Knowledge

Burnside problem

Source 📝

1012: 41: 1424:. Adian later improved the bound on the odd exponent to 665. The latest improvement to the bound on odd exponent is 101 obtained by Adian himself in 2015. The case of even exponent turned out to be considerably more difficult. It was only in 1994 that Sergei Vasilievich Ivanov was able to prove an analogue of Novikov–Adian theorem: for any 1460:≄ 8000. Novikov–Adian, Ivanov and LysĂ«nok established considerably more precise results on the structure of the free Burnside groups. In the case of the odd exponent, all finite subgroups of the free Burnside groups were shown to be cyclic groups. In the even exponent case, each finite subgroup is contained in a product of two 917:
The case of even exponents turned out to be much harder to settle. In 1992, S. V. Ivanov announced the negative solution for sufficiently large even exponents divisible by a large power of 2 (detailed proofs were published in 1994 and occupied some 300 pages). Later joint work of Ol'shanskii and
900:
Nevertheless, the general answer to the Burnside problem turned out to be negative. In 1964, Golod and Shafarevich constructed an infinite group of Burnside type without assuming that all elements have uniformly bounded order. In 1968,
1023:
Part of the difficulty with the general Burnside problem is that the requirements of being finitely generated and periodic give very little information about the possible structure of a group. Therefore, we pose more requirements on
909:
supplied a negative solution to the bounded exponent problem for all odd exponents larger than 4381 which was later improved to an odd exponent larger than 665 by Adian and the best odd number bound is 101 also by Adian. In 1982,
1275:
is obtained from it by imposing additional relations. The existence of the free Burnside group and its uniqueness up to an isomorphism are established by standard techniques of group theory. Thus if
1499:
in 1979 using geometric methods, thus affirmatively solving O. Yu. Schmidt's problem. In 1982 Ol'shanskii was able to strengthen his results to establish existence, for any sufficiently large
873:
was able to prove in 1958 that among the finite groups with a given number of generators and a given prime exponent, there exists a largest one. This provides a solution for the
837:
provided a counter-example in 1964. The problem has many refinements and variants that differ in the additional conditions imposed on the orders of the group elements (see
1487:
A famous class of counterexamples to the Burnside problem is formed by finitely generated non-cyclic infinite groups in which every nontrivial proper subgroup is a finite
486: 461: 424: 914:
found some striking counterexamples for sufficiently large odd exponents (greater than 10), and supplied a considerably simpler proof based on geometric ideas.
1953: 922:, provided the exponent is sufficiently large. By contrast, when the exponent is small and different from 2, 3, 4 and 6, very little is known. 788: 1911:
proposed a nearly 300 page alternative proof to the Burnside problem in 1973; however, Adian ultimately pointed out a flaw in that proof.
2296: 2276: 1776:
during the 1950s, prior to the negative solution of the general Burnside problem. His solution, establishing the finiteness of B
346: 1334:
The full solution to Burnside problem in this form is not known. Burnside considered some easy cases in his original paper:
296: 2291: 1085:
It turns out that this problem can be restated as a question about the finiteness of groups in a particular family. The
781: 291: 2155: 2073: 1961: 1886: 1589:
has all finite limits and colimits. It can also be stated more explicitly in terms of certain universal groups with
1921:
Nahlus, Nazih; Yang, Yilong (2021). "Projective Limits and Ultraproducts of Nonabelian Finite Groups". p. 19.
1581:
This variant of the Burnside problem can also be stated in terms of category theory: an affirmative answer for all
1131:, and which is the "largest" group satisfying these requirements. More precisely, the characteristic property of B( 1518:. In a paper published in 1996, Ivanov and Ol'shanskii solved an analogue of the Burnside problem in an arbitrary 707: 1370: 996: 774: 885:
had shown in 1911 that any finitely generated periodic group that was a subgroup of the group of invertible
2272: 1908: 1792:
in finite characteristic. The case of arbitrary exponent has been completely settled in the affirmative by
391: 205: 826: 123: 1358: 894: 806: 589: 323: 200: 88: 469: 444: 407: 2181:
Zel'manov, E I (1991). "Solution of the Restricted Burnside Problem for Groups of Odd Exponent".
1465: 1212: 1510:> 10) of a finitely generated infinite group in which every nontrivial proper subgroup is a 739: 529: 1496: 911: 613: 954:= 1. Clearly, every finite group is periodic. There exist easily defined groups such as the 2246: 2190: 2115: 1492: 1409: 810: 553: 541: 159: 93: 1444:) is infinite; together with the Novikov–Adian theorem, this implies infiniteness for all 8: 1686: 1602: 128: 23: 2250: 2194: 2119: 2206: 2131: 1922: 1288: 961:
which are infinite periodic groups; but the latter group cannot be finitely generated.
113: 85: 1408:
in 1968. Using a complicated combinatorial argument, they demonstrated that for every
2237:
Zel'manov, E I (1992). "A Solution of the Restricted Burnside Problem for 2-groups".
2151: 2135: 2069: 1957: 1882: 1574: 1469: 518: 361: 255: 2258: 2210: 2202: 2127: 684: 2254: 2198: 2123: 2093: 2043: 2018: 1997: 1988:
Adian, S. I. (2015). "New estimates of odd exponents of infinite Burnside groups".
1977: 1598: 1519: 985: 919: 834: 818: 669: 661: 653: 645: 637: 625: 565: 505: 495: 337: 279: 154: 2048: 2031: 1968:
S. I. Adian (2015). "New estimates of odd exponents of infinite Burnside groups".
918:
Ivanov established a negative solution to an analogue of the Burnside problem for
2009:
S. V. Ivanov (1994). "The Free Burnside Groups of Sufficiently Large Exponents".
1876: 1773: 1605:
in any group is itself a normal subgroup of finite index. Thus, the intersection
870: 753: 746: 732: 689: 577: 500: 330: 244: 184: 64: 955: 1638: 1461: 935: 760: 696: 386: 366: 303: 268: 189: 179: 164: 149: 103: 80: 2022: 2001: 1981: 881:
was able to solve the restricted Burnside problem for an arbitrary exponent.)
2285: 2218: 2162: 2061: 1837: 1793: 1401: 1011: 902: 878: 857:
Initial work pointed towards the affirmative answer. For example, if a group
679: 601: 435: 308: 174: 16:
If G is a finitely generated group with exponent n, is G necessarily finite?
1945: 1797: 1511: 1500: 1488: 1405: 1343: 1016: 981: 906: 846: 830: 822: 814: 534: 233: 222: 169: 144: 139: 98: 69: 32: 1789: 938:(or torsion) if every element has finite order; in other words, for each 882: 2167:"Solution of the restricted Burnside problem for groups of odd exponent" 2146:. Translated from the 1989 Russian original by Yu. A. Bakhturin (1991) 1585:
is equivalent to saying that the category of finite groups of exponent
1420:> 4381, there exist infinite, finitely generated groups of exponent 701: 429: 1881:. Dordrecht ; Boston: Kluwer Academic Publishers. p. xxii. 522: 2222: 2166: 2106:
Lysënok, I. G. (1996). "Infinite Burnside groups of even exponent".
1927: 59: 2150:(Soviet Series), 70. Dordrecht: Kluwer Academic Publishers Group. 2029: 2098: 2081: 1400:
The breakthrough in solving the Burnside problem was achieved by
989: 401: 315: 1952:. Translated from the Russian by John Lennox and James Wiegold. 1625:). One can therefore define the free restricted Burnside group B 1836:, so that a free Burnside group of exponent two is necessarily 1032:
with the additional property that there exists a least integer
1019:
of the 27-element free Burnside group of rank 2 and exponent 3.
893:
complex matrices was finite; he used this theorem to prove the
40: 1862:
Representation Theory of Finite Groups and Associated Algebras
1062:. The Burnside problem for groups with bounded exponent asks: 1530:
Formulated in the 1930s, it asks another, related, question:
1464:, and there exist non-cyclic finite subgroups. Moreover, the 1369:
The following additional results are known (Burnside, Sanov,
999:). However, the orders of the elements of this group are not 2032:"Hyperbolic groups and their quotients of bounded exponents" 1597:. By basic results of group theory, the intersection of two 2171:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
2086:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
1788:), used a relation with deep questions about identities in 2223:"Solution of the restricted Burnside problem for 2-groups" 1609:
of all the normal subgroups of the free Burnside group B(
1365:
copies of the cyclic group of order 2 and hence finite.
1307:. The Burnside problem can now be restated as follows: 861:
is finitely generated and the order of each element of
829:. It is known to have a negative answer in general, as 1729:). The restricted Burnside problem then asks whether B 980:
This question was answered in the negative in 1964 by
1970:
Trudy Matematicheskogo Instituta imeni V. A. Steklova
472: 447: 410: 2060:. Translated from the Russian and with a preface by 1859: 1741:) is a finite group. In terms of category theory, B 1617:) which have finite index is a normal subgroup of B( 1495:. First examples of such groups were constructed by 1472:
problems were shown to be effectively solvable in B(
1990:
Proceedings of the Steklov Institute of Mathematics
1452:≄ 2. This was improved in 1996 by I. G. LysĂ«nok to 1717:) — in other words, it is a homomorphic image of B 821:in 1902, making it one of the oldest questions in 480: 455: 418: 2036:Transactions of the American Mathematical Society 972:is a finitely generated, periodic group, then is 877:for the case of prime exponent. (Later, in 1989, 2283: 2066:Ergebnisse der Mathematik und ihrer Grenzgebiete 2011:International Journal of Algebra and Computation 1954:Ergebnisse der Mathematik und ihrer Grenzgebiete 874: 842: 1816:The key step is to observe that the identities 1480:) both for the cases of odd and even exponents 1553:is bounded by some constant depending only on 1549:is finite, can one conclude that the order of 1525: 1048:= 1. A group with this property is said to be 2236: 2180: 2079: 1950:The Burnside problem and identities in groups 1761:in the category of finite groups of exponent 1561:? Equivalently, are there only finitely many 1397:The particular case of B(2, 5) remains open. 838: 782: 2008: 1279:is any finitely generated group of exponent 1073:is a finitely generated group with exponent 825:, and was influential in the development of 2217: 2161: 2082:"Infinite Burnside groups of even exponent" 1967: 1874: 1006: 925: 1920: 1914: 1864:. John Wiley & Sons. pp. 256–262. 1772:, this problem was extensively studied by 789: 775: 2097: 2047: 2030:S. V. Ivanov; A. Yu. Ol'Shanskii (1996). 1926: 1868: 845:below). Some of these variants are still 474: 449: 412: 2144:Geometry of defining relations in groups 1956:, 95. Springer-Verlag, Berlin-New York. 1878:Geometry of defining relations in groups 1860:Curtis, Charles; Reiner, Irving (1962). 1165:, there is a unique homomorphism from B( 1010: 2277:MacTutor History of Mathematics archive 2105: 1685:) with finite index. Therefore, by the 2284: 347:Classification of finite simple groups 1987: 1853: 988:, who gave an example of an infinite 946:, there exists some positive integer 2068:(3) , 20. Springer-Verlag, Berlin. 13: 1768:In the case of the prime exponent 1522:for sufficiently large exponents. 809:in which every element has finite 14: 2308: 2266: 2183:Mathematics of the USSR-Izvestiya 1689:, every finite group of exponent 1653:. Every finite group of exponent 2297:Unsolved problems in mathematics 2148:Mathematics and its Applications 995:that is finitely generated (see 852: 39: 2273:History of the Burnside problem 2259:10.1070/SM1992v072n02ABEH001272 2239:Mathematics of the USSR-Sbornik 2203:10.1070/IM1991v036n01ABEH001946 2128:10.1070/IM1996v060n03ABEH000077 1939: 1303:is the number of generators of 1902: 1810: 1661:generators is isomorphic to B( 1050:periodic with bounded exponent 1003:bounded by a single constant. 708:Infinite dimensional Lie group 1: 2049:10.1090/S0002-9947-96-01510-3 1875:OlÊčshanskiÄ­, A. Iïž UïžĄ (1991). 1847: 1697:generators is isomorphic to B 1322:is the free Burnside group B( 1537:If it is known that a group 1535:Restricted Burnside problem. 1436:divisible by 2, the group B( 1314:For which positive integers 1215:, the free Burnside group B( 1028:. Consider a periodic group 481:{\displaystyle \mathbb {Z} } 456:{\displaystyle \mathbb {Z} } 419:{\displaystyle \mathbb {Z} } 7: 1526:Restricted Burnside problem 1139:) is that, given any group 1127:= 1 holds for all elements 875:restricted Burnside problem 206:List of group theory topics 10: 2313: 2292:Combinatorial group theory 2142:A. Yu. Ol'shanskii (1989) 1828:) = 1 together imply that 1677:is a normal subgroup of B( 827:combinatorial group theory 2023:10.1142/S0218196794000026 2002:10.1134/S0081543815040045 1982:10.1134/S0371968515020041 1687:Third Isomorphism Theorem 1109:distinguished generators 997:Golod–Shafarevich theorem 966:General Burnside problem. 1803: 1593:generators and exponent 1545:generators and exponent 1389:, 6) are finite for all 1007:Bounded Burnside problem 926:General Burnside problem 865:is a divisor of 4, then 807:finitely generated group 324:Elementary abelian group 201:Glossary of group theory 2227:Matematicheskii Sbornik 2056:A. I. Kostrikin (1990) 1757:cyclic groups of order 1753:) is the coproduct of 1569:generators of exponent 1271:generators of exponent 2108:Izvestiya: Mathematics 2080:I. G. LysĂ«nok (1996). 1800:in 1994 for his work. 1796:, who was awarded the 1579: 1332: 1123:in which the identity 1083: 1020: 978: 813:must necessarily be a 740:Linear algebraic group 482: 457: 420: 1532: 1309: 1211:. In the language of 1064: 1014: 963: 869:is finite. Moreover, 483: 458: 421: 1312:Burnside problem II. 895:Jordan–Schur theorem 470: 445: 408: 2251:1992SbMat..72..543Z 2195:1991IzMat..36...41Z 2120:1996IzMat..60..453L 1428:> 1 and an even 1213:group presentations 1105:), is a group with 1087:free Burnside group 1081:necessarily finite? 1067:Burnside problem I. 1057:group with exponent 976:necessarily finite? 114:Group homomorphisms 24:Algebraic structure 1497:A. Yu. Ol'shanskii 1245:= 1 for each word 1241:and the relations 1036:such that for all 1021: 912:A. Yu. Ol'shanskii 817:. It was posed by 590:Special orthogonal 478: 453: 416: 297:Lagrange's theorem 1289:homomorphic image 920:hyperbolic groups 799: 798: 374: 373: 256:Alternating group 213: 212: 2304: 2262: 2234: 2214: 2178: 2177:(1): 42–59, 221. 2139: 2103: 2101: 2053: 2051: 2042:(6): 2091–2138. 2026: 2005: 1985: 1934: 1932: 1930: 1918: 1912: 1906: 1900: 1899: 1897: 1895: 1872: 1866: 1865: 1857: 1841: 1814: 1599:normal subgroups 1520:hyperbolic group 1491:, the so-called 1263:, and any group 1161:and of exponent 986:Igor Shafarevich 835:Igor Shafarevich 819:William Burnside 803:Burnside problem 791: 784: 777: 733:Algebraic groups 506:Hyperbolic group 496:Arithmetic group 487: 485: 484: 479: 477: 462: 460: 459: 454: 452: 425: 423: 422: 417: 415: 338:Schur multiplier 292:Cauchy's theorem 280:Quaternion group 228: 227: 54: 53: 43: 30: 19: 18: 2312: 2311: 2307: 2306: 2305: 2303: 2302: 2301: 2282: 2281: 2269: 2235:Translation in 2179:Translation in 2104:Translation in 2058:Around Burnside 1986:Translation in 1942: 1937: 1919: 1915: 1907: 1903: 1893: 1891: 1889: 1873: 1869: 1858: 1854: 1850: 1845: 1844: 1815: 1811: 1806: 1779: 1774:A. I. Kostrikin 1744: 1732: 1720: 1700: 1628: 1528: 1493:Tarski Monsters 1462:dihedral groups 1261: 1255: 1239: 1233: 1205: 1186: 1159: 1153: 1121: 1115: 1009: 928: 871:A. I. Kostrikin 855: 805:asks whether a 795: 766: 765: 754:Abelian variety 747:Reductive group 735: 725: 724: 723: 722: 673: 665: 657: 649: 641: 614:Special unitary 525: 511: 510: 492: 491: 473: 471: 468: 467: 448: 446: 443: 442: 411: 409: 406: 405: 397: 396: 387:Discrete groups 376: 375: 331:Frobenius group 276: 263: 252: 245:Symmetric group 241: 225: 215: 214: 65:Normal subgroup 51: 31: 22: 17: 12: 11: 5: 2310: 2300: 2299: 2294: 2280: 2279: 2268: 2267:External links 2265: 2264: 2263: 2245:(2): 543–565. 2229:(in Russian). 2215: 2173:(in Russian). 2159: 2140: 2114:(3): 453–654. 2088:(in Russian). 2077: 2054: 2027: 2006: 1972:(in Russian). 1965: 1941: 1938: 1936: 1935: 1913: 1901: 1887: 1867: 1851: 1849: 1846: 1843: 1842: 1808: 1807: 1805: 1802: 1777: 1742: 1730: 1718: 1698: 1639:quotient group 1626: 1527: 1524: 1506:(one can take 1395: 1394: 1367: 1366: 1359:direct product 1351: 1259: 1253: 1237: 1231: 1203: 1184: 1177:that maps the 1157: 1151: 1119: 1113: 1008: 1005: 927: 924: 854: 851: 847:open questions 797: 796: 794: 793: 786: 779: 771: 768: 767: 764: 763: 761:Elliptic curve 757: 756: 750: 749: 743: 742: 736: 731: 730: 727: 726: 721: 720: 717: 714: 710: 706: 705: 704: 699: 697:Diffeomorphism 693: 692: 687: 682: 676: 675: 671: 667: 663: 659: 655: 651: 647: 643: 639: 634: 633: 622: 621: 610: 609: 598: 597: 586: 585: 574: 573: 562: 561: 554:Special linear 550: 549: 542:General linear 538: 537: 532: 526: 517: 516: 513: 512: 509: 508: 503: 498: 490: 489: 476: 464: 451: 438: 436:Modular groups 434: 433: 432: 427: 414: 398: 395: 394: 389: 383: 382: 381: 378: 377: 372: 371: 370: 369: 364: 359: 356: 350: 349: 343: 342: 341: 340: 334: 333: 327: 326: 321: 312: 311: 309:Hall's theorem 306: 304:Sylow theorems 300: 299: 294: 286: 285: 284: 283: 277: 272: 269:Dihedral group 265: 264: 259: 253: 248: 242: 237: 226: 221: 220: 217: 216: 211: 210: 209: 208: 203: 195: 194: 193: 192: 187: 182: 177: 172: 167: 162: 160:multiplicative 157: 152: 147: 142: 134: 133: 132: 131: 126: 118: 117: 109: 108: 107: 106: 104:Wreath product 101: 96: 91: 89:direct product 83: 81:Quotient group 75: 74: 73: 72: 67: 62: 52: 49: 48: 45: 44: 36: 35: 15: 9: 6: 4: 3: 2: 2309: 2298: 2295: 2293: 2290: 2289: 2287: 2278: 2274: 2271: 2270: 2260: 2256: 2252: 2248: 2244: 2240: 2233:(4): 568–592. 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2176: 2172: 2168: 2164: 2160: 2157: 2156:0-7923-1394-1 2153: 2149: 2145: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2100: 2095: 2091: 2087: 2083: 2078: 2075: 2074:3-540-50602-0 2071: 2067: 2063: 2062:James Wiegold 2059: 2055: 2050: 2045: 2041: 2037: 2033: 2028: 2024: 2020: 2016: 2012: 2007: 2003: 1999: 1995: 1991: 1983: 1979: 1975: 1971: 1966: 1963: 1962:3-540-08728-1 1959: 1955: 1951: 1947: 1944: 1943: 1933:Corollary 3.2 1929: 1924: 1917: 1910: 1905: 1890: 1888:9780792313946 1884: 1880: 1879: 1871: 1863: 1856: 1852: 1839: 1835: 1831: 1827: 1823: 1819: 1813: 1809: 1801: 1799: 1795: 1794:Efim Zelmanov 1791: 1787: 1783: 1775: 1771: 1766: 1764: 1760: 1756: 1752: 1748: 1740: 1736: 1728: 1724: 1716: 1712: 1708: 1704: 1696: 1692: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1578: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1531: 1523: 1521: 1517: 1513: 1509: 1505: 1502: 1498: 1494: 1490: 1485: 1483: 1479: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1402:Pyotr Novikov 1398: 1392: 1388: 1384: 1380: 1376: 1375: 1374: 1372: 1364: 1360: 1356: 1352: 1349: 1345: 1341: 1337: 1336: 1335: 1331: 1329: 1325: 1321: 1317: 1313: 1308: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1252: 1248: 1244: 1240: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1200:th generator 1199: 1195: 1191: 1187: 1181:th generator 1180: 1176: 1172: 1168: 1164: 1160: 1150: 1146: 1142: 1138: 1134: 1130: 1126: 1122: 1112: 1108: 1104: 1100: 1096: 1093:and exponent 1092: 1088: 1082: 1080: 1076: 1072: 1068: 1063: 1061: 1058: 1054: 1051: 1047: 1043: 1039: 1035: 1031: 1027: 1018: 1013: 1004: 1002: 998: 994: 992: 987: 983: 977: 975: 971: 967: 962: 960: 958: 953: 949: 945: 941: 937: 933: 923: 921: 915: 913: 908: 904: 903:Pyotr Novikov 898: 896: 892: 888: 884: 880: 879:Efim Zelmanov 876: 872: 868: 864: 860: 853:Brief history 850: 848: 844: 840: 836: 832: 828: 824: 820: 816: 812: 808: 804: 792: 787: 785: 780: 778: 773: 772: 770: 769: 762: 759: 758: 755: 752: 751: 748: 745: 744: 741: 738: 737: 734: 729: 728: 718: 715: 712: 711: 709: 703: 700: 698: 695: 694: 691: 688: 686: 683: 681: 678: 677: 674: 668: 666: 660: 658: 652: 650: 644: 642: 636: 635: 631: 627: 624: 623: 619: 615: 612: 611: 607: 603: 600: 599: 595: 591: 588: 587: 583: 579: 576: 575: 571: 567: 564: 563: 559: 555: 552: 551: 547: 543: 540: 539: 536: 533: 531: 528: 527: 524: 520: 515: 514: 507: 504: 502: 499: 497: 494: 493: 465: 440: 439: 437: 431: 428: 403: 400: 399: 393: 390: 388: 385: 384: 380: 379: 368: 365: 363: 360: 357: 354: 353: 352: 351: 348: 345: 344: 339: 336: 335: 332: 329: 328: 325: 322: 320: 318: 314: 313: 310: 307: 305: 302: 301: 298: 295: 293: 290: 289: 288: 287: 281: 278: 275: 270: 267: 266: 262: 257: 254: 251: 246: 243: 240: 235: 232: 231: 230: 229: 224: 223:Finite groups 219: 218: 207: 204: 202: 199: 198: 197: 196: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 138: 137: 136: 135: 130: 127: 125: 122: 121: 120: 119: 116: 115: 111: 110: 105: 102: 100: 97: 95: 92: 90: 87: 84: 82: 79: 78: 77: 76: 71: 68: 66: 63: 61: 58: 57: 56: 55: 50:Basic notions 47: 46: 42: 38: 37: 34: 29: 25: 21: 20: 2242: 2238: 2230: 2226: 2189:(1): 41–60. 2186: 2182: 2174: 2170: 2147: 2143: 2111: 2107: 2099:10.4213/im77 2092:(3): 3–224. 2089: 2085: 2065: 2057: 2039: 2035: 2014: 2010: 1996:(1): 33–71. 1993: 1989: 1973: 1969: 1949: 1940:Bibliography 1916: 1909:John Britton 1904: 1892:. Retrieved 1877: 1870: 1861: 1855: 1833: 1829: 1825: 1821: 1817: 1812: 1798:Fields Medal 1790:Lie algebras 1785: 1781: 1769: 1767: 1762: 1758: 1754: 1750: 1746: 1738: 1734: 1726: 1722: 1714: 1710: 1706: 1702: 1694: 1690: 1682: 1678: 1674: 1670: 1666: 1662: 1658: 1654: 1650: 1646: 1642: 1637:) to be the 1634: 1630: 1622: 1618: 1614: 1610: 1606: 1594: 1590: 1586: 1582: 1580: 1570: 1566: 1565:groups with 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1533: 1529: 1515: 1512:cyclic group 1507: 1503: 1501:prime number 1489:cyclic group 1486: 1481: 1477: 1473: 1457: 1453: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1406:Sergei Adian 1399: 1396: 1390: 1386: 1385:, 4), and B( 1382: 1378: 1368: 1362: 1357:, 2) is the 1354: 1347: 1344:cyclic group 1339: 1333: 1327: 1323: 1319: 1315: 1311: 1310: 1304: 1300: 1296: 1292: 1284: 1280: 1276: 1272: 1268: 1264: 1257: 1250: 1246: 1242: 1235: 1228: 1224: 1220: 1216: 1208: 1201: 1197: 1193: 1189: 1182: 1178: 1174: 1170: 1166: 1162: 1155: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1117: 1110: 1106: 1102: 1098: 1097:, denoted B( 1094: 1090: 1086: 1084: 1078: 1074: 1070: 1066: 1065: 1059: 1056: 1055:, or just a 1052: 1049: 1045: 1041: 1037: 1033: 1029: 1025: 1022: 1017:Cayley graph 1000: 990: 982:Evgeny Golod 979: 973: 969: 965: 964: 956: 951: 947: 943: 939: 931: 929: 916: 907:Sergei Adian 899: 890: 886: 866: 862: 858: 856: 831:Evgeny Golod 823:group theory 815:finite group 802: 800: 629: 617: 605: 593: 581: 569: 557: 545: 316: 273: 260: 249: 238: 234:Cyclic group 112: 99:Free product 70:Group action 33:Group theory 28:Group theory 27: 2219:E. Zelmanov 2163:E. Zelmanov 1946:S. I. Adian 1575:isomorphism 1456:> 1 and 1448:> 1 and 1227:generators 1196:) into the 1147:generators 883:Issai Schur 519:Topological 358:alternating 2286:Categories 1928:2107.09900 1848:References 1601:of finite 950:such that 934:is called 843:restricted 626:Symplectic 566:Orthogonal 523:Lie groups 430:Free group 155:continuous 94:Direct sum 2136:250838960 2017:: 1–308. 1976:: 41–82. 1514:of order 1470:conjugacy 1346:of order 1342:) is the 1330:) finite? 1299:), where 690:Conformal 578:Euclidean 185:nilpotent 2221:(1991). 2211:39623037 2165:(1990). 1894:26 April 1573:, up to 1381:, 3), B( 1089:of rank 1001:a priori 936:periodic 930:A group 685:PoincarĂ© 530:Solenoid 402:Integers 392:Lattices 367:sporadic 362:Lie type 190:solvable 180:dihedral 165:additive 150:infinite 60:Subgroup 2247:Bibcode 2191:Bibcode 2116:Bibcode 1948:(1979) 1838:abelian 1412:number 1371:M. Hall 1283:, then 1256:, ..., 1234:, ..., 1154:, ..., 1116:, ..., 839:bounded 680:Lorentz 602:Unitary 501:Lattice 441:PSL(2, 175:abelian 86:(Semi-) 2209:  2154:  2134:  2072:  1960:  1885:  1673:where 1563:finite 1223:) has 993:-group 959:-group 535:Circle 466:SL(2, 355:cyclic 319:-group 170:cyclic 145:finite 140:simple 124:kernel 2207:S2CID 2132:S2CID 1923:arXiv 1804:Notes 1693:with 1657:with 1603:index 1541:with 1432:≄ 2, 1416:with 1338:B(1, 1291:of B( 1287:is a 1267:with 1188:of B( 1173:) to 1143:with 1077:, is 811:order 719:Sp(∞) 716:SU(∞) 129:image 2152:ISBN 2070:ISBN 1958:ISBN 1896:2024 1883:ISBN 1557:and 1468:and 1466:word 1404:and 1207:of 1015:The 984:and 905:and 841:and 833:and 801:The 713:O(∞) 702:Loop 521:and 2275:at 2255:doi 2231:182 2199:doi 2124:doi 2094:doi 2044:doi 2040:348 2019:doi 1998:doi 1994:289 1978:doi 1974:289 1824:= ( 1765:. 1709:)/( 1410:odd 1373:): 1361:of 1249:in 1069:If 1040:in 968:If 942:in 628:Sp( 616:SU( 592:SO( 556:SL( 544:GL( 2288:: 2253:. 2243:72 2241:. 2225:. 2205:. 2197:. 2187:36 2185:. 2175:54 2169:. 2130:. 2122:. 2112:60 2110:. 2090:60 2084:. 2064:. 2038:. 2034:. 2015:04 2013:. 1992:. 1834:ba 1832:= 1830:ab 1826:ab 1820:= 1784:, 1749:, 1737:, 1725:, 1669:)/ 1649:)/ 1645:, 1641:B( 1633:, 1621:, 1613:, 1484:. 1476:, 1440:, 1377:B( 1353:B( 1326:, 1318:, 1295:, 1219:, 1192:, 1169:, 1135:, 1101:, 1044:, 897:. 889:× 849:. 604:U( 580:E( 568:O( 26:→ 2261:. 2257:: 2249:: 2213:. 2201:: 2193:: 2158:. 2138:. 2126:: 2118:: 2102:. 2096:: 2076:. 2052:. 2046:: 2025:. 2021:: 2004:. 2000:: 1984:. 1980:: 1964:. 1931:. 1925:: 1898:. 1840:. 1822:b 1818:a 1786:p 1782:m 1780:( 1778:0 1770:p 1763:n 1759:m 1755:n 1751:n 1747:m 1745:( 1743:0 1739:n 1735:m 1733:( 1731:0 1727:n 1723:m 1721:( 1719:0 1715:M 1713:/ 1711:N 1707:n 1705:, 1703:m 1701:( 1699:0 1695:m 1691:n 1683:n 1681:, 1679:m 1675:N 1671:N 1667:n 1665:, 1663:m 1659:m 1655:n 1651:M 1647:n 1643:m 1635:n 1631:m 1629:( 1627:0 1623:n 1619:m 1615:n 1611:m 1607:M 1595:n 1591:m 1587:n 1583:m 1577:? 1571:n 1567:m 1559:n 1555:m 1551:G 1547:n 1543:m 1539:G 1516:p 1508:p 1504:p 1482:n 1478:n 1474:m 1458:n 1454:m 1450:n 1446:m 1442:n 1438:m 1434:n 1430:n 1426:m 1422:n 1418:n 1414:n 1393:. 1391:m 1387:m 1383:m 1379:m 1363:m 1355:m 1350:. 1348:n 1340:n 1328:n 1324:m 1320:n 1316:m 1305:G 1301:m 1297:n 1293:m 1285:G 1281:n 1277:G 1273:n 1269:m 1265:G 1260:m 1258:x 1254:1 1251:x 1247:x 1243:x 1238:m 1236:x 1232:1 1229:x 1225:m 1221:n 1217:m 1209:G 1204:i 1202:g 1198:i 1194:n 1190:m 1185:i 1183:x 1179:i 1175:G 1171:n 1167:m 1163:n 1158:m 1156:g 1152:1 1149:g 1145:m 1141:G 1137:n 1133:m 1129:x 1125:x 1120:m 1118:x 1114:1 1111:x 1107:m 1103:n 1099:m 1095:n 1091:m 1079:G 1075:n 1071:G 1060:n 1053:n 1046:g 1042:G 1038:g 1034:n 1030:G 1026:G 991:p 974:G 970:G 957:p 952:g 948:n 944:G 940:g 932:G 891:n 887:n 867:G 863:G 859:G 790:e 783:t 776:v 672:8 670:E 664:7 662:E 656:6 654:E 648:4 646:F 640:2 638:G 632:) 630:n 620:) 618:n 608:) 606:n 596:) 594:n 584:) 582:n 572:) 570:n 560:) 558:n 548:) 546:n 488:) 475:Z 463:) 450:Z 426:) 413:Z 404:( 317:p 282:Q 274:n 271:D 261:n 258:A 250:n 247:S 239:n 236:Z

Index

Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups
Cyclic group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑