Knowledge

Burnside problem

Source 📝

1023: 52: 1435:. Adian later improved the bound on the odd exponent to 665. The latest improvement to the bound on odd exponent is 101 obtained by Adian himself in 2015. The case of even exponent turned out to be considerably more difficult. It was only in 1994 that Sergei Vasilievich Ivanov was able to prove an analogue of Novikov–Adian theorem: for any 1471:≄ 8000. Novikov–Adian, Ivanov and LysĂ«nok established considerably more precise results on the structure of the free Burnside groups. In the case of the odd exponent, all finite subgroups of the free Burnside groups were shown to be cyclic groups. In the even exponent case, each finite subgroup is contained in a product of two 928:
The case of even exponents turned out to be much harder to settle. In 1992, S. V. Ivanov announced the negative solution for sufficiently large even exponents divisible by a large power of 2 (detailed proofs were published in 1994 and occupied some 300 pages). Later joint work of Ol'shanskii and
911:
Nevertheless, the general answer to the Burnside problem turned out to be negative. In 1964, Golod and Shafarevich constructed an infinite group of Burnside type without assuming that all elements have uniformly bounded order. In 1968,
1034:
Part of the difficulty with the general Burnside problem is that the requirements of being finitely generated and periodic give very little information about the possible structure of a group. Therefore, we pose more requirements on
920:
supplied a negative solution to the bounded exponent problem for all odd exponents larger than 4381 which was later improved to an odd exponent larger than 665 by Adian and the best odd number bound is 101 also by Adian. In 1982,
1286:
is obtained from it by imposing additional relations. The existence of the free Burnside group and its uniqueness up to an isomorphism are established by standard techniques of group theory. Thus if
1510:
in 1979 using geometric methods, thus affirmatively solving O. Yu. Schmidt's problem. In 1982 Ol'shanskii was able to strengthen his results to establish existence, for any sufficiently large
884:
was able to prove in 1958 that among the finite groups with a given number of generators and a given prime exponent, there exists a largest one. This provides a solution for the
848:
provided a counter-example in 1964. The problem has many refinements and variants that differ in the additional conditions imposed on the orders of the group elements (see
1498:
A famous class of counterexamples to the Burnside problem is formed by finitely generated non-cyclic infinite groups in which every nontrivial proper subgroup is a finite
497: 472: 435: 925:
found some striking counterexamples for sufficiently large odd exponents (greater than 10), and supplied a considerably simpler proof based on geometric ideas.
1964: 933:, provided the exponent is sufficiently large. By contrast, when the exponent is small and different from 2, 3, 4 and 6, very little is known. 799: 1922:
proposed a nearly 300 page alternative proof to the Burnside problem in 1973; however, Adian ultimately pointed out a flaw in that proof.
2307: 2287: 1787:
during the 1950s, prior to the negative solution of the general Burnside problem. His solution, establishing the finiteness of B
357: 17: 1345:
The full solution to Burnside problem in this form is not known. Burnside considered some easy cases in his original paper:
307: 2302: 1096:
It turns out that this problem can be restated as a question about the finiteness of groups in a particular family. The
792: 302: 2166: 2084: 1972: 1897: 1600:
has all finite limits and colimits. It can also be stated more explicitly in terms of certain universal groups with
1932:
Nahlus, Nazih; Yang, Yilong (2021). "Projective Limits and Ultraproducts of Nonabelian Finite Groups". p. 19.
1592:
This variant of the Burnside problem can also be stated in terms of category theory: an affirmative answer for all
1142:, and which is the "largest" group satisfying these requirements. More precisely, the characteristic property of B( 1529:. In a paper published in 1996, Ivanov and Ol'shanskii solved an analogue of the Burnside problem in an arbitrary 718: 1381: 1007: 785: 896:
had shown in 1911 that any finitely generated periodic group that was a subgroup of the group of invertible
2283: 1919: 1803:
in finite characteristic. The case of arbitrary exponent has been completely settled in the affirmative by
402: 216: 837: 134: 1369: 905: 817: 600: 334: 211: 99: 480: 455: 418: 2192:
Zel'manov, E I (1991). "Solution of the Restricted Burnside Problem for Groups of Odd Exponent".
1476: 1223: 1521:> 10) of a finitely generated infinite group in which every nontrivial proper subgroup is a 750: 540: 1507: 922: 624: 965:= 1. Clearly, every finite group is periodic. There exist easily defined groups such as the 2257: 2201: 2126: 1503: 1420: 821: 564: 552: 170: 104: 1455:) is infinite; together with the Novikov–Adian theorem, this implies infiniteness for all 8: 1697: 1613: 139: 34: 2261: 2205: 2130: 2217: 2142: 1933: 1299: 972:
which are infinite periodic groups; but the latter group cannot be finitely generated.
124: 96: 1419:
in 1968. Using a complicated combinatorial argument, they demonstrated that for every
2248:
Zel'manov, E I (1992). "A Solution of the Restricted Burnside Problem for 2-groups".
2162: 2146: 2080: 1968: 1893: 1585: 1480: 529: 372: 266: 2269: 2221: 2213: 2138: 695: 2265: 2209: 2134: 2104: 2054: 2029: 2008: 1999:
Adian, S. I. (2015). "New estimates of odd exponents of infinite Burnside groups".
1988: 1609: 1530: 996: 930: 845: 829: 680: 672: 664: 656: 648: 636: 576: 516: 506: 348: 290: 165: 2059: 2042: 1979:
S. I. Adian (2015). "New estimates of odd exponents of infinite Burnside groups".
929:
Ivanov established a negative solution to an analogue of the Burnside problem for
2020:
S. V. Ivanov (1994). "The Free Burnside Groups of Sufficiently Large Exponents".
1887: 1784: 1616:
in any group is itself a normal subgroup of finite index. Thus, the intersection
881: 764: 757: 743: 700: 588: 511: 341: 255: 195: 75: 966: 1649: 1472: 946: 771: 707: 397: 377: 314: 279: 200: 190: 175: 160: 114: 91: 2033: 2012: 1992: 892:
was able to solve the restricted Burnside problem for an arbitrary exponent.)
2296: 2229: 2173: 2072: 1848: 1804: 1412: 1022: 913: 889: 868:
Initial work pointed towards the affirmative answer. For example, if a group
690: 612: 446: 319: 185: 27:
If G is a finitely generated group with exponent n, is G necessarily finite?
1956: 1808: 1522: 1511: 1499: 1416: 1354: 1027: 992: 917: 857: 841: 833: 825: 545: 244: 233: 180: 155: 150: 109: 80: 43: 1800: 949:(or torsion) if every element has finite order; in other words, for each 893: 2178:"Solution of the restricted Burnside problem for groups of odd exponent" 2157:. Translated from the 1989 Russian original by Yu. A. Bakhturin (1991) 1596:
is equivalent to saying that the category of finite groups of exponent
1431:> 4381, there exist infinite, finitely generated groups of exponent 712: 440: 1892:. Dordrecht ; Boston: Kluwer Academic Publishers. p. xxii. 533: 2233: 2177: 2117:
Lysënok, I. G. (1996). "Infinite Burnside groups of even exponent".
1938: 70: 2161:(Soviet Series), 70. Dordrecht: Kluwer Academic Publishers Group. 2040: 2109: 2092: 1411:
The breakthrough in solving the Burnside problem was achieved by
1000: 412: 326: 1963:. Translated from the Russian by John Lennox and James Wiegold. 1636:). One can therefore define the free restricted Burnside group B 1847:, so that a free Burnside group of exponent two is necessarily 1043:
with the additional property that there exists a least integer
1030:
of the 27-element free Burnside group of rank 2 and exponent 3.
904:
complex matrices was finite; he used this theorem to prove the
51: 1873:
Representation Theory of Finite Groups and Associated Algebras
1073:. The Burnside problem for groups with bounded exponent asks: 1541:
Formulated in the 1930s, it asks another, related, question:
1475:, and there exist non-cyclic finite subgroups. Moreover, the 1380:
The following additional results are known (Burnside, Sanov,
1010:). However, the orders of the elements of this group are not 2043:"Hyperbolic groups and their quotients of bounded exponents" 1608:. By basic results of group theory, the intersection of two 2182:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
2097:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
1799:), used a relation with deep questions about identities in 2234:"Solution of the restricted Burnside problem for 2-groups" 1620:
of all the normal subgroups of the free Burnside group B(
1376:
copies of the cyclic group of order 2 and hence finite.
1318:. The Burnside problem can now be restated as follows: 872:
is finitely generated and the order of each element of
840:. It is known to have a negative answer in general, as 1740:). The restricted Burnside problem then asks whether B 991:
This question was answered in the negative in 1964 by
1981:
Trudy Matematicheskogo Instituta imeni V. A. Steklova
483: 458: 421: 2071:. Translated from the Russian and with a preface by 1870: 1752:) is a finite group. In terms of category theory, B 1628:) which have finite index is a normal subgroup of B( 1506:. First examples of such groups were constructed by 1483:
problems were shown to be effectively solvable in B(
2001:
Proceedings of the Steklov Institute of Mathematics
1463:≄ 2. This was improved in 1996 by I. G. LysĂ«nok to 1728:) — in other words, it is a homomorphic image of B 832:in 1902, making it one of the oldest questions in 491: 466: 429: 2047:Transactions of the American Mathematical Society 983:is a finitely generated, periodic group, then is 888:for the case of prime exponent. (Later, in 1989, 2294: 2077:Ergebnisse der Mathematik und ihrer Grenzgebiete 2022:International Journal of Algebra and Computation 1965:Ergebnisse der Mathematik und ihrer Grenzgebiete 885: 853: 1827:The key step is to observe that the identities 1491:) both for the cases of odd and even exponents 1564:is bounded by some constant depending only on 1560:is finite, can one conclude that the order of 1536: 1059:= 1. A group with this property is said to be 2247: 2191: 2090: 1961:The Burnside problem and identities in groups 1772:in the category of finite groups of exponent 1572:? Equivalently, are there only finitely many 1408:The particular case of B(2, 5) remains open. 849: 793: 2019: 1290:is any finitely generated group of exponent 1084:is a finitely generated group with exponent 836:, and was influential in the development of 2228: 2172: 2093:"Infinite Burnside groups of even exponent" 1978: 1885: 1017: 936: 1931: 1925: 1875:. John Wiley & Sons. pp. 256–262. 1783:, this problem was extensively studied by 800: 786: 2108: 2058: 2041:S. V. Ivanov; A. Yu. Ol'Shanskii (1996). 1937: 1879: 856:below). Some of these variants are still 485: 460: 423: 2155:Geometry of defining relations in groups 1967:, 95. Springer-Verlag, Berlin-New York. 1889:Geometry of defining relations in groups 1871:Curtis, Charles; Reiner, Irving (1962). 1176:, there is a unique homomorphism from B( 1021: 2288:MacTutor History of Mathematics archive 2116: 1696:) with finite index. Therefore, by the 14: 2295: 358:Classification of finite simple groups 1998: 1864: 999:, who gave an example of an infinite 957:, there exists some positive integer 2079:(3) , 20. Springer-Verlag, Berlin. 24: 1779:In the case of the prime exponent 1533:for sufficiently large exponents. 820:in which every element has finite 25: 2319: 2277: 2194:Mathematics of the USSR-Izvestiya 1700:, every finite group of exponent 1664:. Every finite group of exponent 2308:Unsolved problems in mathematics 2159:Mathematics and its Applications 1006:that is finitely generated (see 863: 50: 2284:History of the Burnside problem 2270:10.1070/SM1992v072n02ABEH001272 2250:Mathematics of the USSR-Sbornik 2214:10.1070/IM1991v036n01ABEH001946 2139:10.1070/IM1996v060n03ABEH000077 1950: 1314:is the number of generators of 1913: 1821: 1672:generators is isomorphic to B( 1061:periodic with bounded exponent 1014:bounded by a single constant. 719:Infinite dimensional Lie group 13: 1: 2060:10.1090/S0002-9947-96-01510-3 1886:OlÊčshanskiÄ­, A. Iïž UïžĄ (1991). 1858: 1708:generators is isomorphic to B 1333:is the free Burnside group B( 1548:If it is known that a group 1546:Restricted Burnside problem. 1447:divisible by 2, the group B( 1325:For which positive integers 1226:, the free Burnside group B( 1039:. Consider a periodic group 492:{\displaystyle \mathbb {Z} } 467:{\displaystyle \mathbb {Z} } 430:{\displaystyle \mathbb {Z} } 7: 1537:Restricted Burnside problem 1150:) is that, given any group 1138:= 1 holds for all elements 886:restricted Burnside problem 217:List of group theory topics 10: 2324: 2303:Combinatorial group theory 2153:A. Yu. Ol'shanskii (1989) 1839:) = 1 together imply that 1688:is a normal subgroup of B( 838:combinatorial group theory 2034:10.1142/S0218196794000026 2013:10.1134/S0081543815040045 1993:10.1134/S0371968515020041 1698:Third Isomorphism Theorem 1120:distinguished generators 1008:Golod–Shafarevich theorem 977:General Burnside problem. 1814: 1604:generators and exponent 1556:generators and exponent 1400:, 6) are finite for all 1018:Bounded Burnside problem 937:General Burnside problem 876:is a divisor of 4, then 818:finitely generated group 335:Elementary abelian group 212:Glossary of group theory 2238:Matematicheskii Sbornik 2067:A. I. Kostrikin (1990) 1768:cyclic groups of order 1764:) is the coproduct of 1580:generators of exponent 1282:generators of exponent 18:Burnside's problem 2119:Izvestiya: Mathematics 2091:I. G. LysĂ«nok (1996). 1811:in 1994 for his work. 1807:, who was awarded the 1590: 1343: 1134:in which the identity 1094: 1031: 989: 824:must necessarily be a 751:Linear algebraic group 493: 468: 431: 1543: 1320: 1222:. In the language of 1075: 1025: 974: 880:is finite. Moreover, 494: 469: 432: 1323:Burnside problem II. 906:Jordan–Schur theorem 481: 456: 419: 2262:1992SbMat..72..543Z 2206:1991IzMat..36...41Z 2131:1996IzMat..60..453L 1439:> 1 and an even 1224:group presentations 1116:), is a group with 1098:free Burnside group 1092:necessarily finite? 1078:Burnside problem I. 1068:group with exponent 987:necessarily finite? 125:Group homomorphisms 35:Algebraic structure 1508:A. Yu. Ol'shanskii 1256:= 1 for each word 1252:and the relations 1047:such that for all 1032: 923:A. Yu. Ol'shanskii 828:. It was posed by 601:Special orthogonal 489: 464: 427: 308:Lagrange's theorem 1300:homomorphic image 931:hyperbolic groups 810: 809: 385: 384: 267:Alternating group 224: 223: 16:(Redirected from 2315: 2273: 2245: 2225: 2189: 2188:(1): 42–59, 221. 2150: 2114: 2112: 2064: 2062: 2053:(6): 2091–2138. 2037: 2016: 1996: 1945: 1943: 1941: 1929: 1923: 1917: 1911: 1910: 1908: 1906: 1883: 1877: 1876: 1868: 1852: 1825: 1610:normal subgroups 1531:hyperbolic group 1502:, the so-called 1274:, and any group 1172:and of exponent 997:Igor Shafarevich 846:Igor Shafarevich 830:William Burnside 814:Burnside problem 802: 795: 788: 744:Algebraic groups 517:Hyperbolic group 507:Arithmetic group 498: 496: 495: 490: 488: 473: 471: 470: 465: 463: 436: 434: 433: 428: 426: 349:Schur multiplier 303:Cauchy's theorem 291:Quaternion group 239: 238: 65: 64: 54: 41: 30: 29: 21: 2323: 2322: 2318: 2317: 2316: 2314: 2313: 2312: 2293: 2292: 2280: 2246:Translation in 2190:Translation in 2115:Translation in 2069:Around Burnside 1997:Translation in 1953: 1948: 1930: 1926: 1918: 1914: 1904: 1902: 1900: 1884: 1880: 1869: 1865: 1861: 1856: 1855: 1826: 1822: 1817: 1790: 1785:A. I. Kostrikin 1755: 1743: 1731: 1711: 1639: 1539: 1504:Tarski Monsters 1473:dihedral groups 1272: 1266: 1250: 1244: 1216: 1197: 1170: 1164: 1132: 1126: 1020: 939: 882:A. I. Kostrikin 866: 816:asks whether a 806: 777: 776: 765:Abelian variety 758:Reductive group 746: 736: 735: 734: 733: 684: 676: 668: 660: 652: 625:Special unitary 536: 522: 521: 503: 502: 484: 482: 479: 478: 459: 457: 454: 453: 422: 420: 417: 416: 408: 407: 398:Discrete groups 387: 386: 342:Frobenius group 287: 274: 263: 256:Symmetric group 252: 236: 226: 225: 76:Normal subgroup 62: 42: 33: 28: 23: 22: 15: 12: 11: 5: 2321: 2311: 2310: 2305: 2291: 2290: 2279: 2278:External links 2276: 2275: 2274: 2256:(2): 543–565. 2240:(in Russian). 2226: 2184:(in Russian). 2170: 2151: 2125:(3): 453–654. 2099:(in Russian). 2088: 2065: 2038: 2017: 1983:(in Russian). 1976: 1952: 1949: 1947: 1946: 1924: 1912: 1898: 1878: 1862: 1860: 1857: 1854: 1853: 1819: 1818: 1816: 1813: 1788: 1753: 1741: 1729: 1709: 1650:quotient group 1637: 1538: 1535: 1517:(one can take 1406: 1405: 1378: 1377: 1370:direct product 1362: 1270: 1264: 1248: 1242: 1214: 1195: 1188:that maps the 1168: 1162: 1130: 1124: 1019: 1016: 938: 935: 865: 862: 858:open questions 808: 807: 805: 804: 797: 790: 782: 779: 778: 775: 774: 772:Elliptic curve 768: 767: 761: 760: 754: 753: 747: 742: 741: 738: 737: 732: 731: 728: 725: 721: 717: 716: 715: 710: 708:Diffeomorphism 704: 703: 698: 693: 687: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 645: 644: 633: 632: 621: 620: 609: 608: 597: 596: 585: 584: 573: 572: 565:Special linear 561: 560: 553:General linear 549: 548: 543: 537: 528: 527: 524: 523: 520: 519: 514: 509: 501: 500: 487: 475: 462: 449: 447:Modular groups 445: 444: 443: 438: 425: 409: 406: 405: 400: 394: 393: 392: 389: 388: 383: 382: 381: 380: 375: 370: 367: 361: 360: 354: 353: 352: 351: 345: 344: 338: 337: 332: 323: 322: 320:Hall's theorem 317: 315:Sylow theorems 311: 310: 305: 297: 296: 295: 294: 288: 283: 280:Dihedral group 276: 275: 270: 264: 259: 253: 248: 237: 232: 231: 228: 227: 222: 221: 220: 219: 214: 206: 205: 204: 203: 198: 193: 188: 183: 178: 173: 171:multiplicative 168: 163: 158: 153: 145: 144: 143: 142: 137: 129: 128: 120: 119: 118: 117: 115:Wreath product 112: 107: 102: 100:direct product 94: 92:Quotient group 86: 85: 84: 83: 78: 73: 63: 60: 59: 56: 55: 47: 46: 26: 9: 6: 4: 3: 2: 2320: 2309: 2306: 2304: 2301: 2300: 2298: 2289: 2285: 2282: 2281: 2271: 2267: 2263: 2259: 2255: 2251: 2244:(4): 568–592. 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2211: 2207: 2203: 2199: 2195: 2187: 2183: 2179: 2175: 2171: 2168: 2167:0-7923-1394-1 2164: 2160: 2156: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2111: 2106: 2102: 2098: 2094: 2089: 2086: 2085:3-540-50602-0 2082: 2078: 2074: 2073:James Wiegold 2070: 2066: 2061: 2056: 2052: 2048: 2044: 2039: 2035: 2031: 2027: 2023: 2018: 2014: 2010: 2006: 2002: 1994: 1990: 1986: 1982: 1977: 1974: 1973:3-540-08728-1 1970: 1966: 1962: 1958: 1955: 1954: 1944:Corollary 3.2 1940: 1935: 1928: 1921: 1916: 1901: 1899:9780792313946 1895: 1891: 1890: 1882: 1874: 1867: 1863: 1850: 1846: 1842: 1838: 1834: 1830: 1824: 1820: 1812: 1810: 1806: 1805:Efim Zelmanov 1802: 1798: 1794: 1786: 1782: 1777: 1775: 1771: 1767: 1763: 1759: 1751: 1747: 1739: 1735: 1727: 1723: 1719: 1715: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1643: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1595: 1589: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1542: 1534: 1532: 1528: 1524: 1520: 1516: 1513: 1509: 1505: 1501: 1496: 1494: 1490: 1486: 1482: 1478: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1426: 1422: 1418: 1414: 1413:Pyotr Novikov 1409: 1403: 1399: 1395: 1391: 1387: 1386: 1385: 1383: 1375: 1371: 1367: 1363: 1360: 1356: 1352: 1348: 1347: 1346: 1342: 1340: 1336: 1332: 1328: 1324: 1319: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1263: 1259: 1255: 1251: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1211:th generator 1210: 1206: 1202: 1198: 1192:th generator 1191: 1187: 1183: 1179: 1175: 1171: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1123: 1119: 1115: 1111: 1107: 1104:and exponent 1103: 1099: 1093: 1091: 1087: 1083: 1079: 1074: 1072: 1069: 1065: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1029: 1024: 1015: 1013: 1009: 1005: 1003: 998: 994: 988: 986: 982: 978: 973: 971: 969: 964: 960: 956: 952: 948: 944: 934: 932: 926: 924: 919: 915: 914:Pyotr Novikov 909: 907: 903: 899: 895: 891: 890:Efim Zelmanov 887: 883: 879: 875: 871: 864:Brief history 861: 859: 855: 851: 847: 843: 839: 835: 831: 827: 823: 819: 815: 803: 798: 796: 791: 789: 784: 783: 781: 780: 773: 770: 769: 766: 763: 762: 759: 756: 755: 752: 749: 748: 745: 740: 739: 729: 726: 723: 722: 720: 714: 711: 709: 706: 705: 702: 699: 697: 694: 692: 689: 688: 685: 679: 677: 671: 669: 663: 661: 655: 653: 647: 646: 642: 638: 635: 634: 630: 626: 623: 622: 618: 614: 611: 610: 606: 602: 599: 598: 594: 590: 587: 586: 582: 578: 575: 574: 570: 566: 563: 562: 558: 554: 551: 550: 547: 544: 542: 539: 538: 535: 531: 526: 525: 518: 515: 513: 510: 508: 505: 504: 476: 451: 450: 448: 442: 439: 414: 411: 410: 404: 401: 399: 396: 395: 391: 390: 379: 376: 374: 371: 368: 365: 364: 363: 362: 359: 356: 355: 350: 347: 346: 343: 340: 339: 336: 333: 331: 329: 325: 324: 321: 318: 316: 313: 312: 309: 306: 304: 301: 300: 299: 298: 292: 289: 286: 281: 278: 277: 273: 268: 265: 262: 257: 254: 251: 246: 243: 242: 241: 240: 235: 234:Finite groups 230: 229: 218: 215: 213: 210: 209: 208: 207: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 148: 147: 146: 141: 138: 136: 133: 132: 131: 130: 127: 126: 122: 121: 116: 113: 111: 108: 106: 103: 101: 98: 95: 93: 90: 89: 88: 87: 82: 79: 77: 74: 72: 69: 68: 67: 66: 61:Basic notions 58: 57: 53: 49: 48: 45: 40: 36: 32: 31: 19: 2253: 2249: 2241: 2237: 2200:(1): 41–60. 2197: 2193: 2185: 2181: 2158: 2154: 2122: 2118: 2110:10.4213/im77 2103:(3): 3–224. 2100: 2096: 2076: 2068: 2050: 2046: 2025: 2021: 2007:(1): 33–71. 2004: 2000: 1984: 1980: 1960: 1951:Bibliography 1927: 1920:John Britton 1915: 1903:. Retrieved 1888: 1881: 1872: 1866: 1844: 1840: 1836: 1832: 1828: 1823: 1809:Fields Medal 1801:Lie algebras 1796: 1792: 1780: 1778: 1773: 1769: 1765: 1761: 1757: 1749: 1745: 1737: 1733: 1725: 1721: 1717: 1713: 1705: 1701: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1648:) to be the 1645: 1641: 1633: 1629: 1625: 1621: 1617: 1605: 1601: 1597: 1593: 1591: 1581: 1577: 1576:groups with 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1544: 1540: 1526: 1523:cyclic group 1518: 1514: 1512:prime number 1500:cyclic group 1497: 1492: 1488: 1484: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1424: 1417:Sergei Adian 1410: 1407: 1401: 1397: 1396:, 4), and B( 1393: 1389: 1379: 1373: 1368:, 2) is the 1365: 1358: 1355:cyclic group 1350: 1344: 1338: 1334: 1330: 1326: 1322: 1321: 1315: 1311: 1307: 1303: 1295: 1291: 1287: 1283: 1279: 1275: 1268: 1261: 1257: 1253: 1246: 1239: 1235: 1231: 1227: 1219: 1212: 1208: 1204: 1200: 1193: 1189: 1185: 1181: 1177: 1173: 1166: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1128: 1121: 1117: 1113: 1109: 1108:, denoted B( 1105: 1101: 1097: 1095: 1089: 1085: 1081: 1077: 1076: 1070: 1067: 1066:, or just a 1063: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1033: 1028:Cayley graph 1011: 1001: 993:Evgeny Golod 990: 984: 980: 976: 975: 967: 962: 958: 954: 950: 942: 940: 927: 918:Sergei Adian 910: 901: 897: 877: 873: 869: 867: 842:Evgeny Golod 834:group theory 826:finite group 813: 811: 640: 628: 616: 604: 592: 580: 568: 556: 327: 284: 271: 260: 249: 245:Cyclic group 123: 110:Free product 81:Group action 44:Group theory 39:Group theory 38: 2230:E. Zelmanov 2174:E. Zelmanov 1957:S. I. Adian 1586:isomorphism 1467:> 1 and 1459:> 1 and 1238:generators 1207:) into the 1158:generators 894:Issai Schur 530:Topological 369:alternating 2297:Categories 1939:2107.09900 1859:References 1612:of finite 961:such that 945:is called 854:restricted 637:Symplectic 577:Orthogonal 534:Lie groups 441:Free group 166:continuous 105:Direct sum 2147:250838960 2028:: 1–308. 1987:: 41–82. 1525:of order 1481:conjugacy 1357:of order 1353:) is the 1341:) finite? 1310:), where 701:Conformal 589:Euclidean 196:nilpotent 2232:(1991). 2222:39623037 2176:(1990). 1905:26 April 1584:, up to 1392:, 3), B( 1100:of rank 1012:a priori 947:periodic 941:A group 696:PoincarĂ© 541:Solenoid 413:Integers 403:Lattices 378:sporadic 373:Lie type 201:solvable 191:dihedral 176:additive 161:infinite 71:Subgroup 2258:Bibcode 2202:Bibcode 2127:Bibcode 1959:(1979) 1849:abelian 1423:number 1382:M. Hall 1294:, then 1267:, ..., 1245:, ..., 1165:, ..., 1127:, ..., 850:bounded 691:Lorentz 613:Unitary 512:Lattice 452:PSL(2, 186:abelian 97:(Semi-) 2220:  2165:  2145:  2083:  1971:  1896:  1684:where 1574:finite 1234:) has 1004:-group 970:-group 546:Circle 477:SL(2, 366:cyclic 330:-group 181:cyclic 156:finite 151:simple 135:kernel 2218:S2CID 2143:S2CID 1934:arXiv 1815:Notes 1704:with 1668:with 1614:index 1552:with 1443:≄ 2, 1427:with 1349:B(1, 1302:of B( 1298:is a 1278:with 1199:of B( 1184:) to 1154:with 1088:, is 822:order 730:Sp(∞) 727:SU(∞) 140:image 2163:ISBN 2081:ISBN 1969:ISBN 1907:2024 1894:ISBN 1568:and 1479:and 1477:word 1415:and 1218:of 1026:The 995:and 916:and 852:and 844:and 812:The 724:O(∞) 713:Loop 532:and 2286:at 2266:doi 2242:182 2210:doi 2135:doi 2105:doi 2055:doi 2051:348 2030:doi 2009:doi 2005:289 1989:doi 1985:289 1835:= ( 1776:. 1720:)/( 1421:odd 1384:): 1372:of 1260:in 1080:If 1051:in 979:If 953:in 639:Sp( 627:SU( 603:SO( 567:SL( 555:GL( 2299:: 2264:. 2254:72 2252:. 2236:. 2216:. 2208:. 2198:36 2196:. 2186:54 2180:. 2141:. 2133:. 2123:60 2121:. 2101:60 2095:. 2075:. 2049:. 2045:. 2026:04 2024:. 2003:. 1845:ba 1843:= 1841:ab 1837:ab 1831:= 1795:, 1760:, 1748:, 1736:, 1680:)/ 1660:)/ 1656:, 1652:B( 1644:, 1632:, 1624:, 1495:. 1487:, 1451:, 1388:B( 1364:B( 1337:, 1329:, 1306:, 1230:, 1203:, 1180:, 1146:, 1112:, 1055:, 908:. 900:× 860:. 615:U( 591:E( 579:O( 37:→ 2272:. 2268:: 2260:: 2224:. 2212:: 2204:: 2169:. 2149:. 2137:: 2129:: 2113:. 2107:: 2087:. 2063:. 2057:: 2036:. 2032:: 2015:. 2011:: 1995:. 1991:: 1975:. 1942:. 1936:: 1909:. 1851:. 1833:b 1829:a 1797:p 1793:m 1791:( 1789:0 1781:p 1774:n 1770:m 1766:n 1762:n 1758:m 1756:( 1754:0 1750:n 1746:m 1744:( 1742:0 1738:n 1734:m 1732:( 1730:0 1726:M 1724:/ 1722:N 1718:n 1716:, 1714:m 1712:( 1710:0 1706:m 1702:n 1694:n 1692:, 1690:m 1686:N 1682:N 1678:n 1676:, 1674:m 1670:m 1666:n 1662:M 1658:n 1654:m 1646:n 1642:m 1640:( 1638:0 1634:n 1630:m 1626:n 1622:m 1618:M 1606:n 1602:m 1598:n 1594:m 1588:? 1582:n 1578:m 1570:n 1566:m 1562:G 1558:n 1554:m 1550:G 1527:p 1519:p 1515:p 1493:n 1489:n 1485:m 1469:n 1465:m 1461:n 1457:m 1453:n 1449:m 1445:n 1441:n 1437:m 1433:n 1429:n 1425:n 1404:. 1402:m 1398:m 1394:m 1390:m 1374:m 1366:m 1361:. 1359:n 1351:n 1339:n 1335:m 1331:n 1327:m 1316:G 1312:m 1308:n 1304:m 1296:G 1292:n 1288:G 1284:n 1280:m 1276:G 1271:m 1269:x 1265:1 1262:x 1258:x 1254:x 1249:m 1247:x 1243:1 1240:x 1236:m 1232:n 1228:m 1220:G 1215:i 1213:g 1209:i 1205:n 1201:m 1196:i 1194:x 1190:i 1186:G 1182:n 1178:m 1174:n 1169:m 1167:g 1163:1 1160:g 1156:m 1152:G 1148:n 1144:m 1140:x 1136:x 1131:m 1129:x 1125:1 1122:x 1118:m 1114:n 1110:m 1106:n 1102:m 1090:G 1086:n 1082:G 1071:n 1064:n 1057:g 1053:G 1049:g 1045:n 1041:G 1037:G 1002:p 985:G 981:G 968:p 963:g 959:n 955:G 951:g 943:G 902:n 898:n 878:G 874:G 870:G 801:e 794:t 787:v 683:8 681:E 675:7 673:E 667:6 665:E 659:4 657:F 651:2 649:G 643:) 641:n 631:) 629:n 619:) 617:n 607:) 605:n 595:) 593:n 583:) 581:n 571:) 569:n 559:) 557:n 499:) 486:Z 474:) 461:Z 437:) 424:Z 415:( 328:p 293:Q 285:n 282:D 272:n 269:A 261:n 258:S 250:n 247:Z 20:)

Index

Burnside's problem
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑