Peierls 469:Onsager 419:Polymer 404:Colloid 367:Polaron 358:Plasmon 353:Exciton 5287:  5194:  5171:949741 5169:  5161:  5108:  5100:  5047:  5039:  4993:  3480:  3434:  3296:= 1000 3102:ε 3089:μ 3085:= 1000 3065:α 3061:τ 2779:where 2648:> 1 2245:where 2128:> 1 1806:where 1692:, and 1577:where 1556:  1244:where 963:. The 908:where 842:phonon 806:mesons 784:, the 780:, the 778:photon 776:, the 758:Bosons 737:for a 727:bosons 672:  639:Perdew 629:Parisi 589:MĆ¼ller 579:Rohrer 574:Binnig 564:Wilson 559:Fisher 519:Cooper 484:Landau 372:Magnon 348:Phonon 189:Plasma 89:Plasma 79:Liquid 44:Phases 5285:S2CID 5257:(PDF) 5167:S2CID 5133:arXiv 5106:S2CID 5072:arXiv 5045:S2CID 3244:= 3/2 3031:< 3014:< 2818:> 2794:< 2626:= 1/2 1601:= 3/2 1588:is a 782:gluon 539:Esaki 464:Bloch 459:Debye 454:Bragg 444:Onnes 377:Roton 74:Solid 5192:ISBN 5159:ISSN 5098:ISSN 5037:ISSN 4991:ISBN 3509:and 3278:for 3266:1 āˆ’ 3223:1 āˆ’ 2943:< 2927:> 2628:and 2603:For 2305:= 1/ 2269:) = 2123:For 1814:) = 1271:(or 1255:and 1187:and 829:Bose 770:spin 760:are 609:Tsui 604:Yang 549:Kohn 474:Mott 5277:doi 5151:doi 5090:doi 5029:doi 5017:161 3538:= 0 3287:000 3258:= 1 3107:= 1 3076:000 2834:= 0 2633:= 1 2608:ā‰¤ 1 2142:= 1 1712:= 3 1701:= 1 927:or 844:gas 820:). 786:W/Z 164:QCP 84:Gas 54:QCP 5303:: 5283:. 5275:. 5265:21 5263:. 5259:. 5165:. 5157:. 5149:. 5141:. 5129:71 5127:. 5104:. 5096:. 5088:. 5080:. 5066:. 5043:. 5035:. 5027:. 5015:. 4954:. 4876:ln 4533:ln 4471:ln 4434:ln 4203:Li 4014:Li 3617:Li 3587:ln 3443:Li 3285:10 3283:= 3251:= 3204:= 3148:ln 3100:= 3074:10 3072:= 2714:Li 2259:Li 2144:: 2038:Li 1866:Li 1816:mĻ‰ 1474:dg 1403:ln 1362:: 1267:, 1119:; 1101:; 1029:ln 987:ln 951:. 901:. 804:, 749:. 5291:. 5279:: 5271:: 5200:. 5173:. 5153:: 5145:: 5135:: 5112:. 5092:: 5084:: 5074:: 5068:2 5051:. 5031:: 5023:: 4999:. 4932:Ī± 4914:) 4908:) 4902:( 4883:( 4873:+ 4870:) 4867:1 4864:+ 4858:( 4855:= 4852:S 4849:T 4822:G 4816:V 4813:P 4810:+ 4807:U 4804:= 4801:S 4798:T 4769:U 4765:) 4762:1 4759:+ 4753:( 4747:B 4742:k 4738:= 4732:T 4724:U 4715:= 4710:V 4706:C 4679:V 4676:P 4670:= 4647:= 4644:U 4596:2 4590:) 4584:( 4571:) 4555:) 4549:( 4540:( 4508:0 4505:= 4483:) 4480:z 4477:( 4468:= 4446:) 4443:z 4440:( 4431:= 4428:G 4388:1 4384:+ 4376:2 4370:) 4364:( 4352:1 4314:) 4308:( 4300:) 4297:1 4293:+ 4286:( 4277:= 4242:) 4236:( 4228:) 4225:z 4222:( 4217:1 4213:+ 4194:= 4170:N 4159:= 4154:N 4147:V 4144:P 4115:1 4112:= 4080:= 4045:) 4039:( 4031:) 4028:z 4025:( 4005:= 3981:N 3976:0 3972:N 3963:1 3937:1 3934:= 3905:2 3891:2 3885:) 3879:( 3874:2 3847:) 3841:( 3809:z 3783:c 3779:T 3772:T 3748:c 3744:T 3737:T 3666:) 3659:c 3654:E 3646:( 3640:) 3637:z 3634:( 3629:1 3626:+ 3605:) 3602:z 3596:1 3593:( 3582:0 3578:g 3574:= 3546:N 3542:T 3536:T 3531:Ļ„ 3527:Ļ„ 3519:z 3515:Ļ„ 3511:Ļ„ 3507:N 3474:) 3468:( 3460:) 3457:z 3454:( 3431:N 3428:+ 3422:z 3416:1 3411:z 3405:0 3401:g 3394:= 3391:N 3375:Ļ„ 3371:Ļ„ 3349:c 3344:T 3340:T 3335:= 3319:Ļ„ 3315:z 3311:Ī¼ 3307:N 3305:/ 3303:0 3300:N 3294:N 3281:N 3275:N 3273:/ 3271:0 3268:N 3256:c 3253:Īµ 3249:k 3242:Ī± 3234:z 3225:z 3220:/ 3216:z 3213:0 3210:g 3202:0 3199:N 3178:m 3169:+ 3166:) 3163:z 3157:1 3154:( 3143:0 3139:g 3135:= 3119:Īµ 3109:. 3105:c 3098:k 3093:z 3083:N 3070:N 3036:c 3033:T 3029:T 3019:c 3016:T 3012:T 2977:. 2965:0 2958:, 2952:c 2947:T 2940:T 2930:1 2905:) 2897:c 2892:T 2888:T 2883:( 2875:1 2869:{ 2864:= 2859:N 2854:0 2850:N 2832:0 2829:N 2823:c 2820:T 2816:T 2811:0 2808:N 2804:z 2799:c 2796:T 2792:T 2784:0 2781:N 2755:) 2748:c 2743:E 2736:( 2731:) 2728:z 2725:( 2705:+ 2700:0 2696:N 2692:= 2686:m 2681:N 2677:+ 2672:0 2668:N 2664:= 2661:N 2646:Ī± 2631:Ī± 2624:Ī± 2619:z 2615:m 2612:N 2606:Ī± 2582:B 2577:k 2573:m 2567:2 2561:2 2557:h 2549:3 2545:/ 2541:2 2536:) 2530:) 2527:2 2523:/ 2519:3 2516:( 2510:f 2507:V 2503:N 2498:( 2493:= 2487:c 2482:T 2468:c 2465:E 2451:2 2447:/ 2443:3 2440:= 2409:B 2404:k 2397:c 2392:E 2380:/ 2376:1 2371:) 2365:) 2359:( 2352:N 2347:( 2342:= 2336:c 2331:T 2316:c 2313:Ī² 2310:B 2307:k 2303:c 2300:T 2295:c 2292:Ī² 2288:Ī² 2284:m 2281:N 2277:) 2275:Ī± 2273:( 2271:Ī¶ 2267:1 2265:( 2262:Ī± 2251:Ī± 2249:( 2247:Ī¶ 2230:, 2218:) 2211:c 2206:E 2199:( 2194:) 2188:( 2179:= 2173:x 2170:a 2167:m 2164:, 2161:m 2156:N 2140:z 2135:m 2132:N 2126:Ī± 2118:Ī± 2114:z 2110:z 2106:z 2089:. 2077:) 2071:c 2067:E 2060:( 2055:) 2052:z 2049:( 2029:= 2023:z 2013:m 1999:z 1993:= 1987:m 1982:N 1948:x 1946:( 1943:s 1925:, 1913:) 1907:c 1903:E 1895:( 1889:) 1886:z 1883:( 1878:1 1875:+ 1854:= 1848:m 1826:c 1823:E 1819:r 1812:r 1810:( 1808:V 1786:3 1782:) 1769:( 1765:f 1760:= 1748:) 1742:c 1738:E 1731:( 1727:1 1710:Ī± 1699:f 1694:f 1669:3 1660:f 1657:V 1651:= 1639:) 1632:c 1627:E 1620:( 1616:1 1599:Ī± 1586:c 1583:E 1579:Ī± 1562:E 1559:d 1543:c 1538:E 1532:1 1521:E 1511:) 1505:( 1498:1 1493:= 1490:g 1487:d 1457:. 1448:g 1445:d 1440:) 1434:E 1424:e 1420:z 1414:1 1410:( 1393:0 1385:= 1379:m 1328:m 1284:z 1277:V 1273:T 1269:Ī² 1265:z 1257:T 1249:B 1246:k 1226:T 1220:B 1215:k 1210:1 1205:= 1189:Ī² 1163:e 1159:= 1156:) 1150:, 1144:( 1141:z 1128:Ī¼ 1121:z 1116:i 1112:Īµ 1107:i 1103:g 1098:i 1094:Īµ 1077:. 1073:) 1065:i 1050:e 1046:z 1040:1 1036:( 1024:i 1020:g 1014:i 1006:= 1003:) 998:Z 993:( 981:= 875:K 798:O 702:e 695:t 688:v

Index

Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Boseā€“Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal
Conductor
Superconductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘