Knowledge

Boson sampling

Source đź“ť

4337:(this regime is readily accessible experimentally, for example by introducing temporal delay between photons). The opportunity then exists to tune between ideally indistinguishable (quantum) and perfectly distinguishable (classical) data and measure the change in a suitably constructed metric. This scenario can be addressed by a statistical test which performs a one-on-one likelihood comparison of the output probabilities. This test requires the calculation of a small number of permanents, but does not need the calculation of the full expected probability distribution. Experimental implementation of the test has been successfully reported in integrated laser-written circuits for both the standard boson sampling (3 photons in 7-, 9- and 13-mode interferometers) and the scattershot version (3 photons in 9- and 13-mode interferometers with different input states). Another possibility is based on the bunching property of indinguishable photons. One can analyze the probability to find a 4333:
impossible (roughly speaking a symmetric measurement scheme does not allow for labeling the output modes of the optical circuit). However, within current technologies the assumption of a symmetric setting is not justified (the tracking of the measurement statistics is fully accessible), and therefore the above argument does not apply. It is then possible to define a rigorous and efficient test to discriminate the boson sampling statistics from an unbiased probability distribution. The corresponding discriminator is correlated to the permanent of the submatrix associated with a given measurement pattern, but can be efficiently calculated. This test has been applied experimentally to distinguish between a boson sampling and a uniform distribution in the 3-photon regime with integrated circuits of 5, 7, 9 and 13 modes.
4341:-fold coincidence measurement outcomes (without any multiply populated input mode), which is significantly higher for distinguishable particles than for bosons due to the bunching tendency of the latters. Finally, leaving the space of random matrices one may focus on specific multimode setups with certain features. In particular, the analysis of the effect of bosonic clouding (the tendency for bosons to favor events with all particles in the same half of the output array of a continuous-time many-particle quantum walk) has been proven to discriminate the behavior of distinguishable and indistinguishable particles in this specific platform. 7617: 4094:). Such a model deals with continuous-variable measurement outcome, which, under certain conditions, is a computationally hard task. Finally, a linear optics platform for implementing a boson sampling experiment where input single-photons undergo an active (non-linear) Gaussian transformation is also available. This setting makes use of a set of two-mode squeezed vacuum states as a prior resource, with no need of single-photon sources or in-line nonlinear amplification medium. This variant uses the 7607: 3217:(Haar random matrices can be directly implemented in optical circuits by mapping independent probability density functions for their parameters, to optical circuit components, i.e., beam splitters and phase shifters). Therefore, if the linear optical circuit implements a Haar random unitary matrix, the adversarial sampler will not be able to detect which of the exponentially many probabilities 4021:
important leap towards a convincing experimental demonstration of the quantum computational supremacy. The scattershot boson sampling model can be further generalized to the case where both legs of PDC sources are subject to linear optical transformations (in the original scattershot case, one of the arms is used for heralding, i.e., it goes through the identity channel). Such a
3893:. In other words, in order to generate the input state for the boson sampling machine, one would have to wait for exponentially long time, which would kill the advantage of the quantum setup over a classical machine. Subsequently, this characteristic restricted the use of PDC sources to proof-of-principle demonstrations of a boson sampling device. 1904: 3877:) mechanism. The main advantages of PDC sources are the high photon indistinguishability, collection efficiency and relatively simple experimental setups. However, one of the drawbacks of this approach is its non-deterministic (heralded) nature. Specifically, suppose the probability of generating a single photon by means of a PDC crystal is 4086:
the same complexity assumption as can approximate ordinary or scattershot boson sampling. Gaussian resources can be employed at the measurement stage, as well. Namely, one can define a boson sampling model, where a linear optical evolution of input single-photon states is concluded by Gaussian measurements (more specifically, by eight-port
3847:
order to collect enough statistics to approximate its value, one has to run the quantum experiment for exponentially long time. Therefore, the estimate obtained from a boson sampler is not more efficient that running the classical polynomial-time algorithm by Gurvits for approximating the permanent of any matrix to within additive error.
3769:
feature facilitates the implementation of a restricted boson sampling device. Namely, if the probability of having more than one photon at the output of a linear optical circuit is negligible, one does not require photon-number-resolving detectors anymore: on-off detectors will be sufficient for the realization of the setup.
4345:
reasonable assumption is that the system maintains correct operation as the circuit is continuously reconfigured to implement a random unitary operation. To this end, one can exploit quantum suppression laws (the probability of specific input-output combinations is suppressed when the linear interferometer is described by a
69:. Moreover, while not universal, the boson sampling scheme is strongly believed to implement computing tasks which are hard to implement with classical computers by using far fewer physical resources than a full linear-optical quantum computing setup. This advantage makes it an ideal candidate for demonstrating the power of 2382: 4299:
There are several other proposals for the implementation of photonic boson sampling. This includes, e.g., the scheme for arbitrarily scalable boson sampling using two nested fiber loops. In this case, the architecture employs time-bin encoding, whereby the incident photons form a pulse train entering
3846:
of a specific measurement outcome at the output of the interferometer is related to the permanent of submatrices of a unitary matrix, a boson sampling machine does not allow its estimation. The main reason behind is that the corresponding detection probability is usually exponentially small. Thus, in
3768:
modes of a linear interferometer with no two bosons in the same mode, then with high probability two bosons will not be found in the same output mode either. This property has been experimentally observed with two and three photons in integrated interferometers of up to 16 modes. On the one hand this
4303:
Another approach relies on the realization of unitary transformations on temporal modes based on dispersion and pulse shaping. Namely, passing consecutively heralded photons through time-independent dispersion and measuring the output time of the photons is equivalent to a boson sampling experiment.
3751:
By making use of the above two conjectures (which have several evidences of being true), the final proof eventually states that the existence of a classical polynomial-time algorithm for the approximate boson sampling task implies the collapse of the polynomial hierarchy. It is also worth mentioning
4434:
It has also been suggested to use a superconducting resonator network Boson Sampling device as an interferometer. This application is assumed to be practical, as small changes in the couplings between the resonators will change the sampling results. Sensing of variation in the parameters capable of
4336:
The test above does not distinguish between more complex distributions, such as quantum and classical, or between fermionic and bosonic statistics. A physically motivated scenario to be addressed is the unwanted introduction of distinguishability between photons, which destroys quantum interference
4287:
A first scattershot boson sampling experiment has been recently implemented using six photon-pair sources coupled to integrated photonic circuits with 13 modes. The 6 photon-pair sources were obtained via type-II PDC processes in 3 different nonlinear crystals (exploiting the polarization degree of
4278:
Later on, more complex boson sampling experiments have been performed, increasing the number of spatial modes of random interferometers up to 13 and 9 modes, and realizing a 6-mode fully reconfigurable integrated circuit. These experiments altogether constitute the proof-of-principle demonstrations
4085:
This is precisely equivalent to scattershot boson sampling, except for the fact that our measurement of the herald photons has been deferred till the end of the experiment, instead of happening at the beginning. Therefore, approximate Gaussian boson sampling can be argued to be hard under precisely
4457:
Coarse-grained boson sampling has been proposed as a resource of decision and function problems that are computationally hard, and may thus have cryptographic applications. The first related proof-of-principle experiment was performed with a photonic boson-sampling machine (fabricated by a direct
2839:
The above hardness proofs are not applicable to the realistic implementation of a boson sampling device, due to the imperfection of any experimental setup (including the presence of noise, decoherence, photon losses, etc.). Therefore, for practical needs one necessitates the hardness proof for the
4332:
A first relevant question is whether it is possible or not to distinguish between uniform and boson-sampling distributions by performing a polynomial number of measurements. The initial argument introduced in Ref. stated that as long as one makes use of symmetric measurement settings the above is
2522:
All current proofs of the hardness of simulating boson sampling on a classical computer rely on the strong computational consequences that its efficient simulation by a classical algorithm would have. Namely, these proofs show that an efficient classical simulation would imply the collapse of the
2498:
The main reason of the growing interest towards the model of boson sampling is that despite being non-universal it is strongly believed to perform a computational task that is intractable for a classical computer. One of the main reasons behind this is that the probability distribution, which the
4344:
A different approach to confirm that the boson sampling machine behaves as the theory predicts is to make use of fully reconfigurable optical circuits. With large-scale single-photon and multiphoton interference verified with predictable multimode correlations in a fully characterized circuit, a
4041:
is a Gaussian one. The hardness of the corresponding sampling task can be linked to that of scattershot boson sampling. Namely, the latter can be embedded into the conventional boson sampling setup with Gaussian inputs. For this, one has to generate two-mode entangled Gaussian states and apply a
97:
crystals), as well as a linear interferometer. The latter can be fabricated, e.g., with fused-fiber beam splitters, through silica-on-silicon or laser-written integrated interferometers, or electrically and optically interfaced optical chips. Finally, the scheme also necessitates high efficiency
4106:
The above results state that the existence of a polynomial-time classical algorithm for the original boson sampling scheme with indistinguishable single photons (in the exact and approximate cases), for scattershot, as well as for the general Gaussian boson sampling problems is highly unlikely.
3860:
As already mentioned above, for the implementation of a boson sampling machine one necessitates a reliable source of many indistinguishable photons, and this requirement currently remains one of the main difficulties in scaling up the complexity of the device. Namely, despite recent advances in
2713:
On the other hand, the alternative proof is inspired by a similar result for another restricted model of quantum computation – the model of instantaneous quantum computing. Namely, the proof uses the KLM scheme, which says that linear optics with adaptive measurements is universal for the class
4020:
PDC crystals generated single photons. Therefore, the proof can be constructed here similar to the original one. Furthermore, scattershot boson sampling has been also recently implemented with six photon-pair sources coupled to integrated photonic circuits of nine and thirteen modes, being an
93:). Then, the photonic implementation of the boson sampling task consists of generating a sample from the probability distribution of single-photon measurements at the output of the circuit. Specifically, this requires reliable sources of single photons (currently the most widely used ones are 4328:
complexity class), it is not understood how to verify correct operation for large versions of the setup. Specifically, the naive verification of the output of a boson sampler by computing the corresponding measurement probabilities represents a problem intractable for a classical computer.
4349:
or other matrices with relevant symmetries). These suppression laws can be classically predicted in efficient ways. This approach allows also to exclude other physical models, such as mean-field states, which mimic some collective multiparticle properties (including bosonic clouding). The
5786:
Spagnolo, Nicolo; Vitelli, Chiara; Bentivegna, Marco; Brod, Daniel; Crespi, Andrea; Flamini, Fulvio; Giacomini, Sandro; Milani, Giorgio; Ramponi, Roberta; Mataloni, Paolo; Osellame, Roberto; GalvĂŁo, Ernesto; Sciarrino, Fabio (2014). "Experimental validation of photonic boson sampling".
4403:
spins. One necessitates several additional assumptions here, including small boson bunching probability and efficient error postselection. This scalable scheme, however, is rather promising, in the light of considerable development in the construction and manipulation of coupled
4618:
Spring, Justin; Metcalf, Benjamin; Humphreys, Peter; Kolthammer, Steven; Jin, Xian-Min; Barbieri, Marco; Datta, Animesh; Thomas-Peter, Nicholas; Langford, Nathan; Kundys, Dmytro; Gates, James; Smith, Brian; Smith, Peter; Walmsley, Ian (2013). "Boson sampling on a photonic chip".
1623: 4792:
Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Brod, Daniel; Galvao, Ernesto; Spagnolo, Nicolò; Vitelli, Chiara; Maiorino, Enrico; Mataloni, Paolo; Sciarrino, Fabio (2013). "Integrated multimode interferometers with arbitrary designs for photonic boson sampling".
5847:
Carolan, Jacques; Meinecke, Jasmin; Shadbolt, Pete; Russell, Nicholas; Ismail, Nur; Wörhoff, Kerstin; Rudolph, Terry; Thompson, Mark; O'Brien, Jeremy; Matthews, Jonathan; Laing, Anthony (2014). "On the experimental verification of quantum complexity in linear optics".
4255:
The above requirements for the photonic boson sampling machine allow for its small-scale construction by means of existing technologies. Consequently, shortly after the theoretical model was introduced, four different groups simultaneously reported its realization.
4107:
Nevertheless, there are some non-trivial realizations of the boson sampling problem that allow for its efficient classical simulation. One such example is when the optical circuit is injected with distinguishable single photons. In this case, instead of summing the
4430:
states into a linear interferometer that is determined by the properties of the molecule of interest. Therefore, this prominent observation makes the interest towards the implementation of the boson sampling task to get spread well beyond the fundamental basis.
4300:
the loops. Meanwhile, dynamically controlled loop coupling ratios allow the construction of arbitrary linear interferometers. Moreover, the architecture employs only a single point of interference and may thus be easier to stabilize than other implementations.
4273:
three photons in a femtosecond laser-written five-mode interferometer implementing a Haar-random unitary transformation, by a collaboration between Milan's Institute of Photonics and Nanotechnology, Universidade Federal Fluminense and Sapienza University of
376: 4215:
problem, its approximation can be performed efficiently on a classical computer, due to the seminal algorithm by Jerrum, Sinclaire and Vigoda. In other words, approximate boson sampling with distinguishable photons is efficiently classically simulable.
2118: 2749:
Again, the combination of these three results, as in the previous case, results in the collapse of the polynomial hierarchy. This makes the existence of a classical polynomial-time algorithm for the exact boson sampling problem highly unlikely.
5370:
Bentivegna, Marco; Spagnolo, Nicolo; Vitelli, Chiara; Flamini, Fulvio; Viggianiello, Niko; Latmiral, Ludovico; Mataloni, Paolo; Brod, Daniel; GalvĂŁo, Ernesto; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sciarrino, Fabio (2015).
4263:
two and three photons scattered by a six-mode linear unitary transformation (represented by two orthogonal polarizations in 3Ă—3 spatial modes of a fused-fiber beam splitter) by a collaboration between the University of Queensland and
1291: 1036: 4304:
With time-dependent dispersion, it is also possible to implement arbitrary single-particle unitaries. This scheme requires a much smaller number of sources and detectors and do not necessitate a large system of beam splitters.
2709:
result in the collapse of the polynomial hierarchy, which as mentioned above is highly unlikely to occur. This leads to the conclusion that there is no classical polynomial-time algorithm for the exact boson sampling problem.
4377:. This scheme is scalable and relies on the recent advances in ion trapping techniques (several dozens of ions can be successfully trapped, for example, in linear Paul traps by making use of anharmonic axial potentials). 4350:
implementation of a Fourier matrix circuit in a fully reconfigurable 6-mode device has been reported, and experimental observations of the suppression law have been shown for 2 photons in 4- and 8-mode Fourier matrices.
3746: 2489:
describing the linear-optical circuit as input. As detailed below, the appearance of the permanent in the corresponding statistics of single-photon measurements contributes to the hardness of the boson sampling problem.
6320:
Goldstein, Samuel; Korenblit, Simcha; Bendor, Ydan; You, Hao; Geller, Michael R.; Katz, Nadav (17 January 2017). "Decoherence and interferometric sensitivity of boson sampling in superconducting resonator networks".
3659: 3524: 3432: 2740:
The existence of a classical boson sampling algorithm implies the simulability of postselected linear optics in the PostBPP class (that is, classical polynomial-time with postselection, known also as the class
1388: 1899:{\displaystyle p(t_{1},t_{2},...,t_{N})=|\langle t_{1},t_{2},...,t_{N}|\psi _{\text{out}}\rangle |^{2}={\frac {|{\text{Perm}}\,U_{S,T}|^{2}}{t_{1}!\cdot \cdot \cdot t_{N}!s_{1}!\cdot \cdot \cdot s_{N}!}}.} 4324:(NP) complexity class. It is however not clear that a similar structure exists for the boson sampling scheme. Namely, as the latter is related to the problem of estimating matrix permanents (falling into 6599:
Wang, Xiao-Wei; Zhou, Wen-Hao; Fu, Yu-Xuan; Gao, Jun; Lu, Yong-Heng; Chang, Yi-Jun; Qiao, Lu-Feng; Ren, Ruo-Jing; Jiang, Ze-Kun; Jiao, Zhi-Qiang; Nikolopoulos, Georgios M.; Jin, Xian-Min (2023-02-09).
3576:
which the given probability of a specific measurement outcome is proportional to. However to establish this link one has to rely on another conjecture – the permanent anticoncentration conjecture:
1484: 1182: 3976: 4358:
Apart from the photonic realization of the boson sampling task, several other setups have been proposed. This includes, e.g., the encoding of bosons into the local transverse phonon modes of
4288:
freedom). This allowed to sample simultaneously between 8 different input states. The 13-mode interferometer was realized by femtosecond laser-writing technique on alumino-borosilicate glas.
4537:
Troyansky, Lidror; Tishby, Naftali (1996). “Permanent uncertainty: On the quantum evaluation of the determinant and the permanent of a matrix”.  Proceedings of PhysComp, 1996: 314-318.
795: 4114:
corresponding to photonic many-particle paths, one has to sum the corresponding probabilities (i.e. the squared absolute values of the amplitudes). Consequently, the detection probability
2527:
to its third level, a possibility that is considered very unlikely by the computer science community, due to its strong computational implications (in line with the strong implications of
917: 723: 2941:
Specifically, the proofs of the exact boson sampling problem cannot be directly applied here, since they are based on the #P-hardness of estimating the exponentially-small probability
4186: 3844: 3363: 3289: 3169: 3091: 3013: 2932: 2696: 2619: 1584: 224: 3574: 1946: 849: 4552:
Broome, Matthew; Fedrizzi, Alessandro; Rahimi-Keshari, Saleh; Dove, Justin; Aaronson, Scott; Ralph, Timothy; White, Andrew (2013). "Photonic boson sampling in a tunable circuit".
658: 4227:
among the modes. More precisely, only their amplitudes are transformed, and the transformation can be efficiently calculated on a classical computer (the computation comprises
2377:{\displaystyle p(t_{1},t_{2},...,t_{N})=|\langle t_{1},t_{2},...,t_{N}|\varphi _{M}(U)|1_{M}\rangle |^{2}={\frac {|{\text{Perm}}\,U_{T}|^{2}}{t_{1}!\cdot \cdot \cdot t_{N}!}},} 2810: 419: 182: 2106: 1092: 517: 4062:
to their "right halves", while doing nothing to the others. Then we can measure the "left halves" to find out which of the input states contained a photon before we applied
2621:
of a specific measurement outcome at the output of a linear interferometer to within a multiplicative constant is a #P-hard problem (due to the complexity of the permanent)
2858: 564: 453: 216: 4267:
three photons in different modes of a six-mode silica-on-silicon waveguide circuit, by a collaboration between Universities of Oxford, Shanghai, London and Southampton
1986: 878: 2463: 2412: 2064: 2033: 1611: 65:
version is currently considered as the most promising platform for a scalable implementation of a boson sampling device, which makes it a non-universal approach to
6389:
Chakhmakhchyan, Levon; Cerf, Nicolas; Garcia-Patron, Raul (2017). "A quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices".
4209: 4083: 3455: 1191: 142: 4060: 3197: 2487: 2432: 2006: 1508: 1056: 925: 682: 588: 537: 481: 4979:
Bremner, Michael; Jozsa, Richard; Shepherd, Dan (2011). "Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy".
5901:
Motes, Keith; Gilchrist, Alexei; Dowling, Jonathan; Rohde, Peter (2014). "Scalable boson sampling with time-bin encoding using a loop-based architecture".
5622:
Jerrum, Mark; Sinclair, Alistair; Vigoda, Eric (2001). "A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries".
102:, which perform the measurements at the output of the circuit. Therefore, based on these three ingredients, the boson sampling setup does not require any 4223:
injected into the linear interferometer. The reason is that at the output of a linear optical circuit coherent states remain such, and do not create any
4461:
Gaussian boson sampling has been analyzed as a search component for computing binding propensity between molecules of pharmacological interest as well.
114:
scheme). This makes it a non-universal model of quantum computation, and reduces the amount of physical resources needed for its practical realization.
6267:
Huh, Joonsuk; Giacomo Guerreschi, Gian; Peropadre, Borja; McClean, Jarrod; Aspuru-Guzik, Alan (2015). "Boson sampling for molecular vibronic spectra".
2539:
The hardness proof of the exact boson sampling problem can be achieved following two distinct paths. Specifically, the first one uses the tools of the
3457:
These arguments bring us to the first conjecture of the hardness proof of approximate boson sampling problem – the permanent-of-Gaussians conjecture:
3896:
Recently, however, a new scheme has been proposed to make the best use of PDC sources for the needs of boson sampling, greatly enhancing the rate of
2469:
th row. Subsequently, the task of boson sampling is to sample either exactly or approximately from the above output distribution, given the unitary
3668: 99: 6806: 2938:. The understanding of the complexity of this problem relies then on several additional assumptions, as well as on two yet unproven conjectures. 2823:
output modes. This algorithm leads to an estimate of 50 photons required to demonstrate quantum supremacy with boson sampling. There is also an
4380:
Another platform for implementing the boson sampling setup is a system of interacting spins: recent observation show that boson sampling with
6768: 3986:, this results in an exponential improvement in the single photon generation rate with respect to the usual, fixed-input boson sampling with 5962:
Pant, Mihir; Englund, Dirk (2016). "High dimensional unitary transformations and boson sampling on temporal modes using dispersive optics".
3093:
we wanted to estimate, then it could adversarially choose to corrupt it (as long as the task is approximate). That is why, the idea is to "
4734:
Tillmann, Max; Dakic, Borivoje; Heilmann, Rene; Nolte, Stefan; Szameit, Alexander; Walther, Philip (2013). "Experimental boson sampling".
4004:
Scattershot boson sampling is still intractable for a classical computer: in the conventional setup we fixed the columns that defined our
3599: 3464: 3372: 7498: 5204:
Spagnolo, Nicolò; Vitelli, Chiara; Sanson, Linda; et al. (2013). "General Rules for Bosonic Bunching in Multimode Interferometers".
6057:
Tichy, Malte; Mayer, Klaus; Buchleitner, Andreas; Mølmer, Klaus (2014). "Stringent and Efficient Assessment of Boson-Sampling Devices".
7399: 7060: 1296: 5106:
Russell, Nicholas; Chakhmakhchyan, Levon; O'Brien, Jeremy; Laing, Anthony (2017). "Direct dialling of Haar random unitary matrices".
3752:
another fact important to the proof of this statement, namely the so-called bosonic birthday paradox (in analogy with the well-known
6961: 5667:
Rahimi-Keshari, Saleh; Lund, Austin; Ralph, Timothy (2015). "What can quantum optics say about computational complexity theory?".
4419:: a feasible modification of the boson sampling scheme results in a setup that can be used for the reconstruction of a molecule's 7286: 4291:
This experimental implementation represents a leap towards an experimental demonstration of the quantum computational supremacy.
4270:
three photons in a femtosecond laser-written five-mode interferometer, by a collaboration between universities of Vienna and Jena
2698:
could have been approximated to within a multiplicative constant in the BPPcomplexity class, i.e. within the third level of the
4231:). This fact can be used to perform corresponding sampling tasks from another set of states: so-called classical states, whose 1397: 7641: 7610: 6796: 2512: 4219:
Another instance of classically simulable boson sampling setups consists of sampling from the probability distribution of
7568: 5497:
Hamilton, Craig S.; Kruse, Regina; Sansoni, Linda; Barkhofen, Sonja; Silberhorn, Christine; Jex, Igor (23 October 2017).
1104: 7144: 4232: 4211:
The latter is now a non-negative matrix. Therefore, although the exact computation of the corresponding permanent is a
3927: 2070:
th row. Usually, in the context of the boson sampling problem the input state is taken of a standard form, denoted as
7620: 7508: 6761: 4037:
Another photonic implementation of boson sampling concerns Gaussian input states, i.e. states whose quasiprobability
727: 7436: 7094: 4480: 4442:
computational algorithms, aimed, e.g., at the estimation of certain matrix permanents (for instance, permanents of
4239:
is a well-defined probability distribution. These states can be represented as a mixture of coherent states due to
66: 5728:
Rahimi-Keshari, Saleh; Ralph, Timothy; Carlton, Caves (2016). "Efficient classical simulation of quantum optics".
7431: 7159: 7139: 5280:
Lund, Austin; Laing, Anthony; Rahimi-Keshari, Saleh; et al. (2014). "Boson sampling from a Gaussian state".
4423:(for which no efficient classical algorithm is currently known). Specifically, the task now is to input specific 2540: 887: 690: 371:{\displaystyle b_{j}^{\dagger }=\sum _{i=1}^{N}U_{ji}a_{i}^{\dagger }\;\;(b_{j}=\sum _{i=1}^{N}U_{ji}^{*}a_{i}).} 7426: 4188:
will be proportional to the permanent of submatrices of (component-wise) squared absolute value of the unitary
6938: 6442:
Nikolopoulos, Georgios M.; Brougham, Thomas (2016). "Decision and function problems based on boson sampling".
4247:
function, one can perform efficient classical simulation of boson sampling from this set of classical states.
4117: 3775: 3294: 3220: 3100: 3022: 2944: 2863: 2627: 2550: 1515: 594:
of the system: simple counting arguments show that the size of the Hilbert space corresponding to a system of
7459: 7281: 7184: 6845: 6015:
Gogolin, C.; Kliesch, M.; Aolita, L.; Eisert, J. (2013). "Boson-Sampling in the light of sample complexity".
3916:) heralded single-photon sources to different input ports of the linear interferometer. Then, by pumping all 3533: 2726:, i.e. quantum polynomial-time class with postselection (a straightforward corollary of the KLM construction) 1912: 800: 7464: 7332: 6923: 6754: 4957: 4038: 2504: 5569:
Chakhmakhchyan, Levon; Cerf, Nicolas (2018). "Simulating arbitrary Gaussian circuits with linear optics".
4025:
scattershot boson sampling model is also computationally hard, as proven by making use of the symmetry of
608: 7651: 7488: 7244: 7104: 6878: 6833: 6777: 4420: 4240: 6185:
Shen, C.; Zhang, Z.; Duan, L.-M. (2014). "Scalable implementation of boson sampling with trapped ions".
4435:
altering the couplings is thus achieved, when comparing the sampling results to an unaltered reference.
2840:
corresponding approximate task. The latter consists of sampling from a probability distribution that is
7360: 7232: 7129: 7005: 6933: 6840: 5498: 4851:
Carolan, Jacques; Harrold, Christopher; Sparrow, Chris; et al. (2015). "Universal linear optics".
4475: 4393: 4313: 3870: 2112:
modes of the interferometer is injected with a single photon. In this case the above expression reads:
94: 2760: 2624:
If a polynomial-time classical algorithm for exact boson sampling existed, then the above probability
392: 155: 7169: 7134: 7030: 6973: 2073: 1061: 486: 6246:
Peropadre, Borja; Aspuru-Guzik, Alan; Garcia-Ripoll, Juan (2015). "Spin models and boson sampling".
7342: 7315: 7291: 7254: 7045: 6978: 6913: 6898: 6868: 6791: 5636: 4443: 2935: 2828: 50: 6654:
Banchi, Leonardo; Fingerhuth, Mark; Babej, Tomas; Ing, Christopher; Arrazola, Juan Miguel (2020).
2843: 542: 7646: 7493: 7227: 7119: 7089: 6888: 4470: 4091: 3994: 3866: 1949: 42: 4680:
Szameit, Alexander; Dreisow, Felix; Pertsch, Thomas; Nolte, Stefan; TĂĽnnermann, Andreas (2007).
423: 186: 7563: 7327: 7320: 7067: 5631: 5085:
Clifford, Peter; Clifford, Raphaël (2017-06-05). "The Classical Complexity of Boson Sampling".
5032:
Aaronson, Scott (2005). "Quantum computing, postselection, and probabilistic polynomial-time".
4405: 4362:. The scheme allows deterministic preparation and high-efficiency readout of the corresponding 1955: 7483: 7109: 7035: 7000: 4416: 4279:
of an operational boson sampling device, and route towards its larger-scale implementations.
4228: 4108: 2734: 149: 6495:
Nikolopoulos, Georgios M. (2019). "Cryptographic one-way function based on boson sampling".
4446:
related to the corresponding open problem in computer science) by combining tools proper to
4012:
submatrix and only varied the rows, whereas now we vary the columns too, depending on which
853: 7273: 7022: 6873: 6677: 6612: 6514: 6461: 6408: 6375: 6340: 6286: 6204: 6141: 6076: 5981: 5920: 5867: 5806: 5747: 5686: 5588: 5520: 5460: 5394: 5299: 5223: 5125: 5051: 4998: 4923: 4812: 4753: 4693: 4638: 4571: 4224: 2699: 2524: 2441: 2390: 2042: 2011: 1589: 1286:{\displaystyle )\equiv x_{1}^{s_{1}}{\cdot }x_{2}^{s_{2}}{\cdot \cdot \cdot }x_{N}^{s_{N}}} 603: 6600: 5441:
Chakhmakhchyan, Levon; Cerf, Nicolas (2017). "Boson sampling with Gaussian measurements".
1031:{\displaystyle |\psi _{\text{out}}\rangle =\varphi _{M}(U)|s_{1},s_{2},...,s_{N}\rangle .} 8: 7592: 7545: 7375: 7149: 6903: 6883: 6818: 6813: 5265:
Gurvits, Leonid (2005). "On the complexity of mixed discriminants and related problems".
4458:
femtosecond laser-writing technique), and confirmed many of the theoretical predictions.
4370: 4317: 3210: 2528: 70: 46: 23: 6681: 6616: 6518: 6465: 6412: 6344: 6290: 6208: 6145: 6120:"Quantum suppression law in a 3-D photonic chip implementing the fast Fourier transform" 6080: 5985: 5924: 5871: 5810: 5751: 5690: 5592: 5524: 5464: 5398: 5303: 5227: 5129: 5055: 5002: 4927: 4816: 4757: 4697: 4642: 4575: 4415:
The task of boson sampling shares peculiar similarities with the problem of determining
4191: 4065: 3437: 124: 7308: 7154: 6956: 6893: 6700: 6667: 6655: 6636: 6561: 6530: 6504: 6477: 6451: 6424: 6398: 6356: 6330: 6302: 6276: 6247: 6228: 6194: 6162: 6131: 6119: 6100: 6066: 6037: 6016: 5997: 5971: 5944: 5910: 5883: 5857: 5822: 5796: 5763: 5737: 5710: 5676: 5649: 5604: 5578: 5544: 5510: 5476: 5450: 5415: 5384: 5372: 5323: 5289: 5247: 5213: 5186: 5168: 5141: 5115: 5086: 5067: 5041: 5014: 4988: 4939: 4913: 4886: 4860: 4828: 4802: 4769: 4743: 4662: 4628: 4595: 4561: 4243:. Therefore, picking random coherent states distributed according to the corresponding 4087: 4045: 3182: 2472: 2417: 1991: 1493: 1041: 667: 573: 522: 466: 7572: 7217: 7124: 7081: 7012: 6928: 6908: 6863: 6823: 6801: 6705: 6640: 6628: 6581: 6534: 6360: 6220: 6167: 6092: 5936: 5826: 5702: 5608: 5536: 5480: 5420: 5315: 5239: 4943: 4878: 4832: 4773: 4711: 4654: 4587: 2706: 145: 6428: 6232: 6104: 5948: 5887: 5767: 5653: 5327: 5251: 5190: 5145: 5018: 4890: 4666: 4599: 7239: 7189: 6966: 6695: 6685: 6624: 6620: 6571: 6522: 6481: 6469: 6416: 6348: 6294: 6216: 6212: 6157: 6149: 6088: 6084: 6001: 5989: 5932: 5928: 5875: 5814: 5755: 5698: 5694: 5641: 5596: 5548: 5532: 5528: 5468: 5410: 5402: 5311: 5307: 5235: 5231: 5178: 5133: 5071: 5059: 5006: 4931: 4870: 4820: 4761: 4701: 4646: 4579: 4518: 3753: 2824: 6306: 5714: 4320:, can be efficiently verified classically, as is the case for all problems in the 7365: 7303: 6993: 6988: 5346:"Scattershot BosonSampling: a new approach to scalable BosonSampling experiments" 4451: 4427: 4369:
and universal manipulation of the phonon modes through a combination of inherent
4220: 3207: 7474: 7451: 7418: 7222: 6576: 6549: 6473: 6420: 6352: 5993: 5600: 5472: 5137: 4447: 4424: 4409: 3291:
we care about, and thus will not be able to avoid its estimation. In this case
2500: 590:-dimensional unitary matrices, and unitaries acting on the exponentially large 58: 31: 27: 6746: 6741: 6736: 6731: 6526: 5759: 4935: 4523: 4506: 7635: 7296: 7114: 7040: 6585: 6298: 6036:
Aaronson, Scott; Arkhipov, Alex (2013). "BosonSampling is far from uniform".
5879: 5818: 4824: 4765: 3741:{\displaystyle |\,{\text{Perm}}\,X|<{\frac {\sqrt {M!}}{Q(M,1/\delta )}}.} 687:
Suppose the interferometer is injected with an input state of single photons
591: 5645: 5345: 4874: 4650: 4583: 7516: 7441: 6709: 6690: 6632: 6224: 6171: 6096: 5940: 5706: 5540: 5424: 5406: 5319: 5243: 5063: 5010: 4882: 4715: 4682:"Control of directional evanescent coupling in fs laser written waveguides" 4658: 4591: 4485: 4374: 3920:
PDC crystals with simultaneous laser pulses, the probability of generating
3862: 3200: 2516: 2508: 661: 567: 107: 5182: 7526: 7380: 6918: 6118:
Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; et al. (2016).
5046: 4918: 4706: 4681: 4366: 2499:
boson sampling device has to sample from, is related to the permanent of
1098: 103: 6153: 5159:
Arkhipov, Alex; Kuperberg, Greg (2012). "The bosonic birthday paradox".
7587: 7521: 7385: 6737:
Quantum Information Lab – Sapienza: video on scattershot boson sampling
4346: 4259:
Specifically, this included the implementation of boson sampling with:
4026: 38: 3365:
is proportional to the squared absolute value of the permanent of the
61:. Although the problem is well defined for any bosonic particles, its 7370: 6601:"Experimental Boson Sampling Enabling Cryptographic One-Way Function" 6266: 5105: 4965: 3526:
of i.i.d. Gaussians to within multiplicative error is a #P-hard task.
2754: 3654:{\displaystyle X\sim {\mathcal {N}}(0,1)_{\mathcal {C}}^{M\times M}} 3519:{\displaystyle X\sim {\mathcal {N}}(0,1)_{\mathcal {C}}^{M\times M}} 3427:{\displaystyle X\sim {\mathcal {N}}(0,1)_{\mathcal {C}}^{M\times M}} 7555: 7531: 7390: 7355: 6672: 6566: 6509: 6456: 6403: 6335: 6252: 6136: 5976: 5742: 5583: 5515: 5455: 5389: 5120: 5091: 4865: 4359: 4321: 455:
denotes the creation (annihilation) operators of the output modes (
117:
Specifically, suppose the linear interferometer is described by an
106:, adaptive measurements or entangling operations, as does e.g. the 6281: 6245: 6199: 6071: 6042: 6021: 5915: 5862: 5801: 5681: 5294: 5218: 5173: 4993: 4807: 4748: 4633: 4566: 3530:
Moreover, the above conjecture can be linked to the estimation of
30:
and Alex Arkhipov after the original work of Lidror Troyansky and
7582: 7199: 4438:
Variants of the boson sampling model have been used to construct
4325: 4212: 4095: 2730: 2723: 5369: 4904:
Scheel, Stefan (2008). "Permanents in linear optical networks".
4617: 4551: 3990:
sources. This setting can also be seen as a problem of sampling
1383:{\displaystyle P_{{\varphi (U)}|s_{1},s_{2},...,s_{N}\rangle }(} 7559: 7055: 6388: 6376:"Shtetl Optimized: Introducing some British people to P vs. NP" 4363: 4353: 4294: 4282: 3204: 2816: 2507:
is in the general case an extremely hard task: it falls in the
62: 5846: 2722:
Linear optics with postselected measurements is universal for
6828: 5785: 5496: 4101: 54: 35: 2737:(i.e. the probabilistic polynomial-time class): PostBQP = PP 7577: 7050: 6983: 6732:
Quantum Information Lab – Sapienza: video on boson sampling
6319: 6056: 6014: 5900: 5727: 4733: 4679: 98:
single photon-counting detectors, such as those based on
7194: 7179: 4791: 3175:
random unitary matrix. This can be done knowing that any
2715: 6653: 6550:"Computational indistinguishability and boson sampling*" 6726: 5666: 5279: 3015:
of a specific measurement outcome. Thus, if a sampler "
108:
universal optical scheme by Knill, Laflamme and Milburn
3932: 1479:{\displaystyle )=P_{|s_{1},s_{2},...,s_{N}\rangle }(U} 613: 6117: 5436: 5434: 5203: 4850: 4388:
modes is equivalent to the short-time evolution with
4194: 4120: 4068: 4048: 3930: 3881:. Then, the probability of generating simultaneously 3861:
photon generation techniques using atoms, molecules,
3778: 3671: 3602: 3536: 3467: 3440: 3375: 3297: 3223: 3185: 3103: 3025: 2947: 2866: 2846: 2763: 2630: 2553: 2475: 2444: 2420: 2393: 2121: 2076: 2045: 2014: 1994: 1958: 1915: 1626: 1592: 1518: 1496: 1400: 1299: 1194: 1107: 1064: 1044: 928: 890: 856: 803: 730: 693: 670: 611: 576: 545: 525: 489: 469: 426: 395: 227: 189: 158: 127: 16:
Restricted model of non-universal quantum computation
6441: 5621: 4978: 3661:
of the following inequality to hold is smaller than
1038:
A simple way to understand the homomorphism between
7021: 1177:{\displaystyle P_{|s_{1},s_{2},...,s_{N}\rangle }(} 463:). An interferometer characterized by some unitary 5568: 5440: 5431: 4203: 4180: 4077: 4054: 3970: 3838: 3740: 3653: 3568: 3518: 3449: 3426: 3357: 3283: 3191: 3163: 3085: 3007: 2926: 2852: 2804: 2690: 2613: 2481: 2457: 2426: 2406: 2376: 2100: 2058: 2027: 2000: 1980: 1940: 1898: 1605: 1578: 1502: 1478: 1382: 1285: 1176: 1086: 1050: 1030: 911: 872: 843: 789: 717: 676: 652: 582: 558: 531: 511: 475: 447: 413: 370: 210: 176: 136: 5365: 5363: 5361: 5359: 5158: 3971:{\displaystyle {\tbinom {N}{M}}\varepsilon ^{M}.} 922:the output of the circuit can be written down as 7633: 6656:"Molecular docking with Gaussian Boson Sampling" 6035: 5084: 4504: 3203:, is close in variation distance to a matrix of 6776: 5781: 5779: 5777: 4507:"The computational complexity of linear optics" 4250: 81:Consider a multimode linear-optical circuit of 5842: 5840: 5838: 5836: 5356: 4729: 4727: 4725: 790:{\displaystyle |s_{1},s_{2},...,s_{N}\rangle } 144:which performs a linear transformation of the 6762: 6598: 6184: 4846: 4844: 4842: 3948: 3935: 3900:-photon events. This approach has been named 3855: 643: 616: 6547: 6494: 5774: 5267:Mathematical Foundations of Computer Science 4787: 4785: 4783: 4613: 4611: 4609: 4547: 4545: 4543: 4354:Alternative implementations and applications 4295:Proposals with alternative photonic platform 4283:Implementation of scattershot boson sampling 2513:approximation to within multiplicative error 2493: 2277: 2187: 2092: 1758: 1692: 1465: 1372: 1166: 1022: 944: 906: 784: 709: 598:indistinguishable photons distributed among 5961: 5833: 5492: 5490: 5339: 5337: 4722: 912:{\displaystyle |\psi _{\text{out}}\rangle } 880:is the number of photons injected into the 718:{\displaystyle |\psi _{\text{in}}\rangle =} 6769: 6755: 4839: 4102:Classically simulable boson sampling tasks 4032: 3869:, the most widely used method remains the 296: 295: 6699: 6689: 6671: 6575: 6565: 6508: 6455: 6402: 6334: 6280: 6251: 6198: 6161: 6135: 6070: 6041: 6020: 5975: 5914: 5861: 5800: 5741: 5680: 5635: 5582: 5514: 5454: 5414: 5388: 5373:"Experimental scattershot boson sampling" 5293: 5217: 5172: 5119: 5090: 5045: 4992: 4917: 4864: 4806: 4780: 4747: 4705: 4632: 4606: 4565: 4540: 4522: 3683: 3677: 3547: 2718:. It also relies on the following facts: 2705:When combined these two facts along with 2308: 1921: 1789: 5487: 5343: 5334: 5031: 4505:Aaronson, Scott; Arkhipov, Alex (2013). 4181:{\displaystyle p(t_{1},t_{2},...,t_{N})} 3839:{\displaystyle p(t_{1},t_{2},...,t_{N})} 3461:Approximating the permanent of a matrix 3358:{\displaystyle p(t_{1},t_{2},...,t_{N})} 3284:{\displaystyle p(t_{1},t_{2},...,t_{N})} 3164:{\displaystyle p(t_{1},t_{2},...,t_{N})} 3086:{\displaystyle p(t_{1},t_{2},...,t_{N})} 3008:{\displaystyle p(t_{1},t_{2},...,t_{N})} 2927:{\displaystyle p(t_{1},t_{2},...,t_{N})} 2691:{\displaystyle p(t_{1},t_{2},...,t_{N})} 2614:{\displaystyle p(t_{1},t_{2},...,t_{N})} 1579:{\displaystyle p(t_{1},t_{2},...,t_{N})} 100:current-biased superconducting nanowires 7287:Continuous-variable quantum information 6548:Nikolopoulos, Georgios M (2022-11-29). 5264: 3569:{\displaystyle |{\text{Perm}}\,X|^{2},} 2834: 389:) labels the input (output) modes, and 22:is a restricted model of non-universal 7634: 4903: 4090:that projects each output mode onto a 2757:for exact boson sampling runs in time 2543:and combines the following two facts: 1941:{\displaystyle {\text{Perm}}\,U_{S,T}} 1293:, and get the following result : 844:{\displaystyle \sum _{k=1}^{N}s_{k}=M} 483:naturally induces a unitary evolution 6750: 4098:, a generalization of the permanent. 4027:quantum mechanics under time reversal 3889:, which decreases exponentially with 3760:identical bosons are scattered among 3434:of i.i.d. Gaussians, smuggled inside 5163:. Proceedings of the Freedman Fest. 653:{\displaystyle {\tbinom {M+N-1}{M}}} 5344:Aaronson, Scott (8 November 2013). 5078: 3199:, randomly chosen according to the 1988:which is obtained from the unitary 13: 5161:Geometry & Topology Monographs 3939: 3634: 3611: 3499: 3476: 3407: 3384: 620: 539:-photon states. Moreover, the map 89:indistinguishable single photons ( 41:to evaluate expectation values of 34:, that explored possible usage of 14: 7663: 6720: 4322:non-deterministic polynomial-time 2534: 7616: 7615: 7606: 7605: 4481:Linear optical quantum computing 4307: 2805:{\displaystyle O(n2^{n}+mn^{2})} 2511:complexity class. Moreover, its 414:{\displaystyle b_{j}^{\dagger }} 177:{\displaystyle a_{i}^{\dagger }} 67:linear optical quantum computing 6647: 6592: 6541: 6488: 6435: 6382: 6367: 6313: 6260: 6239: 6178: 6111: 6050: 6029: 6008: 5955: 5894: 5721: 5660: 5615: 5562: 5273: 5258: 5197: 5152: 5099: 5025: 4972: 4950: 4241:the optical equivalence theorem 3995:two-mode squeezed vacuum states 3904:, which consists of connecting 2541:computational complexity theory 2101:{\displaystyle |1_{M}\rangle ,} 1512:Consequently, the probability 1087:{\displaystyle \varphi _{M}(U)} 512:{\displaystyle \varphi _{M}(U)} 6742:The Qubit Lab – Boson Sampling 6625:10.1103/PhysRevLett.130.060802 6497:Quantum Information Processing 6217:10.1103/PhysRevLett.112.050504 6089:10.1103/PhysRevLett.113.020502 5933:10.1103/PhysRevLett.113.120501 5699:10.1103/PhysRevLett.114.060501 5533:10.1103/PhysRevLett.119.170501 5312:10.1103/PhysRevLett.113.100502 5236:10.1103/PhysRevLett.111.130503 4897: 4673: 4531: 4498: 4444:positive-semidefinite matrices 4175: 4124: 3833: 3782: 3729: 3709: 3688: 3673: 3629: 3616: 3553: 3538: 3494: 3481: 3402: 3389: 3352: 3301: 3278: 3227: 3158: 3107: 3080: 3029: 3002: 2951: 2921: 2870: 2799: 2767: 2685: 2634: 2608: 2557: 2547:Approximating the probability 2321: 2299: 2282: 2263: 2259: 2253: 2239: 2183: 2176: 2125: 2078: 1808: 1780: 1763: 1744: 1688: 1681: 1630: 1573: 1522: 1497: 1470: 1413: 1401: 1377: 1320: 1315: 1309: 1195: 1171: 1114: 1081: 1075: 970: 966: 960: 930: 892: 857: 732: 695: 506: 500: 442: 427: 362: 297: 218:of the circuit's input modes: 205: 190: 76: 1: 7282:Adiabatic quantum computation 4491: 3756:). The latter states that if 7333:Topological quantum computer 4251:Experimental implementations 4039:Wigner distribution function 2853:{\displaystyle \varepsilon } 2753:The best proposed classical 2505:computation of the permanent 2108:for which each of the first 559:{\displaystyle \varphi _{M}} 85:modes that is injected with 7: 7642:Quantum information science 7611:Quantum information science 6778:Quantum information science 4958:"Polynomial-time hierarchy" 4464: 3850: 3592:>0 the probability over 1617:th output mode is given as 10: 7668: 7006:quantum gate teleportation 6474:10.1103/PhysRevA.94.012315 6421:10.1103/PhysRevA.96.022329 6353:10.1103/PhysRevB.95.020502 5994:10.1103/PhysRevA.93.043803 5601:10.1103/PhysRevA.98.062314 5473:10.1103/PhysRevA.96.032326 4476:Cross-entropy benchmarking 4417:molecular vibronic spectra 4318:Shor's factoring algorithm 4314:universal quantum computer 3902:scattershot boson sampling 3871:parametric down-conversion 3856:Scattershot boson sampling 3580:There exists a polynomial 2860:close to the one given by 2825:open-source implementation 884:th mode). Then, the state 664:exists, not all values of 448:{\displaystyle (b_{j}^{})} 211:{\displaystyle (a_{i}^{})} 95:parametric down-conversion 7601: 7544: 7507: 7473: 7450: 7417: 7408: 7341: 7270: 7208: 7168: 7135:Quantum Fourier transform 7080: 7031:Post-quantum cryptography 6974:Entanglement distillation 6947: 6856: 6784: 6527:10.1007/s11128-019-2372-9 5760:10.1103/PhysRevX.6.021039 5499:"Gaussian Boson Sampling" 4936:10.2478/v10155-010-0092-x 4524:10.4086/toc.2013.v009a004 3924:photons will be given as 3867:color centers in diamonds 3772:Although the probability 3211:random Gaussian variables 2494:Complexity of the problem 7621:Quantum mechanics topics 7316:Quantum machine learning 7292:One-way quantum computer 7145:Quantum phase estimation 7046:Quantum key distribution 6979:Monogamy of entanglement 6577:10.1088/1402-4896/aca1ed 6373:See open problem (4) at 6299:10.1038/NPHOTON.2015.153 5880:10.1038/nphoton.2014.152 5819:10.1038/nphoton.2014.135 5138:10.1088/1367-2630/aa60ed 4825:10.1038/nphoton.2013.112 4766:10.1038/nphoton.2013.102 4452:computational complexity 3097:" the above probability 2936:total variation distance 1981:{\displaystyle U_{S,T},} 1909:In the above expression 1094:is the following : 660:(notice that since this 51:probability distribution 45:. The model consists of 7228:Randomized benchmarking 7090:Amplitude amplification 6605:Physical Review Letters 5646:10.1145/1008731.1008738 5503:Physical Review Letters 4875:10.1126/science.aab3642 4651:10.1126/science.1231692 4584:10.1126/science.1231440 4471:Quantum random circuits 4092:squeezed coherent state 4033:Gaussian boson sampling 3179:submatrix of a unitary 7328:Quantum Turing machine 7321:quantum neural network 7068:Quantum secret sharing 6691:10.1126/sciadv.aax1950 5407:10.1126/sciadv.1400255 5064:10.1098/rspa.2005.1546 5011:10.1098/rspa.2010.0301 4421:Franck–Condon profiles 4406:superconducting qubits 4316:running, for example, 4205: 4182: 4079: 4056: 3972: 3840: 3742: 3655: 3570: 3520: 3451: 3428: 3359: 3285: 3193: 3165: 3087: 3009: 2928: 2854: 2806: 2692: 2615: 2483: 2459: 2438:columns and repeating 2428: 2408: 2378: 2102: 2060: 2029: 2002: 1982: 1942: 1900: 1607: 1580: 1504: 1480: 1384: 1287: 1178: 1101:for the basis states: 1088: 1052: 1032: 913: 874: 873:{\displaystyle (s_{k}} 845: 824: 791: 719: 678: 654: 602:modes is given by the 584: 560: 533: 513: 477: 449: 415: 372: 333: 266: 212: 178: 138: 57:scattered by a linear 43:permanents of matrices 7400:Entanglement-assisted 7361:quantum convolutional 7036:Quantum coin flipping 7001:Quantum teleportation 6962:entanglement-assisted 6792:DiVincenzo's criteria 6124:Nature Communications 5183:10.2140/gtm.2012.18.1 4968:on February 14, 2014. 4408:and specifically the 4229:matrix multiplication 4206: 4183: 4080: 4057: 3973: 3841: 3743: 3656: 3571: 3521: 3452: 3429: 3360: 3286: 3194: 3166: 3088: 3010: 2929: 2855: 2807: 2693: 2616: 2484: 2460: 2458:{\displaystyle t_{j}} 2434:by keeping its first 2429: 2409: 2407:{\displaystyle U_{T}} 2379: 2103: 2061: 2059:{\displaystyle t_{j}} 2030: 2028:{\displaystyle s_{i}} 2003: 1983: 1943: 1901: 1608: 1606:{\displaystyle t_{k}} 1581: 1505: 1481: 1385: 1288: 1179: 1089: 1053: 1033: 914: 875: 846: 804: 792: 720: 679: 655: 585: 561: 534: 514: 478: 450: 416: 373: 313: 246: 213: 179: 139: 7211:processor benchmarks 7140:Quantum optimization 7023:Quantum cryptography 6834:physical vs. logical 4906:Acta Physica Slovaca 4707:10.1364/OE.15.001579 4225:quantum entanglement 4192: 4118: 4066: 4046: 4042:Haar-random unitary 3928: 3776: 3669: 3600: 3534: 3465: 3438: 3373: 3295: 3221: 3183: 3101: 3023: 2945: 2864: 2844: 2835:Approximate sampling 2761: 2700:polynomial hierarchy 2628: 2551: 2525:polynomial hierarchy 2473: 2442: 2418: 2391: 2119: 2074: 2043: 2012: 1992: 1956: 1913: 1624: 1590: 1516: 1494: 1398: 1297: 1192: 1105: 1062: 1042: 926: 888: 854: 801: 728: 691: 668: 609: 604:binomial coefficient 574: 543: 523: 487: 467: 424: 393: 225: 187: 156: 125: 6924:Quantum speed limit 6819:Quantum programming 6814:Quantum information 6682:2020SciA....6.1950B 6617:2023PhRvL.130f0802W 6519:2019QuIP...18..259N 6466:2016PhRvA..94a2315N 6413:2017PhRvA..96b2329C 6345:2017PhRvB..95b0502G 6291:2015NaPho...9..615H 6209:2014PhRvL.112e0504S 6154:10.1038/ncomms10469 6146:2015arXiv150800782C 6081:2014PhRvL.113b0502T 5986:2016PhRvA..93d3803P 5925:2014PhRvL.113l0501M 5872:2014NaPho...8..621C 5811:2014NaPho...8..615S 5752:2016PhRvX...6b1039R 5691:2015PhRvL.114f0501R 5593:2018PhRvA..98f2314C 5525:2017PhRvL.119q0501H 5465:2017PhRvA..96c2326C 5399:2015SciA....1E0255B 5304:2014PhRvL.113j0502L 5228:2013PhRvL.111m0503S 5130:2017NJPh...19c3007R 5056:2005RSPSA.461.3473A 5040:(2063): 3473–3482. 5003:2011RSPSA.467..459B 4928:2004quant.ph..6127S 4817:2013NaPho...7..545C 4758:2013NaPho...7..540T 4698:2007OExpr..15.1579S 4643:2013Sci...339..798S 4576:2013Sci...339..794B 4511:Theory of Computing 4392:excitations in the 4371:Coulomb interaction 3650: 3515: 3423: 1282: 1249: 1222: 441: 410: 351: 294: 242: 204: 173: 71:quantum computation 24:quantum computation 7652:Quantum algorithms 7573:Forest/Rigetti QCS 7309:quantum logic gate 7095:Bernstein–Vazirani 7082:Quantum algorithms 6957:Classical capacity 6841:Quantum processors 6824:Quantum simulation 5624:Journal of the ACM 4233:Glauber-Sudarshan 4204:{\displaystyle U.} 4201: 4178: 4088:homodyne detection 4078:{\displaystyle U.} 4075: 4052: 3968: 3953: 3885:single photons is 3836: 3738: 3651: 3628: 3584:such that for any 3566: 3516: 3493: 3450:{\displaystyle U.} 3447: 3424: 3401: 3355: 3281: 3189: 3161: 3083: 3005: 2934:, in terms of the 2924: 2850: 2812:for a system with 2802: 2688: 2611: 2479: 2455: 2424: 2404: 2374: 2098: 2056: 2025: 1998: 1978: 1938: 1896: 1603: 1576: 1500: 1476: 1380: 1283: 1261: 1228: 1201: 1174: 1084: 1048: 1028: 909: 870: 841: 787: 715: 674: 650: 648: 580: 556: 529: 509: 473: 445: 430: 411: 396: 368: 334: 280: 228: 208: 193: 174: 159: 137:{\displaystyle U,} 134: 73:in the near term. 7629: 7628: 7540: 7539: 7437:Linear optical QC 7218:Quantum supremacy 7172:complexity theory 7125:Quantum annealing 7076: 7075: 7013:Superdense coding 6802:Quantum computing 6444:Physical Review A 5964:Physical Review A 5730:Physical Review X 4987:(2126): 459–472. 4859:(6249): 711–716. 4627:(6121): 798–801. 4560:(6121): 794–798. 4055:{\displaystyle U} 3946: 3733: 3704: 3681: 3545: 3192:{\displaystyle U} 2733:is equivalent to 2519:problem as well. 2482:{\displaystyle U} 2427:{\displaystyle U} 2414:is obtained from 2387:where the matrix 2369: 2306: 2001:{\displaystyle U} 1919: 1891: 1787: 1755: 1503:{\displaystyle )} 1051:{\displaystyle U} 941: 903: 706: 677:{\displaystyle W} 641: 583:{\displaystyle N} 532:{\displaystyle M} 476:{\displaystyle U} 7659: 7619: 7618: 7609: 7608: 7415: 7414: 7345:error correction 7274:computing models 7240:Relaxation times 7130:Quantum counting 7019: 7018: 6967:quantum capacity 6914:No-teleportation 6899:No-communication 6771: 6764: 6757: 6748: 6747: 6714: 6713: 6703: 6693: 6675: 6666:(23): eaax1950. 6660:Science Advances 6651: 6645: 6644: 6596: 6590: 6589: 6579: 6569: 6545: 6539: 6538: 6512: 6492: 6486: 6485: 6459: 6439: 6433: 6432: 6406: 6386: 6380: 6379: 6371: 6365: 6364: 6338: 6317: 6311: 6310: 6284: 6269:Nature Photonics 6264: 6258: 6257: 6255: 6243: 6237: 6236: 6202: 6182: 6176: 6175: 6165: 6139: 6115: 6109: 6108: 6074: 6054: 6048: 6047: 6045: 6033: 6027: 6026: 6024: 6012: 6006: 6005: 5979: 5959: 5953: 5952: 5918: 5898: 5892: 5891: 5865: 5850:Nature Photonics 5844: 5831: 5830: 5804: 5789:Nature Photonics 5783: 5772: 5771: 5745: 5725: 5719: 5718: 5684: 5664: 5658: 5657: 5639: 5619: 5613: 5612: 5586: 5566: 5560: 5559: 5557: 5555: 5518: 5494: 5485: 5484: 5458: 5438: 5429: 5428: 5418: 5392: 5377:Science Advances 5367: 5354: 5353: 5350:Shtetl-Optimized 5341: 5332: 5331: 5297: 5277: 5271: 5270: 5262: 5256: 5255: 5221: 5201: 5195: 5194: 5176: 5156: 5150: 5149: 5123: 5103: 5097: 5096: 5094: 5082: 5076: 5075: 5049: 5047:quant-ph/0412187 5029: 5023: 5022: 4996: 4976: 4970: 4969: 4964:. Archived from 4954: 4948: 4947: 4921: 4919:quant-ph/0406127 4901: 4895: 4894: 4868: 4848: 4837: 4836: 4810: 4795:Nature Photonics 4789: 4778: 4777: 4751: 4736:Nature Photonics 4731: 4720: 4719: 4709: 4692:(4): 1579–1587. 4677: 4671: 4670: 4636: 4615: 4604: 4603: 4569: 4549: 4538: 4535: 4529: 4528: 4526: 4502: 4312:The output of a 4210: 4208: 4207: 4202: 4187: 4185: 4184: 4179: 4174: 4173: 4149: 4148: 4136: 4135: 4084: 4082: 4081: 4076: 4061: 4059: 4058: 4053: 3978:Therefore, for 3977: 3975: 3974: 3969: 3964: 3963: 3954: 3952: 3951: 3938: 3845: 3843: 3842: 3837: 3832: 3831: 3807: 3806: 3794: 3793: 3754:birthday paradox 3747: 3745: 3744: 3739: 3734: 3732: 3725: 3697: 3696: 3691: 3682: 3679: 3676: 3660: 3658: 3657: 3652: 3649: 3638: 3637: 3615: 3614: 3575: 3573: 3572: 3567: 3562: 3561: 3556: 3546: 3543: 3541: 3525: 3523: 3522: 3517: 3514: 3503: 3502: 3480: 3479: 3456: 3454: 3453: 3448: 3433: 3431: 3430: 3425: 3422: 3411: 3410: 3388: 3387: 3364: 3362: 3361: 3356: 3351: 3350: 3326: 3325: 3313: 3312: 3290: 3288: 3287: 3282: 3277: 3276: 3252: 3251: 3239: 3238: 3213:, provided that 3198: 3196: 3195: 3190: 3170: 3168: 3167: 3162: 3157: 3156: 3132: 3131: 3119: 3118: 3092: 3090: 3089: 3084: 3079: 3078: 3054: 3053: 3041: 3040: 3014: 3012: 3011: 3006: 3001: 3000: 2976: 2975: 2963: 2962: 2933: 2931: 2930: 2925: 2920: 2919: 2895: 2894: 2882: 2881: 2859: 2857: 2856: 2851: 2811: 2809: 2808: 2803: 2798: 2797: 2782: 2781: 2697: 2695: 2694: 2689: 2684: 2683: 2659: 2658: 2646: 2645: 2620: 2618: 2617: 2612: 2607: 2606: 2582: 2581: 2569: 2568: 2488: 2486: 2485: 2480: 2464: 2462: 2461: 2456: 2454: 2453: 2433: 2431: 2430: 2425: 2413: 2411: 2410: 2405: 2403: 2402: 2383: 2381: 2380: 2375: 2370: 2368: 2364: 2363: 2342: 2341: 2331: 2330: 2329: 2324: 2318: 2317: 2307: 2304: 2302: 2296: 2291: 2290: 2285: 2276: 2275: 2266: 2252: 2251: 2242: 2237: 2236: 2212: 2211: 2199: 2198: 2186: 2175: 2174: 2150: 2149: 2137: 2136: 2107: 2105: 2104: 2099: 2091: 2090: 2081: 2065: 2063: 2062: 2057: 2055: 2054: 2034: 2032: 2031: 2026: 2024: 2023: 2007: 2005: 2004: 1999: 1987: 1985: 1984: 1979: 1974: 1973: 1947: 1945: 1944: 1939: 1937: 1936: 1920: 1917: 1905: 1903: 1902: 1897: 1892: 1890: 1886: 1885: 1864: 1863: 1851: 1850: 1829: 1828: 1818: 1817: 1816: 1811: 1805: 1804: 1788: 1785: 1783: 1777: 1772: 1771: 1766: 1757: 1756: 1753: 1747: 1742: 1741: 1717: 1716: 1704: 1703: 1691: 1680: 1679: 1655: 1654: 1642: 1641: 1612: 1610: 1609: 1604: 1602: 1601: 1585: 1583: 1582: 1577: 1572: 1571: 1547: 1546: 1534: 1533: 1509: 1507: 1506: 1501: 1490: 1485: 1483: 1482: 1477: 1469: 1468: 1464: 1463: 1439: 1438: 1426: 1425: 1416: 1394: 1389: 1387: 1386: 1381: 1376: 1375: 1371: 1370: 1346: 1345: 1333: 1332: 1323: 1318: 1292: 1290: 1289: 1284: 1281: 1280: 1279: 1269: 1260: 1248: 1247: 1246: 1236: 1227: 1221: 1220: 1219: 1209: 1188: 1183: 1181: 1180: 1175: 1170: 1169: 1165: 1164: 1140: 1139: 1127: 1126: 1117: 1093: 1091: 1090: 1085: 1074: 1073: 1057: 1055: 1054: 1049: 1037: 1035: 1034: 1029: 1021: 1020: 996: 995: 983: 982: 973: 959: 958: 943: 942: 939: 933: 918: 916: 915: 910: 905: 904: 901: 895: 879: 877: 876: 871: 869: 868: 850: 848: 847: 842: 834: 833: 823: 818: 796: 794: 793: 788: 783: 782: 758: 757: 745: 744: 735: 724: 722: 721: 716: 708: 707: 704: 698: 683: 681: 680: 675: 659: 657: 656: 651: 649: 647: 646: 637: 619: 589: 587: 586: 581: 565: 563: 562: 557: 555: 554: 538: 536: 535: 530: 518: 516: 515: 510: 499: 498: 482: 480: 479: 474: 454: 452: 451: 446: 440: 438: 420: 418: 417: 412: 409: 404: 377: 375: 374: 369: 361: 360: 350: 345: 332: 327: 309: 308: 293: 288: 279: 278: 265: 260: 241: 236: 217: 215: 214: 209: 203: 201: 183: 181: 180: 175: 172: 167: 143: 141: 140: 135: 7667: 7666: 7662: 7661: 7660: 7658: 7657: 7656: 7632: 7631: 7630: 7625: 7597: 7547: 7536: 7509:Superconducting 7503: 7469: 7460:Neutral atom QC 7452:Ultracold atoms 7446: 7411:implementations 7410: 7404: 7344: 7337: 7304:Quantum circuit 7272: 7266: 7260: 7250: 7210: 7204: 7171: 7164: 7120:Hidden subgroup 7072: 7061:other protocols 7017: 6994:quantum network 6989:Quantum channel 6949: 6943: 6889:No-broadcasting 6879:Gottesman–Knill 6852: 6780: 6775: 6723: 6718: 6717: 6652: 6648: 6597: 6593: 6554:Physica Scripta 6546: 6542: 6493: 6489: 6440: 6436: 6387: 6383: 6378:. 22 July 2015. 6374: 6372: 6368: 6318: 6314: 6265: 6261: 6244: 6240: 6187:Phys. Rev. Lett 6183: 6179: 6116: 6112: 6059:Phys. Rev. Lett 6055: 6051: 6034: 6030: 6013: 6009: 5960: 5956: 5903:Phys. Rev. Lett 5899: 5895: 5845: 5834: 5784: 5775: 5726: 5722: 5669:Phys. Rev. Lett 5665: 5661: 5620: 5616: 5567: 5563: 5553: 5551: 5495: 5488: 5439: 5432: 5383:(3): e1400255. 5368: 5357: 5342: 5335: 5282:Phys. Rev. Lett 5278: 5274: 5263: 5259: 5206:Phys. Rev. Lett 5202: 5198: 5157: 5153: 5104: 5100: 5083: 5079: 5034:Proc. R. Soc. A 5030: 5026: 4981:Proc. R. Soc. A 4977: 4973: 4956: 4955: 4951: 4902: 4898: 4849: 4840: 4790: 4781: 4732: 4723: 4678: 4674: 4616: 4607: 4550: 4541: 4536: 4532: 4503: 4499: 4494: 4467: 4373:and individual 4356: 4310: 4297: 4285: 4253: 4221:coherent states 4193: 4190: 4189: 4169: 4165: 4144: 4140: 4131: 4127: 4119: 4116: 4115: 4104: 4067: 4064: 4063: 4047: 4044: 4043: 4035: 3997:generated from 3959: 3955: 3947: 3934: 3933: 3931: 3929: 3926: 3925: 3858: 3853: 3827: 3823: 3802: 3798: 3789: 3785: 3777: 3774: 3773: 3721: 3705: 3695: 3687: 3678: 3672: 3670: 3667: 3666: 3639: 3633: 3632: 3610: 3609: 3601: 3598: 3597: 3557: 3552: 3551: 3542: 3537: 3535: 3532: 3531: 3504: 3498: 3497: 3475: 3474: 3466: 3463: 3462: 3439: 3436: 3435: 3412: 3406: 3405: 3383: 3382: 3374: 3371: 3370: 3346: 3342: 3321: 3317: 3308: 3304: 3296: 3293: 3292: 3272: 3268: 3247: 3243: 3234: 3230: 3222: 3219: 3218: 3184: 3181: 3180: 3152: 3148: 3127: 3123: 3114: 3110: 3102: 3099: 3098: 3074: 3070: 3049: 3045: 3036: 3032: 3024: 3021: 3020: 2996: 2992: 2971: 2967: 2958: 2954: 2946: 2943: 2942: 2915: 2911: 2890: 2886: 2877: 2873: 2865: 2862: 2861: 2845: 2842: 2841: 2837: 2793: 2789: 2777: 2773: 2762: 2759: 2758: 2744: 2679: 2675: 2654: 2650: 2641: 2637: 2629: 2626: 2625: 2602: 2598: 2577: 2573: 2564: 2560: 2552: 2549: 2548: 2537: 2496: 2474: 2471: 2470: 2449: 2445: 2443: 2440: 2439: 2419: 2416: 2415: 2398: 2394: 2392: 2389: 2388: 2359: 2355: 2337: 2333: 2332: 2325: 2320: 2319: 2313: 2309: 2303: 2298: 2297: 2295: 2286: 2281: 2280: 2271: 2267: 2262: 2247: 2243: 2238: 2232: 2228: 2207: 2203: 2194: 2190: 2182: 2170: 2166: 2145: 2141: 2132: 2128: 2120: 2117: 2116: 2086: 2082: 2077: 2075: 2072: 2071: 2050: 2046: 2044: 2041: 2040: 2019: 2015: 2013: 2010: 2009: 1993: 1990: 1989: 1963: 1959: 1957: 1954: 1953: 1948:stands for the 1926: 1922: 1916: 1914: 1911: 1910: 1881: 1877: 1859: 1855: 1846: 1842: 1824: 1820: 1819: 1812: 1807: 1806: 1794: 1790: 1784: 1779: 1778: 1776: 1767: 1762: 1761: 1752: 1748: 1743: 1737: 1733: 1712: 1708: 1699: 1695: 1687: 1675: 1671: 1650: 1646: 1637: 1633: 1625: 1622: 1621: 1613:photons at the 1597: 1593: 1591: 1588: 1587: 1567: 1563: 1542: 1538: 1529: 1525: 1517: 1514: 1513: 1495: 1492: 1491: 1486: 1459: 1455: 1434: 1430: 1421: 1417: 1412: 1411: 1407: 1399: 1396: 1395: 1390: 1366: 1362: 1341: 1337: 1328: 1324: 1319: 1305: 1304: 1300: 1298: 1295: 1294: 1275: 1271: 1270: 1265: 1250: 1242: 1238: 1237: 1232: 1223: 1215: 1211: 1210: 1205: 1193: 1190: 1189: 1184: 1160: 1156: 1135: 1131: 1122: 1118: 1113: 1112: 1108: 1106: 1103: 1102: 1069: 1065: 1063: 1060: 1059: 1043: 1040: 1039: 1016: 1012: 991: 987: 978: 974: 969: 954: 950: 938: 934: 929: 927: 924: 923: 900: 896: 891: 889: 886: 885: 864: 860: 855: 852: 851: 829: 825: 819: 808: 802: 799: 798: 778: 774: 753: 749: 740: 736: 731: 729: 726: 725: 703: 699: 694: 692: 689: 688: 684:are possible). 669: 666: 665: 642: 621: 615: 614: 612: 610: 607: 606: 575: 572: 571: 550: 546: 544: 541: 540: 524: 521: 520: 494: 490: 488: 485: 484: 468: 465: 464: 439: 434: 425: 422: 421: 405: 400: 394: 391: 390: 356: 352: 346: 338: 328: 317: 304: 300: 289: 284: 271: 267: 261: 250: 237: 232: 226: 223: 222: 202: 197: 188: 185: 184: 168: 163: 157: 154: 153: 126: 123: 122: 121:unitary matrix 79: 17: 12: 11: 5: 7665: 7655: 7654: 7649: 7647:Quantum optics 7644: 7627: 7626: 7624: 7623: 7613: 7602: 7599: 7598: 7596: 7595: 7593:many others... 7590: 7585: 7580: 7575: 7566: 7552: 7550: 7542: 7541: 7538: 7537: 7535: 7534: 7529: 7524: 7519: 7513: 7511: 7505: 7504: 7502: 7501: 7496: 7491: 7486: 7480: 7478: 7471: 7470: 7468: 7467: 7465:Trapped-ion QC 7462: 7456: 7454: 7448: 7447: 7445: 7444: 7439: 7434: 7429: 7423: 7421: 7419:Quantum optics 7412: 7406: 7405: 7403: 7402: 7397: 7396: 7395: 7388: 7383: 7378: 7373: 7368: 7363: 7358: 7349: 7347: 7339: 7338: 7336: 7335: 7330: 7325: 7324: 7323: 7313: 7312: 7311: 7301: 7300: 7299: 7289: 7284: 7278: 7276: 7268: 7267: 7265: 7264: 7263: 7262: 7258: 7252: 7248: 7237: 7236: 7235: 7225: 7223:Quantum volume 7220: 7214: 7212: 7206: 7205: 7203: 7202: 7197: 7192: 7187: 7182: 7176: 7174: 7166: 7165: 7163: 7162: 7157: 7152: 7147: 7142: 7137: 7132: 7127: 7122: 7117: 7112: 7107: 7102: 7100:Boson sampling 7097: 7092: 7086: 7084: 7078: 7077: 7074: 7073: 7071: 7070: 7065: 7064: 7063: 7058: 7053: 7043: 7038: 7033: 7027: 7025: 7016: 7015: 7010: 7009: 7008: 6998: 6997: 6996: 6986: 6981: 6976: 6971: 6970: 6969: 6964: 6953: 6951: 6945: 6944: 6942: 6941: 6936: 6934:Solovay–Kitaev 6931: 6926: 6921: 6916: 6911: 6906: 6901: 6896: 6891: 6886: 6881: 6876: 6871: 6866: 6860: 6858: 6854: 6853: 6851: 6850: 6849: 6848: 6838: 6837: 6836: 6826: 6821: 6816: 6811: 6810: 6809: 6799: 6794: 6788: 6786: 6782: 6781: 6774: 6773: 6766: 6759: 6751: 6745: 6744: 6739: 6734: 6729: 6727:QUCHIP project 6722: 6721:External links 6719: 6716: 6715: 6646: 6591: 6540: 6487: 6434: 6381: 6366: 6312: 6275:(9): 615–620. 6259: 6238: 6177: 6110: 6049: 6028: 6007: 5954: 5909:(12): 120501. 5893: 5856:(8): 621–626. 5832: 5795:(8): 615–620. 5773: 5720: 5659: 5637:10.1.1.18.9466 5630:(4): 671–697. 5614: 5561: 5509:(17): 170501. 5486: 5430: 5355: 5333: 5288:(10): 100502. 5272: 5257: 5212:(13): 130503. 5196: 5151: 5098: 5077: 5024: 4971: 4962:Complexity Zoo 4949: 4896: 4838: 4801:(7): 545–549. 4779: 4742:(7): 540–544. 4721: 4686:Optics Express 4672: 4605: 4539: 4530: 4496: 4495: 4493: 4490: 4489: 4488: 4483: 4478: 4473: 4466: 4463: 4448:quantum optics 4410:D-Wave machine 4355: 4352: 4347:Fourier matrix 4309: 4306: 4296: 4293: 4284: 4281: 4276: 4275: 4271: 4268: 4265: 4252: 4249: 4200: 4197: 4177: 4172: 4168: 4164: 4161: 4158: 4155: 4152: 4147: 4143: 4139: 4134: 4130: 4126: 4123: 4103: 4100: 4074: 4071: 4051: 4034: 4031: 3967: 3962: 3958: 3950: 3945: 3942: 3937: 3857: 3854: 3852: 3849: 3835: 3830: 3826: 3822: 3819: 3816: 3813: 3810: 3805: 3801: 3797: 3792: 3788: 3784: 3781: 3749: 3748: 3737: 3731: 3728: 3724: 3720: 3717: 3714: 3711: 3708: 3703: 3700: 3694: 3690: 3686: 3675: 3648: 3645: 3642: 3636: 3631: 3627: 3624: 3621: 3618: 3613: 3608: 3605: 3565: 3560: 3555: 3550: 3540: 3528: 3527: 3513: 3510: 3507: 3501: 3496: 3492: 3489: 3486: 3483: 3478: 3473: 3470: 3446: 3443: 3421: 3418: 3415: 3409: 3404: 3400: 3397: 3394: 3391: 3386: 3381: 3378: 3354: 3349: 3345: 3341: 3338: 3335: 3332: 3329: 3324: 3320: 3316: 3311: 3307: 3303: 3300: 3280: 3275: 3271: 3267: 3264: 3261: 3258: 3255: 3250: 3246: 3242: 3237: 3233: 3229: 3226: 3188: 3160: 3155: 3151: 3147: 3144: 3141: 3138: 3135: 3130: 3126: 3122: 3117: 3113: 3109: 3106: 3082: 3077: 3073: 3069: 3066: 3063: 3060: 3057: 3052: 3048: 3044: 3039: 3035: 3031: 3028: 3004: 2999: 2995: 2991: 2988: 2985: 2982: 2979: 2974: 2970: 2966: 2961: 2957: 2953: 2950: 2923: 2918: 2914: 2910: 2907: 2904: 2901: 2898: 2893: 2889: 2885: 2880: 2876: 2872: 2869: 2849: 2836: 2833: 2801: 2796: 2792: 2788: 2785: 2780: 2776: 2772: 2769: 2766: 2747: 2746: 2742: 2738: 2727: 2707:Toda's theorem 2703: 2702: 2687: 2682: 2678: 2674: 2671: 2668: 2665: 2662: 2657: 2653: 2649: 2644: 2640: 2636: 2633: 2622: 2610: 2605: 2601: 2597: 2594: 2591: 2588: 2585: 2580: 2576: 2572: 2567: 2563: 2559: 2556: 2536: 2535:Exact sampling 2533: 2503:matrices. The 2495: 2492: 2478: 2452: 2448: 2423: 2401: 2397: 2385: 2384: 2373: 2367: 2362: 2358: 2354: 2351: 2348: 2345: 2340: 2336: 2328: 2323: 2316: 2312: 2301: 2294: 2289: 2284: 2279: 2274: 2270: 2265: 2261: 2258: 2255: 2250: 2246: 2241: 2235: 2231: 2227: 2224: 2221: 2218: 2215: 2210: 2206: 2202: 2197: 2193: 2189: 2185: 2181: 2178: 2173: 2169: 2165: 2162: 2159: 2156: 2153: 2148: 2144: 2140: 2135: 2131: 2127: 2124: 2097: 2094: 2089: 2085: 2080: 2053: 2049: 2039:th column and 2022: 2018: 1997: 1977: 1972: 1969: 1966: 1962: 1952:of the matrix 1935: 1932: 1929: 1925: 1907: 1906: 1895: 1889: 1884: 1880: 1876: 1873: 1870: 1867: 1862: 1858: 1854: 1849: 1845: 1841: 1838: 1835: 1832: 1827: 1823: 1815: 1810: 1803: 1800: 1797: 1793: 1782: 1775: 1770: 1765: 1760: 1751: 1746: 1740: 1736: 1732: 1729: 1726: 1723: 1720: 1715: 1711: 1707: 1702: 1698: 1694: 1690: 1686: 1683: 1678: 1674: 1670: 1667: 1664: 1661: 1658: 1653: 1649: 1645: 1640: 1636: 1632: 1629: 1600: 1596: 1575: 1570: 1566: 1562: 1559: 1556: 1553: 1550: 1545: 1541: 1537: 1532: 1528: 1524: 1521: 1499: 1475: 1472: 1467: 1462: 1458: 1454: 1451: 1448: 1445: 1442: 1437: 1433: 1429: 1424: 1420: 1415: 1410: 1406: 1403: 1379: 1374: 1369: 1365: 1361: 1358: 1355: 1352: 1349: 1344: 1340: 1336: 1331: 1327: 1322: 1317: 1314: 1311: 1308: 1303: 1278: 1274: 1268: 1264: 1259: 1256: 1253: 1245: 1241: 1235: 1231: 1226: 1218: 1214: 1208: 1204: 1200: 1197: 1173: 1168: 1163: 1159: 1155: 1152: 1149: 1146: 1143: 1138: 1134: 1130: 1125: 1121: 1116: 1111: 1097:We define the 1083: 1080: 1077: 1072: 1068: 1047: 1027: 1024: 1019: 1015: 1011: 1008: 1005: 1002: 999: 994: 990: 986: 981: 977: 972: 968: 965: 962: 957: 953: 949: 946: 937: 932: 908: 899: 894: 867: 863: 859: 840: 837: 832: 828: 822: 817: 814: 811: 807: 786: 781: 777: 773: 770: 767: 764: 761: 756: 752: 748: 743: 739: 734: 714: 711: 702: 697: 673: 645: 640: 636: 633: 630: 627: 624: 618: 579: 553: 549: 528: 508: 505: 502: 497: 493: 472: 444: 437: 433: 429: 408: 403: 399: 379: 378: 367: 364: 359: 355: 349: 344: 341: 337: 331: 326: 323: 320: 316: 312: 307: 303: 299: 292: 287: 283: 277: 274: 270: 264: 259: 256: 253: 249: 245: 240: 235: 231: 207: 200: 196: 192: 171: 166: 162: 133: 130: 78: 75: 59:interferometer 32:Naftali Tishby 28:Scott Aaronson 26:introduced by 20:Boson sampling 15: 9: 6: 4: 3: 2: 7664: 7653: 7650: 7648: 7645: 7643: 7640: 7639: 7637: 7622: 7614: 7612: 7604: 7603: 7600: 7594: 7591: 7589: 7586: 7584: 7581: 7579: 7576: 7574: 7570: 7567: 7565: 7561: 7557: 7554: 7553: 7551: 7549: 7543: 7533: 7530: 7528: 7525: 7523: 7520: 7518: 7515: 7514: 7512: 7510: 7506: 7500: 7497: 7495: 7492: 7490: 7489:Spin qubit QC 7487: 7485: 7482: 7481: 7479: 7476: 7472: 7466: 7463: 7461: 7458: 7457: 7455: 7453: 7449: 7443: 7440: 7438: 7435: 7433: 7430: 7428: 7425: 7424: 7422: 7420: 7416: 7413: 7407: 7401: 7398: 7394: 7393: 7389: 7387: 7384: 7382: 7379: 7377: 7374: 7372: 7369: 7367: 7364: 7362: 7359: 7357: 7354: 7353: 7351: 7350: 7348: 7346: 7340: 7334: 7331: 7329: 7326: 7322: 7319: 7318: 7317: 7314: 7310: 7307: 7306: 7305: 7302: 7298: 7297:cluster state 7295: 7294: 7293: 7290: 7288: 7285: 7283: 7280: 7279: 7277: 7275: 7269: 7261: 7257: 7253: 7251: 7247: 7243: 7242: 7241: 7238: 7234: 7231: 7230: 7229: 7226: 7224: 7221: 7219: 7216: 7215: 7213: 7207: 7201: 7198: 7196: 7193: 7191: 7188: 7186: 7183: 7181: 7178: 7177: 7175: 7173: 7167: 7161: 7158: 7156: 7153: 7151: 7148: 7146: 7143: 7141: 7138: 7136: 7133: 7131: 7128: 7126: 7123: 7121: 7118: 7116: 7113: 7111: 7108: 7106: 7105:Deutsch–Jozsa 7103: 7101: 7098: 7096: 7093: 7091: 7088: 7087: 7085: 7083: 7079: 7069: 7066: 7062: 7059: 7057: 7054: 7052: 7049: 7048: 7047: 7044: 7042: 7041:Quantum money 7039: 7037: 7034: 7032: 7029: 7028: 7026: 7024: 7020: 7014: 7011: 7007: 7004: 7003: 7002: 6999: 6995: 6992: 6991: 6990: 6987: 6985: 6982: 6980: 6977: 6975: 6972: 6968: 6965: 6963: 6960: 6959: 6958: 6955: 6954: 6952: 6950:communication 6946: 6940: 6937: 6935: 6932: 6930: 6927: 6925: 6922: 6920: 6917: 6915: 6912: 6910: 6907: 6905: 6902: 6900: 6897: 6895: 6892: 6890: 6887: 6885: 6882: 6880: 6877: 6875: 6872: 6870: 6867: 6865: 6862: 6861: 6859: 6855: 6847: 6844: 6843: 6842: 6839: 6835: 6832: 6831: 6830: 6827: 6825: 6822: 6820: 6817: 6815: 6812: 6808: 6805: 6804: 6803: 6800: 6798: 6795: 6793: 6790: 6789: 6787: 6783: 6779: 6772: 6767: 6765: 6760: 6758: 6753: 6752: 6749: 6743: 6740: 6738: 6735: 6733: 6730: 6728: 6725: 6724: 6711: 6707: 6702: 6697: 6692: 6687: 6683: 6679: 6674: 6669: 6665: 6661: 6657: 6650: 6642: 6638: 6634: 6630: 6626: 6622: 6618: 6614: 6611:(6): 060802. 6610: 6606: 6602: 6595: 6587: 6583: 6578: 6573: 6568: 6563: 6560:(1): 014001. 6559: 6555: 6551: 6544: 6536: 6532: 6528: 6524: 6520: 6516: 6511: 6506: 6502: 6498: 6491: 6483: 6479: 6475: 6471: 6467: 6463: 6458: 6453: 6450:(1): 012315. 6449: 6445: 6438: 6430: 6426: 6422: 6418: 6414: 6410: 6405: 6400: 6397:(2): 022329. 6396: 6392: 6385: 6377: 6370: 6362: 6358: 6354: 6350: 6346: 6342: 6337: 6332: 6329:(2): 020502. 6328: 6324: 6316: 6308: 6304: 6300: 6296: 6292: 6288: 6283: 6278: 6274: 6270: 6263: 6254: 6249: 6242: 6234: 6230: 6226: 6222: 6218: 6214: 6210: 6206: 6201: 6196: 6193:(5): 050504. 6192: 6188: 6181: 6173: 6169: 6164: 6159: 6155: 6151: 6147: 6143: 6138: 6133: 6129: 6125: 6121: 6114: 6106: 6102: 6098: 6094: 6090: 6086: 6082: 6078: 6073: 6068: 6065:(2): 020502. 6064: 6060: 6053: 6044: 6039: 6032: 6023: 6018: 6011: 6003: 5999: 5995: 5991: 5987: 5983: 5978: 5973: 5970:(4): 043803. 5969: 5965: 5958: 5950: 5946: 5942: 5938: 5934: 5930: 5926: 5922: 5917: 5912: 5908: 5904: 5897: 5889: 5885: 5881: 5877: 5873: 5869: 5864: 5859: 5855: 5851: 5843: 5841: 5839: 5837: 5828: 5824: 5820: 5816: 5812: 5808: 5803: 5798: 5794: 5790: 5782: 5780: 5778: 5769: 5765: 5761: 5757: 5753: 5749: 5744: 5739: 5736:(2): 021039. 5735: 5731: 5724: 5716: 5712: 5708: 5704: 5700: 5696: 5692: 5688: 5683: 5678: 5675:(6): 060501. 5674: 5670: 5663: 5655: 5651: 5647: 5643: 5638: 5633: 5629: 5625: 5618: 5610: 5606: 5602: 5598: 5594: 5590: 5585: 5580: 5577:(6): 062314. 5576: 5572: 5565: 5550: 5546: 5542: 5538: 5534: 5530: 5526: 5522: 5517: 5512: 5508: 5504: 5500: 5493: 5491: 5482: 5478: 5474: 5470: 5466: 5462: 5457: 5452: 5449:(3): 032326. 5448: 5444: 5437: 5435: 5426: 5422: 5417: 5412: 5408: 5404: 5400: 5396: 5391: 5386: 5382: 5378: 5374: 5366: 5364: 5362: 5360: 5351: 5347: 5340: 5338: 5329: 5325: 5321: 5317: 5313: 5309: 5305: 5301: 5296: 5291: 5287: 5283: 5276: 5268: 5261: 5253: 5249: 5245: 5241: 5237: 5233: 5229: 5225: 5220: 5215: 5211: 5207: 5200: 5192: 5188: 5184: 5180: 5175: 5170: 5166: 5162: 5155: 5147: 5143: 5139: 5135: 5131: 5127: 5122: 5117: 5114:(3): 033007. 5113: 5109: 5102: 5093: 5088: 5081: 5073: 5069: 5065: 5061: 5057: 5053: 5048: 5043: 5039: 5035: 5028: 5020: 5016: 5012: 5008: 5004: 5000: 4995: 4990: 4986: 4982: 4975: 4967: 4963: 4959: 4953: 4945: 4941: 4937: 4933: 4929: 4925: 4920: 4915: 4911: 4907: 4900: 4892: 4888: 4884: 4880: 4876: 4872: 4867: 4862: 4858: 4854: 4847: 4845: 4843: 4834: 4830: 4826: 4822: 4818: 4814: 4809: 4804: 4800: 4796: 4788: 4786: 4784: 4775: 4771: 4767: 4763: 4759: 4755: 4750: 4745: 4741: 4737: 4730: 4728: 4726: 4717: 4713: 4708: 4703: 4699: 4695: 4691: 4687: 4683: 4676: 4668: 4664: 4660: 4656: 4652: 4648: 4644: 4640: 4635: 4630: 4626: 4622: 4614: 4612: 4610: 4601: 4597: 4593: 4589: 4585: 4581: 4577: 4573: 4568: 4563: 4559: 4555: 4548: 4546: 4544: 4534: 4525: 4520: 4516: 4512: 4508: 4501: 4497: 4487: 4484: 4482: 4479: 4477: 4474: 4472: 4469: 4468: 4462: 4459: 4455: 4453: 4449: 4445: 4441: 4436: 4432: 4429: 4426: 4422: 4418: 4413: 4411: 4407: 4402: 4398: 4396: 4391: 4387: 4384:particles in 4383: 4378: 4376: 4372: 4368: 4365: 4361: 4351: 4348: 4342: 4340: 4334: 4330: 4327: 4323: 4319: 4315: 4308:Certification 4305: 4301: 4292: 4289: 4280: 4272: 4269: 4266: 4262: 4261: 4260: 4257: 4248: 4246: 4242: 4238: 4236: 4230: 4226: 4222: 4217: 4214: 4198: 4195: 4170: 4166: 4162: 4159: 4156: 4153: 4150: 4145: 4141: 4137: 4132: 4128: 4121: 4113: 4112: 4099: 4097: 4093: 4089: 4072: 4069: 4049: 4040: 4030: 4028: 4024: 4019: 4015: 4011: 4007: 4002: 4001:PDC sources. 4000: 3996: 3993: 3989: 3985: 3981: 3965: 3960: 3956: 3943: 3940: 3923: 3919: 3915: 3911: 3907: 3903: 3899: 3894: 3892: 3888: 3884: 3880: 3876: 3872: 3868: 3864: 3848: 3828: 3824: 3820: 3817: 3814: 3811: 3808: 3803: 3799: 3795: 3790: 3786: 3779: 3770: 3767: 3763: 3759: 3755: 3735: 3726: 3722: 3718: 3715: 3712: 3706: 3701: 3698: 3692: 3684: 3664: 3646: 3643: 3640: 3625: 3622: 3619: 3606: 3603: 3595: 3591: 3587: 3583: 3579: 3578: 3577: 3563: 3558: 3548: 3511: 3508: 3505: 3490: 3487: 3484: 3471: 3468: 3460: 3459: 3458: 3444: 3441: 3419: 3416: 3413: 3398: 3395: 3392: 3379: 3376: 3368: 3347: 3343: 3339: 3336: 3333: 3330: 3327: 3322: 3318: 3314: 3309: 3305: 3298: 3273: 3269: 3265: 3262: 3259: 3256: 3253: 3248: 3244: 3240: 3235: 3231: 3224: 3216: 3212: 3209: 3206: 3202: 3186: 3178: 3174: 3153: 3149: 3145: 3142: 3139: 3136: 3133: 3128: 3124: 3120: 3115: 3111: 3104: 3096: 3075: 3071: 3067: 3064: 3061: 3058: 3055: 3050: 3046: 3042: 3037: 3033: 3026: 3018: 2997: 2993: 2989: 2986: 2983: 2980: 2977: 2972: 2968: 2964: 2959: 2955: 2948: 2939: 2937: 2916: 2912: 2908: 2905: 2902: 2899: 2896: 2891: 2887: 2883: 2878: 2874: 2867: 2847: 2832: 2830: 2826: 2822: 2818: 2815: 2794: 2790: 2786: 2783: 2778: 2774: 2770: 2764: 2756: 2751: 2739: 2736: 2732: 2728: 2725: 2721: 2720: 2719: 2717: 2711: 2708: 2701: 2680: 2676: 2672: 2669: 2666: 2663: 2660: 2655: 2651: 2647: 2642: 2638: 2631: 2623: 2603: 2599: 2595: 2592: 2589: 2586: 2583: 2578: 2574: 2570: 2565: 2561: 2554: 2546: 2545: 2544: 2542: 2532: 2530: 2526: 2520: 2518: 2514: 2510: 2506: 2502: 2491: 2476: 2468: 2450: 2446: 2437: 2421: 2399: 2395: 2371: 2365: 2360: 2356: 2352: 2349: 2346: 2343: 2338: 2334: 2326: 2314: 2310: 2292: 2287: 2272: 2268: 2256: 2248: 2244: 2233: 2229: 2225: 2222: 2219: 2216: 2213: 2208: 2204: 2200: 2195: 2191: 2179: 2171: 2167: 2163: 2160: 2157: 2154: 2151: 2146: 2142: 2138: 2133: 2129: 2122: 2115: 2114: 2113: 2111: 2095: 2087: 2083: 2069: 2051: 2047: 2038: 2020: 2016: 2008:by repeating 1995: 1975: 1970: 1967: 1964: 1960: 1951: 1933: 1930: 1927: 1923: 1893: 1887: 1882: 1878: 1874: 1871: 1868: 1865: 1860: 1856: 1852: 1847: 1843: 1839: 1836: 1833: 1830: 1825: 1821: 1813: 1801: 1798: 1795: 1791: 1773: 1768: 1749: 1738: 1734: 1730: 1727: 1724: 1721: 1718: 1713: 1709: 1705: 1700: 1696: 1684: 1676: 1672: 1668: 1665: 1662: 1659: 1656: 1651: 1647: 1643: 1638: 1634: 1627: 1620: 1619: 1618: 1616: 1598: 1594: 1586:of detecting 1568: 1564: 1560: 1557: 1554: 1551: 1548: 1543: 1539: 1535: 1530: 1526: 1519: 1510: 1489: 1473: 1460: 1456: 1452: 1449: 1446: 1443: 1440: 1435: 1431: 1427: 1422: 1418: 1408: 1404: 1393: 1367: 1363: 1359: 1356: 1353: 1350: 1347: 1342: 1338: 1334: 1329: 1325: 1312: 1306: 1301: 1276: 1272: 1266: 1262: 1257: 1254: 1251: 1243: 1239: 1233: 1229: 1224: 1216: 1212: 1206: 1202: 1198: 1187: 1161: 1157: 1153: 1150: 1147: 1144: 1141: 1136: 1132: 1128: 1123: 1119: 1109: 1100: 1095: 1078: 1070: 1066: 1045: 1025: 1017: 1013: 1009: 1006: 1003: 1000: 997: 992: 988: 984: 979: 975: 963: 955: 951: 947: 935: 920: 897: 883: 865: 861: 838: 835: 830: 826: 820: 815: 812: 809: 805: 779: 775: 771: 768: 765: 762: 759: 754: 750: 746: 741: 737: 712: 700: 685: 671: 663: 638: 634: 631: 628: 625: 622: 605: 601: 597: 593: 592:Hilbert space 577: 569: 551: 547: 526: 503: 495: 491: 470: 462: 458: 435: 431: 406: 401: 397: 388: 384: 365: 357: 353: 347: 342: 339: 335: 329: 324: 321: 318: 314: 310: 305: 301: 290: 285: 281: 275: 272: 268: 262: 257: 254: 251: 247: 243: 238: 233: 229: 221: 220: 219: 198: 194: 169: 164: 160: 151: 147: 131: 128: 120: 115: 113: 109: 105: 101: 96: 92: 88: 84: 74: 72: 68: 64: 60: 56: 53:of identical 52: 48: 44: 40: 37: 33: 29: 25: 21: 7517:Charge qubit 7442:KLM protocol 7391: 7255: 7245: 7099: 6939:Purification 6869:Eastin–Knill 6663: 6659: 6649: 6608: 6604: 6594: 6557: 6553: 6543: 6500: 6496: 6490: 6447: 6443: 6437: 6394: 6391:Phys. Rev. A 6390: 6384: 6369: 6326: 6323:Phys. Rev. B 6322: 6315: 6272: 6268: 6262: 6241: 6190: 6186: 6180: 6127: 6123: 6113: 6062: 6058: 6052: 6031: 6010: 5967: 5963: 5957: 5906: 5902: 5896: 5853: 5849: 5792: 5788: 5733: 5729: 5723: 5672: 5668: 5662: 5627: 5623: 5617: 5574: 5571:Phys. Rev. A 5570: 5564: 5552:. Retrieved 5506: 5502: 5446: 5443:Phys. Rev. A 5442: 5380: 5376: 5349: 5285: 5281: 5275: 5266: 5260: 5209: 5205: 5199: 5164: 5160: 5154: 5111: 5107: 5101: 5080: 5037: 5033: 5027: 4984: 4980: 4974: 4966:the original 4961: 4952: 4909: 4905: 4899: 4856: 4852: 4798: 4794: 4739: 4735: 4689: 4685: 4675: 4624: 4620: 4557: 4553: 4533: 4514: 4510: 4500: 4486:KLM protocol 4460: 4456: 4439: 4437: 4433: 4414: 4400: 4394: 4389: 4385: 4381: 4379: 4375:phase shifts 4360:trapped ions 4357: 4343: 4338: 4335: 4331: 4311: 4302: 4298: 4290: 4286: 4277: 4258: 4254: 4244: 4234: 4218: 4110: 4109:probability 4105: 4036: 4022: 4017: 4013: 4009: 4005: 4003: 3998: 3991: 3987: 3983: 3979: 3921: 3917: 3913: 3909: 3905: 3901: 3897: 3895: 3890: 3886: 3882: 3878: 3874: 3863:quantum dots 3859: 3771: 3765: 3761: 3757: 3750: 3662: 3593: 3589: 3585: 3581: 3529: 3366: 3214: 3201:Haar measure 3176: 3172: 3094: 3016: 2940: 2838: 2820: 2813: 2752: 2748: 2712: 2704: 2538: 2521: 2497: 2466: 2435: 2386: 2109: 2067: 2036: 1908: 1614: 1511: 1487: 1391: 1185: 1096: 921: 881: 686: 662:homomorphism 599: 595: 568:homomorphism 460: 456: 386: 382: 380: 152:) operators 150:annihilation 118: 116: 111: 90: 86: 82: 80: 19: 18: 7548:programming 7527:Phase qubit 7432:Circuit QED 6904:No-deleting 6846:cloud-based 5108:New J. Phys 4517:: 143–252. 4367:Fock states 4213:#P-complete 1099:isomorphism 77:Description 7636:Categories 7588:libquantum 7522:Flux qubit 7427:Cavity QED 7376:Bacon–Shor 7366:stabilizer 6894:No-cloning 6673:1902.00462 6567:2211.04420 6510:1607.02987 6503:(8): 259. 6457:1607.02987 6404:1609.02416 6336:1701.00714 6253:1509.02703 6137:1508.00782 5977:1505.03103 5743:1511.06526 5584:1803.11534 5554:22 January 5516:1612.01199 5456:1705.05299 5390:1505.03708 5269:: 447–458. 5121:1506.06220 5092:1706.01260 4912:(5): 675. 4866:1505.01182 4492:References 4111:amplitudes 2729:The class 2531:problem). 2465:times its 2066:times its 2035:times its 39:scattering 7494:NV center 6929:Threshold 6909:No-hiding 6874:Gleason's 6641:256757275 6586:0031-8949 6535:195791867 6361:119077553 6282:1412.8427 6200:1310.4860 6130:: 10469. 6072:1312.3080 6043:1309.7460 6022:1306.3995 5916:1403.4007 5863:1311.2913 5827:120825561 5802:1311.1622 5682:1408.3712 5632:CiteSeerX 5609:119227039 5481:119431211 5295:1305.4346 5219:1305.3188 5174:1106.0849 4994:1005.1407 4944:121606171 4833:121093296 4808:1212.2783 4774:119241050 4749:1212.2240 4634:1212.2622 4567:1212.2234 4440:classical 3957:ε 3727:δ 3644:× 3607:∼ 3596:matrices 3509:× 3472:∼ 3417:× 3380:∼ 2848:ε 2755:algorithm 2353:⋅ 2350:⋅ 2347:⋅ 2278:⟩ 2245:φ 2188:⟨ 2093:⟩ 1950:permanent 1875:⋅ 1872:⋅ 1869:⋅ 1840:⋅ 1837:⋅ 1834:⋅ 1759:⟩ 1750:ψ 1693:⟨ 1466:⟩ 1373:⟩ 1307:φ 1258:⋅ 1255:⋅ 1252:⋅ 1225:⋅ 1199:≡ 1167:⟩ 1067:φ 1023:⟩ 952:φ 945:⟩ 936:ψ 907:⟩ 898:ψ 806:∑ 785:⟩ 710:⟩ 701:ψ 632:− 548:φ 492:φ 407:† 348:∗ 315:∑ 291:† 248:∑ 239:† 170:† 49:from the 7556:OpenQASM 7532:Transmon 7409:Physical 7209:Quantum 7110:Grover's 6884:Holevo's 6857:Theorems 6807:timeline 6797:NISQ era 6710:32548251 6633:36827576 6429:54194194 6233:10489988 6225:24580579 6172:26843135 6105:44653164 6097:25062152 5949:33602886 5941:25279613 5888:10874278 5768:23490704 5707:25723196 5654:47361920 5541:29219463 5425:26601164 5328:27742471 5320:25238340 5252:26984278 5244:24116759 5191:41510747 5146:46915633 5019:12301677 4891:19067232 4883:26160375 4716:19532390 4667:11687876 4659:23258407 4600:22912771 4592:23258411 4465:See also 4428:coherent 4425:squeezed 4237:function 3851:Variants 3171:into an 3019:" which 570:between 146:creation 104:ancillas 63:photonic 47:sampling 7546:Quantum 7484:Kane QC 7343:Quantum 7271:Quantum 7200:PostBQP 7170:Quantum 7155:Simon's 6948:Quantum 6785:General 6701:7274809 6678:Bibcode 6613:Bibcode 6515:Bibcode 6482:5311008 6462:Bibcode 6409:Bibcode 6341:Bibcode 6287:Bibcode 6205:Bibcode 6163:4742850 6142:Bibcode 6077:Bibcode 6002:5022049 5982:Bibcode 5921:Bibcode 5868:Bibcode 5807:Bibcode 5748:Bibcode 5687:Bibcode 5589:Bibcode 5549:1665615 5521:Bibcode 5461:Bibcode 5416:4640628 5395:Bibcode 5300:Bibcode 5224:Bibcode 5167:: 1–7. 5126:Bibcode 5072:1770389 5052:Bibcode 4999:Bibcode 4924:Bibcode 4853:Science 4813:Bibcode 4754:Bibcode 4694:Bibcode 4639:Bibcode 4621:Science 4572:Bibcode 4554:Science 4326:#P-hard 4096:Hafnian 4023:twofold 4016:out of 3369:matrix 3208:complex 2817:photons 2731:PostBQP 2724:PostBQP 2517:#P-hard 2509:#P-hard 2501:complex 461:,..., N 7564:IBM QX 7560:Qiskit 7499:NMR QC 7477:-based 7381:Steane 7352:Codes 7150:Shor's 7056:SARG04 6864:Bell's 6708:  6698:  6639:  6631:  6584:  6533:  6480:  6427:  6359:  6307:960357 6305:  6231:  6223:  6170:  6160:  6103:  6095:  6000:  5947:  5939:  5886:  5825:  5766:  5715:436866 5713:  5705:  5652:  5634:  5607:  5547:  5539:  5479:  5423:  5413:  5326:  5318:  5250:  5242:  5189:  5144:  5070:  5017:  4942:  4889:  4881:  4831:  4772:  4714:  4665:  4657:  4598:  4590:  4364:phonon 3205:i.i.d. 91:N>M 55:bosons 7386:Toric 6829:Qubit 6668:arXiv 6637:S2CID 6562:arXiv 6531:S2CID 6505:arXiv 6478:S2CID 6452:arXiv 6425:S2CID 6399:arXiv 6357:S2CID 6331:arXiv 6303:S2CID 6277:arXiv 6248:arXiv 6229:S2CID 6195:arXiv 6132:arXiv 6101:S2CID 6067:arXiv 6038:arXiv 6017:arXiv 5998:S2CID 5972:arXiv 5945:S2CID 5911:arXiv 5884:S2CID 5858:arXiv 5823:S2CID 5797:arXiv 5764:S2CID 5738:arXiv 5711:S2CID 5677:arXiv 5650:S2CID 5605:S2CID 5579:arXiv 5545:S2CID 5511:arXiv 5477:S2CID 5451:arXiv 5385:arXiv 5324:S2CID 5290:arXiv 5248:S2CID 5214:arXiv 5187:S2CID 5169:arXiv 5142:S2CID 5116:arXiv 5087:arXiv 5068:S2CID 5042:arXiv 5015:S2CID 4989:arXiv 4940:S2CID 4914:arXiv 4887:S2CID 4861:arXiv 4829:S2CID 4803:arXiv 4770:S2CID 4744:arXiv 4663:S2CID 4629:arXiv 4596:S2CID 4562:arXiv 4397:model 4274:Rome. 3215:M ≤ N 2515:is a 797:with 566:is a 381:Here 110:(the 36:boson 7578:Cirq 7569:Quil 7475:Spin 7371:Shor 7051:BB84 6984:LOCC 6706:PMID 6629:PMID 6582:ISSN 6221:PMID 6168:PMID 6093:PMID 5937:PMID 5703:PMID 5556:2021 5537:PMID 5421:PMID 5316:PMID 5240:PMID 4879:PMID 4712:PMID 4655:PMID 4588:PMID 4450:and 4399:of 2 3912:> 3865:and 3693:< 3680:Perm 3588:and 3544:Perm 3095:hide 3017:knew 2819:and 2743:path 2529:P=NP 2305:Perm 1918:Perm 1786:Perm 1058:and 7392:gnu 7356:CSS 7233:XEB 7195:QMA 7190:QIP 7185:EQP 7180:BQP 7160:VQE 7115:HHL 6919:PBR 6696:PMC 6686:doi 6621:doi 6609:130 6572:doi 6523:doi 6470:doi 6417:doi 6349:doi 6295:doi 6213:doi 6191:112 6158:PMC 6150:doi 6085:doi 6063:113 5990:doi 5929:doi 5907:113 5876:doi 5815:doi 5756:doi 5695:doi 5673:114 5642:doi 5597:doi 5529:doi 5507:119 5469:doi 5411:PMC 5403:doi 5308:doi 5286:113 5232:doi 5210:111 5179:doi 5134:doi 5060:doi 5038:461 5007:doi 4985:467 4932:doi 4871:doi 4857:349 4821:doi 4762:doi 4702:doi 4647:doi 4625:339 4580:doi 4558:339 4519:doi 4264:MIT 3875:PDC 3594:MĂ—M 3367:MĂ—M 3177:MĂ—M 3173:NĂ—N 2827:in 2741:BPP 2716:BQP 1754:out 940:out 919:at 902:out 519:on 457:i,j 119:NĂ—N 112:KLM 7638:: 7583:Q# 6704:. 6694:. 6684:. 6676:. 6662:. 6658:. 6635:. 6627:. 6619:. 6607:. 6603:. 6580:. 6570:. 6558:98 6556:. 6552:. 6529:. 6521:. 6513:. 6501:18 6499:. 6476:. 6468:. 6460:. 6448:94 6446:. 6423:. 6415:. 6407:. 6395:96 6393:. 6355:. 6347:. 6339:. 6327:95 6325:. 6301:. 6293:. 6285:. 6271:. 6227:. 6219:. 6211:. 6203:. 6189:. 6166:. 6156:. 6148:. 6140:. 6126:. 6122:. 6099:. 6091:. 6083:. 6075:. 6061:. 5996:. 5988:. 5980:. 5968:93 5966:. 5943:. 5935:. 5927:. 5919:. 5905:. 5882:. 5874:. 5866:. 5852:. 5835:^ 5821:. 5813:. 5805:. 5791:. 5776:^ 5762:. 5754:. 5746:. 5732:. 5709:. 5701:. 5693:. 5685:. 5671:. 5648:. 5640:. 5628:51 5626:. 5603:. 5595:. 5587:. 5575:98 5573:. 5543:. 5535:. 5527:. 5519:. 5505:. 5501:. 5489:^ 5475:. 5467:. 5459:. 5447:96 5445:. 5433:^ 5419:. 5409:. 5401:. 5393:. 5379:. 5375:. 5358:^ 5348:. 5336:^ 5322:. 5314:. 5306:. 5298:. 5284:. 5246:. 5238:. 5230:. 5222:. 5208:. 5185:. 5177:. 5165:18 5140:. 5132:. 5124:. 5112:19 5110:. 5066:. 5058:. 5050:. 5036:. 5013:. 5005:. 4997:. 4983:. 4960:. 4938:. 4930:. 4922:. 4910:58 4908:. 4885:. 4877:. 4869:. 4855:. 4841:^ 4827:. 4819:. 4811:. 4797:. 4782:^ 4768:. 4760:. 4752:. 4738:. 4724:^ 4710:. 4700:. 4690:15 4688:. 4684:. 4661:. 4653:. 4645:. 4637:. 4623:. 4608:^ 4594:. 4586:. 4578:. 4570:. 4556:. 4542:^ 4513:. 4509:. 4454:. 4412:. 4395:XY 4029:. 3665:: 2831:. 2735:PP 705:in 459:=1 7571:– 7562:– 7558:– 7259:2 7256:T 7249:1 7246:T 6770:e 6763:t 6756:v 6712:. 6688:: 6680:: 6670:: 6664:6 6643:. 6623:: 6615:: 6588:. 6574:: 6564:: 6537:. 6525:: 6517:: 6507:: 6484:. 6472:: 6464:: 6454:: 6431:. 6419:: 6411:: 6401:: 6363:. 6351:: 6343:: 6333:: 6309:. 6297:: 6289:: 6279:: 6273:9 6256:. 6250:: 6235:. 6215:: 6207:: 6197:: 6174:. 6152:: 6144:: 6134:: 6128:7 6107:. 6087:: 6079:: 6069:: 6046:. 6040:: 6025:. 6019:: 6004:. 5992:: 5984:: 5974:: 5951:. 5931:: 5923:: 5913:: 5890:. 5878:: 5870:: 5860:: 5854:8 5829:. 5817:: 5809:: 5799:: 5793:8 5770:. 5758:: 5750:: 5740:: 5734:6 5717:. 5697:: 5689:: 5679:: 5656:. 5644:: 5611:. 5599:: 5591:: 5581:: 5558:. 5531:: 5523:: 5513:: 5483:. 5471:: 5463:: 5453:: 5427:. 5405:: 5397:: 5387:: 5381:1 5352:. 5330:. 5310:: 5302:: 5292:: 5254:. 5234:: 5226:: 5216:: 5193:. 5181:: 5171:: 5148:. 5136:: 5128:: 5118:: 5095:. 5089:: 5074:. 5062:: 5054:: 5044:: 5021:. 5009:: 5001:: 4991:: 4946:. 4934:: 4926:: 4916:: 4893:. 4873:: 4863:: 4835:. 4823:: 4815:: 4805:: 4799:7 4776:. 4764:: 4756:: 4746:: 4740:7 4718:. 4704:: 4696:: 4669:. 4649:: 4641:: 4631:: 4602:. 4582:: 4574:: 4564:: 4527:. 4521:: 4515:9 4401:N 4390:M 4386:N 4382:M 4339:k 4245:P 4235:P 4199:. 4196:U 4176:) 4171:N 4167:t 4163:, 4160:. 4157:. 4154:. 4151:, 4146:2 4142:t 4138:, 4133:1 4129:t 4125:( 4122:p 4073:. 4070:U 4050:U 4018:N 4014:M 4010:M 4008:Ă— 4006:M 3999:N 3992:N 3988:M 3984:M 3982:≫ 3980:N 3966:. 3961:M 3949:) 3944:M 3941:N 3936:( 3922:M 3918:N 3914:M 3910:N 3908:( 3906:N 3898:M 3891:M 3887:ε 3883:M 3879:ε 3873:( 3834:) 3829:N 3825:t 3821:, 3818:. 3815:. 3812:. 3809:, 3804:2 3800:t 3796:, 3791:1 3787:t 3783:( 3780:p 3766:M 3764:≫ 3762:N 3758:M 3736:. 3730:) 3723:/ 3719:1 3716:, 3713:M 3710:( 3707:Q 3702:! 3699:M 3689:| 3685:X 3674:| 3663:δ 3647:M 3641:M 3635:C 3630:) 3626:1 3623:, 3620:0 3617:( 3612:N 3604:X 3590:δ 3586:M 3582:Q 3564:, 3559:2 3554:| 3549:X 3539:| 3512:M 3506:M 3500:C 3495:) 3491:1 3488:, 3485:0 3482:( 3477:N 3469:X 3445:. 3442:U 3420:M 3414:M 3408:C 3403:) 3399:1 3396:, 3393:0 3390:( 3385:N 3377:X 3353:) 3348:N 3344:t 3340:, 3337:. 3334:. 3331:. 3328:, 3323:2 3319:t 3315:, 3310:1 3306:t 3302:( 3299:p 3279:) 3274:N 3270:t 3266:, 3263:. 3260:. 3257:. 3254:, 3249:2 3245:t 3241:, 3236:1 3232:t 3228:( 3225:p 3187:U 3159:) 3154:N 3150:t 3146:, 3143:. 3140:. 3137:. 3134:, 3129:2 3125:t 3121:, 3116:1 3112:t 3108:( 3105:p 3081:) 3076:N 3072:t 3068:, 3065:. 3062:. 3059:. 3056:, 3051:2 3047:t 3043:, 3038:1 3034:t 3030:( 3027:p 3003:) 2998:N 2994:t 2990:, 2987:. 2984:. 2981:. 2978:, 2973:2 2969:t 2965:, 2960:1 2956:t 2952:( 2949:p 2922:) 2917:N 2913:t 2909:, 2906:. 2903:. 2900:. 2897:, 2892:2 2888:t 2884:, 2879:1 2875:t 2871:( 2868:p 2829:R 2821:m 2814:n 2800:) 2795:2 2791:n 2787:m 2784:+ 2779:n 2775:2 2771:n 2768:( 2765:O 2745:) 2686:) 2681:N 2677:t 2673:, 2670:. 2667:. 2664:. 2661:, 2656:2 2652:t 2648:, 2643:1 2639:t 2635:( 2632:p 2609:) 2604:N 2600:t 2596:, 2593:. 2590:. 2587:. 2584:, 2579:2 2575:t 2571:, 2566:1 2562:t 2558:( 2555:p 2477:U 2467:j 2451:j 2447:t 2436:M 2422:U 2400:T 2396:U 2372:, 2366:! 2361:N 2357:t 2344:! 2339:1 2335:t 2327:2 2322:| 2315:T 2311:U 2300:| 2293:= 2288:2 2283:| 2273:M 2269:1 2264:| 2260:) 2257:U 2254:( 2249:M 2240:| 2234:N 2230:t 2226:, 2223:. 2220:. 2217:. 2214:, 2209:2 2205:t 2201:, 2196:1 2192:t 2184:| 2180:= 2177:) 2172:N 2168:t 2164:, 2161:. 2158:. 2155:. 2152:, 2147:2 2143:t 2139:, 2134:1 2130:t 2126:( 2123:p 2110:M 2096:, 2088:M 2084:1 2079:| 2068:j 2052:j 2048:t 2037:i 2021:i 2017:s 1996:U 1976:, 1971:T 1968:, 1965:S 1961:U 1934:T 1931:, 1928:S 1924:U 1894:. 1888:! 1883:N 1879:s 1866:! 1861:1 1857:s 1853:! 1848:N 1844:t 1831:! 1826:1 1822:t 1814:2 1809:| 1802:T 1799:, 1796:S 1792:U 1781:| 1774:= 1769:2 1764:| 1745:| 1739:N 1735:t 1731:, 1728:. 1725:. 1722:. 1719:, 1714:2 1710:t 1706:, 1701:1 1697:t 1689:| 1685:= 1682:) 1677:N 1673:t 1669:, 1666:. 1663:. 1660:. 1657:, 1652:2 1648:t 1644:, 1639:1 1635:t 1631:( 1628:p 1615:k 1599:k 1595:t 1574:) 1569:N 1565:t 1561:, 1558:. 1555:. 1552:. 1549:, 1544:2 1540:t 1536:, 1531:1 1527:t 1523:( 1520:p 1498:) 1488:x 1474:U 1471:( 1461:N 1457:s 1453:, 1450:. 1447:. 1444:. 1441:, 1436:2 1432:s 1428:, 1423:1 1419:s 1414:| 1409:P 1405:= 1402:) 1392:x 1378:( 1368:N 1364:s 1360:, 1357:. 1354:. 1351:. 1348:, 1343:2 1339:s 1335:, 1330:1 1326:s 1321:| 1316:) 1313:U 1310:( 1302:P 1277:N 1273:s 1267:N 1263:x 1244:2 1240:s 1234:2 1230:x 1217:1 1213:s 1207:1 1203:x 1196:) 1186:x 1172:( 1162:N 1158:s 1154:, 1151:. 1148:. 1145:. 1142:, 1137:2 1133:s 1129:, 1124:1 1120:s 1115:| 1110:P 1082:) 1079:U 1076:( 1071:M 1046:U 1026:. 1018:N 1014:s 1010:, 1007:. 1004:. 1001:. 998:, 993:2 989:s 985:, 980:1 976:s 971:| 967:) 964:U 961:( 956:M 948:= 931:| 893:| 882:k 866:k 862:s 858:( 839:M 836:= 831:k 827:s 821:N 816:1 813:= 810:k 780:N 776:s 772:, 769:. 766:. 763:. 760:, 755:2 751:s 747:, 742:1 738:s 733:| 713:= 696:| 672:W 644:) 639:M 635:1 629:N 626:+ 623:M 617:( 600:N 596:M 578:N 552:M 527:M 507:) 504:U 501:( 496:M 471:U 443:) 436:j 432:b 428:( 402:j 398:b 387:j 385:( 383:i 366:. 363:) 358:i 354:a 343:i 340:j 336:U 330:N 325:1 322:= 319:i 311:= 306:j 302:b 298:( 286:i 282:a 276:i 273:j 269:U 263:N 258:1 255:= 252:i 244:= 234:j 230:b 206:) 199:i 195:a 191:( 165:i 161:a 148:( 132:, 129:U 87:M 83:N

Index

quantum computation
Scott Aaronson
Naftali Tishby
boson
scattering
permanents of matrices
sampling
probability distribution
bosons
interferometer
photonic
linear optical quantum computing
quantum computation
parametric down-conversion
current-biased superconducting nanowires
ancillas
universal optical scheme by Knill, Laflamme and Milburn
creation
annihilation
homomorphism
Hilbert space
binomial coefficient
homomorphism
isomorphism
permanent
complex
computation of the permanent
#P-hard
approximation to within multiplicative error
#P-hard

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑