Knowledge

BPP (complexity)

Source 📝

772: 804: 660:, the problem of determining whether a polynomial is identically equal to the zero polynomial, when you have access to the value of the polynomial for any given input, but not to the coefficients. In other words, is there an assignment of values to the variables such that when a nonzero polynomial is evaluated on these values, the result is nonzero? It suffices to choose each variable's value uniformly at random from a finite subset of at least 477:. For example, if one defined the class with the restriction that the algorithm can be wrong with probability at most 1/2, this would result in the same class of problems. The error probability does not even have to be constant: the same class of problems is defined by allowing error as high as 1/2 − 1951:
Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi
1395:
The machine is simulated, and the oracle answers (that are not already fixed) are fixed step-by-step. There is at most one oracle query per deterministic computation step. For the relativized NP oracle, if possible fix the output to be yes by choosing a computation path and fixing the answers of
1471:
by most experts of the field. Such generators could replace true random numbers in any polynomial-time randomized algorithm, producing indistinguishable results. The conjecture that these generators exist implies that randomness does not give additional computational power to polynomial time
1416:, linear time suffices, even for function problems (if given a function oracle and linear output size) and with exponentially small (with linear exponent) error probability. Also, this construction is effective in that given an arbitrary oracle A we can arrange the oracle B to have 1605: 489:
is the length of input. This flexibility in the choice of error probability is based on the idea of running an error-prone algorithm many times, and using the majority result of the runs to obtain a more accurate algorithm. The chance that the majority of the runs are wrong
1121:
algorithm operating on inputs of bounded length can be derandomized into a deterministic algorithm using a fixed string of random bits. Finding this string may be expensive, however. Some weak separation results for Monte Carlo time classes were proven by
762:
contains probabilistic algorithms that are always correct and have expected polynomial running time. This is weaker than saying it is a polynomial time algorithm, since it may run for super-polynomial time, but with very low probability.
465:
corresponds to the output of the random coin flips that the probabilistic Turing machine would have made. For some applications this definition is preferable since it does not mention probabilistic Turing machines.
1743: 1051: 1247: 1532: 559: 752:
which is a randomized algorithm which either outputs the correct answer, or outputs "fail" with low probability. Las Vegas algorithms with polynomial bound running times are used to define the class
1323: 453: 385: 1396:
the base oracle; otherwise no fixing is necessary, and either way there is at most 1 answer of the base oracle per step. Since there are 2 steps, the lemma follows.
1331:(relativized) complete problem, the oracle will give correct answers with high probability if queried with the problem instance followed by a random string of length 469:
In practice, an error probability of 1/3 might not be acceptable, however, the choice of 1/3 in the definition is arbitrary. Modifying the definition to use any
17: 86:, the class of problems solvable in polynomial time with a deterministic machine, since a deterministic machine is a special case of a probabilistic machine. 1351:
fix oracle answers (see lemma below) to fix the instance output. Next, provide the instance outputs for queries consisting of the instance followed by
565: 2200: 1672: 1000: 1600:{\displaystyle {\textsf {i.o.-SUBEXP}}=\bigcap \nolimits _{\varepsilon >0}{\textsf {i.o.-DTIME}}\left(2^{n^{\varepsilon }}\right).} 2597: 1455:), one would fix the answers in the relativized E computation to a special nonanswer, thus ensuring that no fake answers are given. 1194: 517: 216:
On any given run of the algorithm, it has a probability of at most 1/3 of giving the wrong answer, whether the answer is YES or NO.
1877: 2105:; Verbeek, Rutger (1987a). "Randomness, provability, and the separation of Monte Carlo time and space". In Börger, Egon (ed.). 1256: 2169: 2562: 2091: 2064: 2193: 33: 1818:
Madhu Sudan and Shien Jin Ong. Massachusetts Institute of Technology: 6.841/18.405J Advanced Complexity Theory:
1464: 2127:"On the Monte Carlo space constructible functions and separation results for probabilistic complexity classes" 1880:; Gill, John (1981), "Relative to a Random Oracle A, P^A != NP^A != co-NP^A with Probability 1", 994: 234: 49: 291:
is required to run for polynomial time on all inputs, regardless of the outcome of the random coin flips.
2186: 657: 2578: 2385: 1786: 2567: 2071:
Pages 257–259 of section 11.3: Random Sources. Pages 269–271 of section 11.4: Circuit complexity.
2044: 1846: 843: 73: 2521: 2052: 417: 349: 2516: 2511: 2161: 737: 635:
found a deterministic polynomial-time algorithm for this problem, thus showing that it is in
470: 2506: 1819: 1631: 1619: 1096: 986: 741: 1404:), it is possible to do the construction while leaving enough strings for the relativized 1377:
Given a problem (specifically, an oracle machine code and time constraint) in relativized
8: 1653: 749: 1914:
Heller, Hans (1986), "On relativized exponential and probabilistic complexity classes",
748:
have Monte Carlo algorithms with polynomial bounded running time. This is compared to a
1998: 1492:
is in some sense equivalent to the existence of strong pseudorandom number generators.
616: 1943: 1928: 2526: 2143: 2126: 2087: 2080: 2060: 1897: 1832: 1495: 973:. It is not known whether those two are strict subsets, since we don't even know if 491: 2002: 2490: 2380: 2302: 2209: 2138: 2110: 2028: 1990: 1955: 1923: 1889: 1806: 1773: 1443: 859: 776: 754: 689: 624: 283: 45: 877:) is not any more powerful than the machine without this extra power. In symbols, 771: 2485: 2475: 2432: 2422: 2415: 2405: 2395: 2353: 2348: 2343: 2327: 2307: 2285: 2280: 2275: 2263: 2258: 2253: 2248: 2173: 2151:
Arora, Sanjeev; Boaz Barak (2009). "Computational Complexity: A Modern Approach".
2122: 2102: 1959: 1954:. Lecture Notes in Computer Science. Vol. 6650. Springer. pp. 191–232. 1859: 1766: 1518: 1104: 969: 955: 942: 908: 894: 828: 812: 788: 780: 648: 473:
between 0 and 1/2 (exclusive) in place of 1/3 would not change the resulting set
53: 2109:. Lecture Notes in Computer Science. Vol. 270. Springer. pp. 189–207. 803: 2480: 2368: 2290: 2243: 2075: 1864:
Proceedings of the Nineteenth Annual IEEE Symposium on Foundations of Computing
1662: 1328: 874: 808: 792: 685: 607: 495: 82: 2114: 2591: 2166: 1901: 1657: 1507: 1499: 1163: 702: 928:, which is considered unlikely since it would imply practical solutions for 505: 2025:
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing
1646:; however, note that the exponential-time hierarchy is usually conjectured 709:, or allowing computation paths to have different lengths, gives the class 632: 628: 611: 481:
on the one hand, or requiring error as small as 2 on the other hand, where
2032: 2358: 2268: 1146:
Relative to oracles, we know that there exist oracles A and B, such that
929: 57: 587:. The number of such problems is decreasing, and it is conjectured that 2470: 2295: 2043:
Valentine Kabanets (2003). "CMPT 710 – Complexity Theory: Lecture 16".
1994: 1503: 1468: 1138:
The class BPP is closed under complementation, union and intersection.
2465: 2178: 1738:{\displaystyle {\mathsf {E}}={\mathsf {DTIME}}\left(2^{O(n)}\right),} 1973:
Babai, László; Fortnow, Lance; Nisan, Noam; Wigderson, Avi (1993). "
1893: 1630:
if the exponential-time hierarchy, which is defined in terms of the
298:
can be defined using only deterministic Turing machines. A language
2460: 2455: 2400: 2223: 206:
if there is an algorithm for it that has the following properties:
2023:
if E requires exponential circuits: Derandomizing the XOR Lemma".
1622:
algorithms for infinitely many input sizes. They also showed that
2450: 1512: 1327:), which can be iteratively constructed as follows. For a fixed 1046:{\displaystyle {\mathsf {BPP}}\subseteq \Sigma _{2}\cap \Pi _{2}} 729: 598:
For a long time, one of the most famous problems known to be in
2557: 2552: 2427: 2410: 1113: 903: 832: 824: 796: 1355:-length string, and then treat output for queries of length ≤( 1242:{\displaystyle {\mathsf {BPP}}={\mathsf {EXP}}^{\mathsf {NP}}} 676:
If the access to randomness is removed from the definition of
2547: 2542: 2363: 1383:, for every partially constructed oracle and input of length 816: 684:. In the definition of the class, if we replace the ordinary 554:{\displaystyle {\mathsf {P}}{\overset {?}{=}}{\mathsf {BPP}}} 1117:. Indeed, as a consequence of the proof of this fact, every 2375: 2233: 775:
BPP in relation to other probabilistic complexity classes (
1972: 1387:, the output can be fixed by specifying 2 oracle answers. 68:
classes of problems, meaning most problems of interest in
2390: 2322: 2317: 2238: 2228: 2107:
Computation Theory and Logic, In Memory of Dieter Rödding
1780: 784: 694: 799:. It is unknown if any of these containments are strict. 1410:
answers. Also, we can ensure that for the relativized
262:
outputs 1 with probability greater than or equal to 2/3
2051: 1675: 1535: 1259: 1197: 1003: 744:
which is likely to be correct. Problems in the class
520: 420: 352: 210:
It is allowed to flip coins and make random decisions
507: 277:
outputs 1 with probability less than or equal to 1/3
1820:
Lecture 6: Randomized Algorithms, Properties of BPP
1318:{\displaystyle {\mathsf {P<NP<BPP=EXP=NEXP}}} 664:values to achieve bounded error probability, where 2079: 1862:(1978). "Two theorems on random polynomial time". 1737: 1599: 1317: 1241: 1045: 766: 579:. However, many problems have been known to be in 553: 447: 379: 76:that can be run quickly on real modern machines. 2121: 2101: 1347:=1. For every instance of the problem of length 1127: 1123: 1103:can be determined by a family of polynomial-size 727:, and it is contained in its quantum counterpart 2589: 2098:Section 10.2.1: The class BPP, pp. 336–339. 2015:Russell Impagliazzo and Avi Wigderson (1997). " 1363:as fixed, and proceed with instances of length 1343:is an appropriate small constant). Start with 2074: 1858: 2194: 2162:Princeton CS 597E: Derandomization paper list 566:(more unsolved problems in computer science) 1977:has subexponential time simulations unless 1876: 1400:The lemma ensures that (for a large enough 807:Inclusions of complexity classes including 38:bounded-error probabilistic polynomial time 2201: 2187: 1099:states that membership in any language in 213:It is guaranteed to run in polynomial time 2142: 2082:Introduction to the Theory of Computation 1941: 1927: 1564: 1538: 306:if and only if there exists a polynomial 1807:CMPT 710 - Complexity Theory: Lecture 16 985:is contained in the second level of the 802: 770: 668:is the total degree of the polynomial. 14: 2590: 2208: 1913: 1700: 1697: 1694: 1691: 1688: 1678: 1310: 1307: 1304: 1301: 1298: 1295: 1292: 1289: 1286: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1262: 1233: 1230: 1223: 1220: 1217: 1206: 1203: 1200: 1012: 1009: 1006: 546: 543: 540: 523: 321:runs for polynomial time on all inputs 247:runs for polynomial time on all inputs 18:Bounded-error probabilistic polynomial 2182: 1484:. More strongly, the assumption that 1133: 642:An important example of a problem in 1966: 1614:, which stands for infinitely often 898:is unknown: it is not known whether 508:Unsolved problem in computer science 1833:"Complexity Zoo:B - Complexity Zoo" 1547: 30: 24: 1458: 1034: 1021: 671: 60:bounded by 1/3 for all instances. 25: 2609: 2563:Probabilistically checkable proof 2155: 1189:There is even an oracle in which 1141: 989:and therefore it is contained in 310:and deterministic Turing machine 2598:Probabilistic complexity classes 2167:Harvard CS 225: Pseudorandomness 2059:(1st ed.). Addison Wesley. 1463:The existence of certain strong 866:machine with the power to solve 36:, a branch of computer science, 2009: 1618:, contains problems which have 1128:Karpinski & Verbeek (1987b) 1124:Karpinski & Verbeek (1987a) 767:Complexity-theoretic properties 461:In this definition, the string 389:is greater than or equal to 2/3 34:computational complexity theory 1935: 1907: 1870: 1852: 1839: 1825: 1812: 1799: 1748:has circuit complexity 2 then 1723: 1717: 1660:showed that if any problem in 1465:pseudorandom number generators 680:, we get the complexity class 485:is any positive constant, and 436: 424: 368: 356: 233:if and only if there exists a 13: 1: 2042: 1929:10.1016/S0019-9958(86)80012-2 1792: 614:. However, in the 2002 paper 220: 2144:10.1016/0890-5401(87)90057-5 1960:10.1007/978-3-642-22670-0_20 1949:. In Goldreich, Oded (ed.). 457:is less than or equal to 1/3 281:Unlike the complexity class 235:probabilistic Turing machine 202:Informally, a problem is in 50:probabilistic Turing machine 7: 2131:Information and Computation 2125:; Verbeek, Rutger (1987b). 1847:Pulling Out The Quantumness 1759: 862:for itself, meaning that a 658:polynomial identity testing 652:) still not known to be in 501: 27:Concept in computer science 10: 2614: 2579:List of complexity classes 1952:Wigderson, David Zuckerman 1787:List of complexity classes 1162:. Moreover, relative to a 1077:in this case. Thus either 610:whether a given number is 400:, the fraction of strings 332:, the fraction of strings 2576: 2535: 2499: 2443: 2336: 2216: 2115:10.1007/3-540-18170-9_166 1981:has publishable proofs". 1882:SIAM Journal on Computing 1178:is strictly contained in 888:The relationship between 191: 139: 91: 2568:Interactive proof system 2057:Computational Complexity 1983:Computational Complexity 1942:Goldreich, Oded (2011). 995:Sipser–Lautemann theorem 494:as a consequence of the 448:{\displaystyle M(x,y)=1} 380:{\displaystyle M(x,y)=1} 74:probabilistic algorithms 2045:Simon Fraser University 1916:Information and Control 602:but not known to be in 583:but not known to be in 492:drops off exponentially 2522:Arithmetical hierarchy 2053:Christos Papadimitriou 1739: 1601: 1472:computation, that is, 1319: 1243: 1047: 993:. More precisely, the 977:is a strict subset of 870:problems instantly (a 835: 800: 575:are obviously also in 555: 449: 381: 92:BPP algorithm (1 run) 64:is one of the largest 2517:Grzegorczyk hierarchy 2512:Exponential hierarchy 2444:Considered infeasible 2033:10.1145/258533.258590 1944:"In a World of P=BPP" 1740: 1602: 1320: 1244: 1166:with probability 1, 1048: 806: 774: 738:Monte Carlo algorithm 556: 450: 382: 2507:Polynomial hierarchy 2337:Suspected infeasible 1849:, December 20, 2005 1822:. February 26, 2003. 1805:Valentine Kabanets, 1673: 1632:polynomial hierarchy 1620:sub-exponential time 1533: 1339:is instance length; 1257: 1195: 1001: 987:polynomial hierarchy 791:), which generalise 742:randomized algorithm 723:is known to contain 518: 418: 350: 2536:Families of classes 2217:Considered feasible 1878:Bennett, Charles H. 1654:Russell Impagliazzo 1510:showed that unless 1452:ZPP=BPP=EXP<NEXP 1375: —  750:Las Vegas algorithm 692:, we get the class 606:was the problem of 2210:Complexity classes 2172:2003-08-05 at the 2086:. PWS Publishing. 1995:10.1007/bf01275486 1809:, October 28, 2003 1735: 1597: 1449:oracle (and hence 1393: 1373: 1315: 1239: 1134:Closure properties 1043: 836: 801: 551: 445: 377: 192:for some constant 44:) is the class of 2585: 2584: 2527:Boolean hierarchy 2500:Class hierarchies 1866:. pp. 75–83. 1566: 1540: 1526:is contained in 1391: 1371: 1097:Adleman's theorem 953:It is known that 838:It is known that 758:. Alternatively, 627:and his students 536: 412:|) which satisfy 344:|) which satisfy 200: 199: 46:decision problems 16:(Redirected from 2605: 2203: 2196: 2189: 2180: 2179: 2148: 2146: 2123:Karpinski, Marek 2118: 2103:Karpinski, Marek 2097: 2085: 2070: 2048: 2035: 2013: 2007: 2006: 1970: 1964: 1963: 1948: 1939: 1933: 1932: 1931: 1911: 1905: 1904: 1874: 1868: 1867: 1856: 1850: 1843: 1837: 1836: 1829: 1823: 1816: 1810: 1803: 1744: 1742: 1741: 1736: 1731: 1727: 1726: 1704: 1703: 1682: 1681: 1606: 1604: 1603: 1598: 1593: 1589: 1588: 1587: 1586: 1568: 1567: 1561: 1560: 1542: 1541: 1454: 1453: 1448: 1447: 1439: 1438: 1434: 1430: 1425: 1424: 1420: 1415: 1414: 1409: 1408: 1382: 1381: 1376: 1326: 1324: 1322: 1321: 1316: 1314: 1313: 1250: 1248: 1246: 1245: 1240: 1238: 1237: 1236: 1227: 1226: 1210: 1209: 1111:is contained in 1105:Boolean circuits 1052: 1050: 1049: 1044: 1042: 1041: 1029: 1028: 1016: 1015: 924:is contained in 842:is closed under 690:quantum computer 625:Manindra Agrawal 571:All problems in 562: 560: 558: 557: 552: 550: 549: 537: 529: 527: 526: 509: 456: 454: 452: 451: 446: 388: 386: 384: 383: 378: 89: 88: 32: 21: 2613: 2612: 2608: 2607: 2606: 2604: 2603: 2602: 2588: 2587: 2586: 2581: 2572: 2531: 2495: 2439: 2433:PSPACE-complete 2332: 2212: 2207: 2174:Wayback Machine 2158: 2094: 2067: 2039: 2038: 2027:, pp. 220–229. 2014: 2010: 1971: 1967: 1946: 1940: 1936: 1912: 1908: 1894:10.1137/0210008 1875: 1871: 1857: 1853: 1845:Lance Fortnow, 1844: 1840: 1831: 1830: 1826: 1817: 1813: 1804: 1800: 1795: 1762: 1713: 1709: 1705: 1687: 1686: 1677: 1676: 1674: 1671: 1670: 1642:, collapses to 1582: 1578: 1577: 1573: 1569: 1563: 1562: 1550: 1546: 1537: 1536: 1534: 1531: 1530: 1461: 1459:Derandomization 1451: 1450: 1442: 1441: 1440:. Also, for a 1436: 1432: 1428: 1427: 1422: 1418: 1417: 1412: 1411: 1406: 1405: 1398: 1389: 1379: 1378: 1374: 1261: 1260: 1258: 1255: 1254: 1252: 1229: 1228: 1216: 1215: 1214: 1199: 1198: 1196: 1193: 1192: 1190: 1144: 1136: 1053:. As a result, 1037: 1033: 1024: 1020: 1005: 1004: 1002: 999: 998: 967:is a subset of 959:is a subset of 932:problems, then 920:or neither. If 916:is a subset of 769: 722: 715: 674: 672:Related classes 569: 568: 563: 539: 538: 528: 522: 521: 519: 516: 515: 513: 511: 504: 419: 416: 415: 413: 351: 348: 347: 345: 294:Alternatively, 223: 159: 157: 154: 152: 140:BPP algorithm ( 107: 105: 102: 101: 72:have efficient 54:polynomial time 28: 23: 22: 15: 12: 11: 5: 2611: 2601: 2600: 2583: 2582: 2577: 2574: 2573: 2571: 2570: 2565: 2560: 2555: 2550: 2545: 2539: 2537: 2533: 2532: 2530: 2529: 2524: 2519: 2514: 2509: 2503: 2501: 2497: 2496: 2494: 2493: 2488: 2483: 2478: 2473: 2468: 2463: 2458: 2453: 2447: 2445: 2441: 2440: 2438: 2437: 2436: 2435: 2425: 2420: 2419: 2418: 2408: 2403: 2398: 2393: 2388: 2383: 2378: 2373: 2372: 2371: 2369:co-NP-complete 2366: 2361: 2356: 2346: 2340: 2338: 2334: 2333: 2331: 2330: 2325: 2320: 2315: 2310: 2305: 2300: 2299: 2298: 2288: 2283: 2278: 2273: 2272: 2271: 2261: 2256: 2251: 2246: 2241: 2236: 2231: 2226: 2220: 2218: 2214: 2213: 2206: 2205: 2198: 2191: 2183: 2177: 2176: 2164: 2157: 2156:External links 2154: 2153: 2152: 2149: 2137:(2): 178–189. 2119: 2099: 2092: 2076:Michael Sipser 2072: 2065: 2049: 2037: 2036: 2008: 1989:(4): 307–318. 1965: 1934: 1922:(3): 231–243, 1906: 1869: 1860:Adleman, L. M. 1851: 1838: 1824: 1811: 1797: 1796: 1794: 1791: 1790: 1789: 1784: 1777: 1770: 1761: 1758: 1746: 1745: 1734: 1730: 1725: 1722: 1719: 1716: 1712: 1708: 1702: 1699: 1696: 1693: 1690: 1685: 1680: 1608: 1607: 1596: 1592: 1585: 1581: 1576: 1572: 1559: 1556: 1553: 1549: 1545: 1460: 1457: 1390: 1369: 1312: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1235: 1232: 1225: 1222: 1219: 1213: 1208: 1205: 1202: 1143: 1142:Relativization 1140: 1135: 1132: 1107:, which means 1040: 1036: 1032: 1027: 1023: 1019: 1014: 1011: 1008: 875:oracle machine 768: 765: 720: 713: 686:Turing machine 673: 670: 564: 548: 545: 542: 535: 532: 525: 512: 506: 503: 500: 496:Chernoff bound 459: 458: 444: 441: 438: 435: 432: 429: 426: 423: 390: 376: 373: 370: 367: 364: 361: 358: 355: 322: 287:, the machine 279: 278: 263: 248: 222: 219: 218: 217: 214: 211: 198: 197: 189: 188: 185: 182: 178: 177: 174: 171: 167: 166: 163: 160: 155: 150: 149: 146: 145: 137: 136: 133: 130: 126: 125: 122: 119: 115: 114: 111: 108: 103: 99: 97: 94: 93: 80:also contains 56:with an error 48:solvable by a 26: 9: 6: 4: 3: 2: 2610: 2599: 2596: 2595: 2593: 2580: 2575: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2549: 2546: 2544: 2541: 2540: 2538: 2534: 2528: 2525: 2523: 2520: 2518: 2515: 2513: 2510: 2508: 2505: 2504: 2502: 2498: 2492: 2489: 2487: 2484: 2482: 2479: 2477: 2474: 2472: 2469: 2467: 2464: 2462: 2459: 2457: 2454: 2452: 2449: 2448: 2446: 2442: 2434: 2431: 2430: 2429: 2426: 2424: 2421: 2417: 2414: 2413: 2412: 2409: 2407: 2404: 2402: 2399: 2397: 2394: 2392: 2389: 2387: 2384: 2382: 2379: 2377: 2374: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2351: 2350: 2347: 2345: 2342: 2341: 2339: 2335: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2297: 2294: 2293: 2292: 2289: 2287: 2284: 2282: 2279: 2277: 2274: 2270: 2267: 2266: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2221: 2219: 2215: 2211: 2204: 2199: 2197: 2192: 2190: 2185: 2184: 2181: 2175: 2171: 2168: 2165: 2163: 2160: 2159: 2150: 2145: 2140: 2136: 2132: 2128: 2124: 2120: 2116: 2112: 2108: 2104: 2100: 2095: 2093:0-534-94728-X 2089: 2084: 2083: 2077: 2073: 2068: 2066:0-201-53082-1 2062: 2058: 2054: 2050: 2046: 2041: 2040: 2034: 2030: 2026: 2022: 2019: =  2018: 2012: 2004: 2000: 1996: 1992: 1988: 1984: 1980: 1976: 1969: 1961: 1957: 1953: 1945: 1938: 1930: 1925: 1921: 1917: 1910: 1903: 1899: 1895: 1891: 1888:(1): 96–113, 1887: 1883: 1879: 1873: 1865: 1861: 1855: 1848: 1842: 1834: 1828: 1821: 1815: 1808: 1802: 1798: 1788: 1785: 1783: 1782: 1778: 1776: 1775: 1771: 1769: 1768: 1764: 1763: 1757: 1755: 1751: 1732: 1728: 1720: 1714: 1710: 1706: 1683: 1669: 1668: 1667: 1665: 1664: 1659: 1658:Avi Wigderson 1655: 1651: 1650:to collapse. 1649: 1645: 1641: 1637: 1633: 1629: 1625: 1621: 1617: 1613: 1594: 1590: 1583: 1579: 1574: 1570: 1557: 1554: 1551: 1543: 1529: 1528: 1527: 1525: 1521: 1520: 1516:collapses to 1515: 1514: 1509: 1508:Avi Wigderson 1505: 1501: 1500:Lance Fortnow 1497: 1493: 1491: 1487: 1483: 1479: 1475: 1470: 1466: 1456: 1445: 1403: 1397: 1388: 1386: 1368: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1211: 1187: 1185: 1181: 1177: 1173: 1169: 1165: 1164:random oracle 1161: 1157: 1153: 1149: 1139: 1131: 1129: 1125: 1120: 1116: 1115: 1110: 1106: 1102: 1098: 1094: 1092: 1088: 1084: 1080: 1076: 1073:collapses to 1072: 1068: 1064: 1060: 1056: 1038: 1030: 1025: 1017: 996: 992: 988: 984: 980: 976: 972: 971: 966: 962: 958: 957: 951: 949: 945: 944: 939: 935: 931: 927: 923: 919: 915: 911: 910: 905: 901: 897: 896: 891: 886: 884: 880: 876: 873: 869: 865: 861: 857: 853: 849: 845: 841: 834: 830: 826: 822: 818: 814: 810: 805: 798: 794: 790: 786: 782: 778: 773: 764: 761: 757: 756: 751: 747: 743: 739: 734: 732: 731: 726: 719: 712: 708: 704: 703:postselection 699: 697: 696: 691: 687: 683: 679: 669: 667: 663: 659: 655: 651: 650: 645: 640: 638: 634: 630: 626: 622: 621: 620: 617:PRIMES is in 613: 609: 605: 601: 596: 594: 590: 586: 582: 578: 574: 567: 533: 530: 499: 497: 493: 488: 484: 480: 476: 472: 467: 464: 442: 439: 433: 430: 427: 421: 411: 407: 403: 399: 395: 391: 374: 371: 365: 362: 359: 353: 343: 339: 335: 331: 327: 323: 320: 317: 316: 315: 313: 309: 305: 301: 297: 292: 290: 286: 285: 276: 272: 268: 264: 261: 257: 253: 249: 246: 243: 242: 241: 239: 236: 232: 228: 215: 212: 209: 208: 207: 205: 195: 190: 186: 183: 180: 179: 175: 172: 169: 168: 164: 161: 148: 147: 143: 138: 134: 131: 128: 127: 123: 120: 117: 116: 112: 109: 96: 95: 90: 87: 85: 84: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 19: 2312: 2134: 2130: 2106: 2081: 2056: 2024: 2020: 2016: 2011: 1986: 1982: 1978: 1974: 1968: 1950: 1937: 1919: 1915: 1909: 1885: 1881: 1872: 1863: 1854: 1841: 1827: 1814: 1801: 1779: 1772: 1765: 1753: 1749: 1747: 1661: 1652: 1647: 1643: 1639: 1635: 1627: 1623: 1615: 1611: 1609: 1523: 1517: 1511: 1496:László Babai 1494: 1489: 1485: 1481: 1477: 1473: 1462: 1401: 1399: 1394: 1384: 1370: 1364: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1332: 1188: 1183: 1179: 1175: 1171: 1167: 1159: 1155: 1151: 1147: 1145: 1137: 1118: 1112: 1108: 1100: 1095: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 997:states that 990: 982: 978: 974: 968: 964: 960: 954: 952: 947: 941: 937: 933: 925: 921: 917: 913: 907: 899: 893: 889: 887: 882: 878: 871: 867: 863: 855: 851: 847: 839: 837: 820: 759: 753: 745: 735: 728: 724: 717: 710: 706: 700: 693: 681: 677: 675: 665: 661: 653: 647: 646:(in fact in 643: 641: 636: 633:Nitin Saxena 629:Neeraj Kayal 618: 615: 603: 599: 597: 592: 588: 584: 580: 576: 572: 570: 486: 482: 478: 474: 468: 462: 460: 409: 405: 401: 397: 393: 341: 337: 333: 329: 325: 318: 314:, such that 311: 307: 303: 299: 295: 293: 288: 282: 280: 274: 270: 266: 259: 255: 251: 244: 240:, such that 237: 230: 226: 224: 203: 201: 193: 141: 81: 77: 69: 65: 61: 41: 37: 29: 2416:#P-complete 2354:NP-complete 2269:NL-complete 1612:i.o.-SUBEXP 1539:i.o.-SUBEXP 1469:conjectured 1251:(and hence 1126:, see also 930:NP-complete 846:; that is, 608:determining 225:A language 187:> 1 − 2 173:> 1 − 2 58:probability 2471:ELEMENTARY 2296:P-complete 1793:References 1610:The class 1565:i.o.-DTIME 1504:Noam Nisan 844:complement 404:of length 336:of length 221:Definition 2466:2-EXPTIME 1902:1095-7111 1666:, where 1584:ε 1552:ε 1548:⋂ 1093:or both. 1061:leads to 1035:Π 1031:∩ 1022:Σ 1018:⊆ 783:, co-RP, 66:practical 2592:Category 2461:EXPSPACE 2456:NEXPTIME 2224:DLOGTIME 2170:Archived 2078:(1997). 2055:(1993). 2003:14802332 1760:See also 502:Problems 471:constant 392:For all 324:For all 265:For all 250:For all 153:produced 100:produced 2451:EXPTIME 2359:NP-hard 1979:EXPTIME 1513:EXPTIME 1325:⁠ 1253:⁠ 1249:⁠ 1191:⁠ 795:within 730:PostBQP 701:Adding 688:with a 561:⁠ 514:⁠ 455:⁠ 414:⁠ 396:not in 387:⁠ 346:⁠ 269:not in 196:> 0 184:< 2 176:< 2 156:Correct 104:Correct 2558:NSPACE 2553:DSPACE 2428:PSPACE 2090:  2063:  2001:  1900:  1616:SUBEXP 1506:, and 1114:P/poly 1069:since 979:PSPACE 963:, and 904:subset 852:co-BPP 833:PSPACE 831:, and 825:P/poly 797:PSPACE 302:is in 229:is in 158:answer 151:Answer 144:runs) 135:≥ 2/3 132:≤ 1/3 124:≤ 1/3 121:≥ 2/3 106:answer 98:Answer 2548:NTIME 2543:DTIME 2364:co-NP 1999:S2CID 1947:(PDF) 1392:Proof 1372:Lemma 1184:co-NP 902:is a 817:co-NP 740:is a 649:co-RP 612:prime 2376:TFNP 2088:ISBN 2061:ISBN 1898:ISSN 1656:and 1634:and 1555:> 1446:=EXP 1426:and 1367:+1. 1275:< 1266:< 1182:and 1174:and 1154:and 940:and 892:and 721:path 714:path 631:and 170:Yes 162:Yes 118:Yes 110:Yes 2491:ALL 2391:QMA 2381:FNP 2323:APX 2318:BQP 2313:BPP 2303:ZPP 2234:ACC 2139:doi 2111:doi 2029:doi 2021:BPP 1991:doi 1975:BPP 1956:doi 1924:doi 1890:doi 1781:BQP 1774:ZPP 1754:BPP 1648:not 1638:as 1628:BPP 1524:BPP 1490:BPP 1482:BPP 1467:is 1444:ZPP 1437:BPP 1433:EXP 1429:EXP 1359:+1) 1176:BPP 1172:BPP 1160:BPP 1152:BPP 1119:BPP 1109:BPP 1101:BPP 1085:or 1083:BPP 1067:BPP 983:BPP 965:BPP 961:BPP 948:BPP 926:BPP 918:BPP 906:of 900:BPP 890:BPP 883:BPP 879:BPP 872:BPP 868:BPP 864:BPP 860:low 858:is 856:BPP 848:BPP 840:BPP 821:BPP 785:BQP 777:ZPP 760:ZPP 755:ZPP 746:BPP 718:BPP 711:BPP 707:BPP 705:to 695:BQP 678:BPP 656:is 644:BPP 600:BPP 593:BPP 581:BPP 577:BPP 475:BPP 328:in 304:BPP 296:BPP 284:ZPP 254:in 231:BPP 204:BPP 181:No 165:No 129:No 113:No 78:BPP 70:BPP 62:BPP 52:in 42:BPP 2594:: 2486:RE 2476:PR 2423:IP 2411:#P 2406:PP 2401:⊕P 2396:PH 2386:AM 2349:NP 2344:UP 2328:FP 2308:RP 2286:CC 2281:SC 2276:NC 2264:NL 2259:FL 2254:RL 2249:SL 2239:TC 2229:AC 2135:75 2133:. 2129:. 1997:. 1985:. 1920:71 1918:, 1896:, 1886:10 1884:, 1767:RP 1756:. 1752:= 1626:= 1522:, 1519:MA 1502:, 1498:, 1488:= 1480:= 1478:RP 1476:= 1353:kn 1333:kn 1186:. 1180:NP 1170:= 1158:≠ 1150:= 1130:. 1091:NP 1089:≠ 1081:= 1071:PH 1065:= 1059:NP 1057:= 991:PH 981:. 970:PP 956:RP 950:. 946:⊆ 943:PH 938:RP 936:= 934:NP 922:NP 914:NP 912:, 909:NP 895:NP 885:. 881:= 854:. 850:= 829:PH 827:, 823:, 819:, 815:, 813:NP 811:, 789:PP 787:, 781:RP 779:, 736:A 733:. 725:NP 716:. 698:. 639:. 623:, 595:. 591:= 498:. 408:(| 340:(| 273:, 258:, 31:In 2481:R 2291:P 2244:L 2202:e 2195:t 2188:v 2147:. 2141:: 2117:. 2113:: 2096:. 2069:. 2047:. 2031:: 2017:P 2005:. 1993:: 1987:3 1962:. 1958:: 1926:: 1892:: 1835:. 1750:P 1733:, 1729:) 1724:) 1721:n 1718:( 1715:O 1711:2 1707:( 1701:E 1698:M 1695:I 1692:T 1689:D 1684:= 1679:E 1663:E 1644:E 1640:E 1636:E 1624:P 1595:. 1591:) 1580:n 1575:2 1571:( 1558:0 1544:= 1486:P 1474:P 1435:= 1431:= 1423:P 1421:≤ 1419:P 1413:E 1407:E 1402:k 1385:n 1380:E 1365:n 1361:n 1357:k 1349:n 1345:n 1341:k 1337:n 1335:( 1329:E 1311:P 1308:X 1305:E 1302:N 1299:= 1296:P 1293:X 1290:E 1287:= 1284:P 1281:P 1278:B 1272:P 1269:N 1263:P 1234:P 1231:N 1224:P 1221:X 1218:E 1212:= 1207:P 1204:P 1201:B 1168:P 1156:P 1148:P 1087:P 1079:P 1075:P 1063:P 1055:P 1039:2 1026:2 1013:P 1010:P 1007:B 975:P 809:P 793:P 682:P 666:d 662:d 654:P 637:P 619:P 604:P 589:P 585:P 573:P 547:P 544:P 541:B 534:? 531:= 524:P 510:: 487:n 483:c 479:n 463:y 443:1 440:= 437:) 434:y 431:, 428:x 425:( 422:M 410:x 406:p 402:y 398:L 394:x 375:1 372:= 369:) 366:y 363:, 360:x 357:( 354:M 342:x 338:p 334:y 330:L 326:x 319:M 312:M 308:p 300:L 289:M 275:M 271:L 267:x 260:M 256:L 252:x 245:M 238:M 227:L 194:c 142:k 83:P 40:( 20:)

Index

Bounded-error probabilistic polynomial
computational complexity theory
decision problems
probabilistic Turing machine
polynomial time
probability
probabilistic algorithms
P
probabilistic Turing machine
ZPP
constant
drops off exponentially
Chernoff bound
(more unsolved problems in computer science)
determining
prime
PRIMES is in P
Manindra Agrawal
Neeraj Kayal
Nitin Saxena
co-RP
polynomial identity testing
Turing machine
quantum computer
BQP
postselection
PostBQP
Monte Carlo algorithm
randomized algorithm
Las Vegas algorithm

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.